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This supplementary material provides the following information: Sec. 1 pro-
vides technical details for the matching approach described in Sec. 3.2 in the
paper. Sec. 2 describes a solver that estimates the essential matrix and a com-
mon focal length from affine correspondences (ACs) (c.f . Sec. 3.3 in the paper).
Sec. 3 provides details on the constraints used to derive uncertainty estimates for
the solvers used in the paper (c.f . Sec. 3.5 in the paper). Sec. 4 discusses fitting
a distribution other than the normal distribution to the trace of the covariance
matrix (c.f . Sec. 3.5 in the paper). Sec. 5 finally provides additional results on
the impact of local optimization (c.f . Sec. 4.5 in the paper).

1 Symmetric Least Squares Matching

Here we describe the symmetric version of least squares matching in more detail
and give some experimental results.

1.1 Model

Let the two image windows g(y) and h(z) in the two images be given (c.f .
Fig. 1). The coordinates refer to the centre of the square windows. We assume
that both windows are noisy observations of an unknown true underlying signal
f(x), with individual geometric distortion, brightness, and contrast. We want
to determine the geometric distortion z = A(y) and the radiometric distortion
h = R(g) = pg + q. Classical matching methods assume the geometric and
radiometric distortion of one of the two windows is zero, e.g . assuming g(y) =
f(x), with y = x. We break this asymmetry by placing the unknown signal f(x)
in the middle between the observed signals between g and h:

g(y)
B,S−→ f(x)

B,S−→ h(z) such that A = B2 ,R = S2 . (1)

Assuming affinities for the geometric and the radiometric distortion, we have
the following generative model (see Fig. 1): The geometric and the radiometric
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Fig. 1: Relations between two given square image patches g(y) (blue) and h(h)
(green) and the mean patch f(x) (which is the black within the red region).
The two image patches g and h are related by geometric and a radiometric
affinities B and S, respectively. The correspondence is established by the patch
f . Geometrically and radiometrically it lies in the middle between g and h. Only
a region in the overlap of the two patches g and h mapped to f can be used.
We choose the maximum square (black). The observations are all pixels in g
and h which map into the black square of the reference image f . We assume
the reference image f is a restored version of the weighted mean of the two
projected images g and h. The patches g and h may have different sizes. The
size of the unknown signal (black, gray) depends on the sizes of g and h, the
approximate affine transformation A and a border to allow bicubic interpolation,
and is adapted in each iteration. The large image in the x-frame is used for
generating artificial images. The dashed lines indicate the borders required for
allowing bicubic interpolation

models for the two images are

y 7→ x : x = By + b and x 7→ z : z = Bx+ b (2)
g 7→ f : f = sg + t and f 7→ h : h = sf + t . (3)



Making Affine Correspondences Work in Camera Geometry Computation 3

In the following we collect the eight unknown parameters of the affinities B(B, b)
and S(s, t) in the vector

θ =

[
θG
θR

]
=




b11
b21
b12
b22
b1
b2

[
s
t

]


. (4)

This model is rigorous only in the case that the scene surface is planar in a differ-
entiable region and the intensity differences result from brightness and contrast
changes only.

We now assume the intensities gj and hk are noisy with variances σ2
nj

and
σ2
hk
. These statistical properties of the noise need to be specified, e.g ., assuming

the variance to be signal dependent, thus e.g . using σ2
nj

= σ2
n(g(yj)) and σ2

mk
=

σ2
m(h(zk)). When using real images, we estimate this signal-dependent variance

functions of the two images, see [6].
Integrating the geometry and intensity transformation we arrive at the fol-

lowing model, which is generative, i.e., allows to simulate observed images:

g(yj) = s−1
(
f
(
Byj + b

)
− t
)
+ n(yj) , j = 1, . . . , J (5)

h(zk) =
(
sf
(
B−1(zk − b)

)
+ t
)
+m(zk) , k = 1, . . . ,K . (6)

1.2 Estimation

The task is to estimate the parameters θ = (θG,θI) for the geometric and the
radiometric transformation and the unknown true signal f from the observed
values g(yj) and h(zk).

The explicit modeling in (5) and (6) allows us to write the problem as a
nonlinear Gauss-Markov model with the residuals and their dispersion,

nj(θ, f) = gj − s−1
(
f
(
Byj + b

)
− t
)

, D(nj) = σ2
nj
, j = 1, ..., J (7)

mk(θ, f) = hk −
(
sf
(
B−1(zk − b)

)
+ t
)
, D(mk) = σ2

mk
, k = 1, ...,K ,(8)

for all pixels yj of g and all pixels zk of h falling into the common region in f .
Maximum likelihood (ML) estimates (θ̂, f̂) result from minimizing the weighted
sum of the residuals,

Ω(θ, f) =
∑
j

wjn
2
j (θ, f) +

∑
k

wkm
2
k(θ, f) , (9)

w.r.t. the unknown distortion parameters θ and the unknown signal f , using
proper weights

wj =
1

σ2
nj

and wk =
1

σ2
mk

. (10)
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Due to the size of f , the number of unknowns is quite large. Therefore we
solve this problem by alternatively fixing one group of the parameters and solving
for the other:

θ̂ | f = argminθΩ(θ, f) , (11)

f̂ | θ = argminfΩ(θ, f) . (12)

Especially, the estimated unknown function is the weighted mean of the functions
g and h transformed into the coordinate system x of f , which can be calculated
pixel wise:

f̂i | θ̂ =
gwfi

gfi + hwfi
hfi

gwfi + hwfi
, (13)

with
gfi = s · g(yi) + t and hfi = 1/s · (h(zi)− t) (14)

from (3) and
yi = B−1(xi − b)) and zi = Bxi + b (15)

The weights are

gwfi =
1

s2 · Vg(g(yi))
and hwfi =

1

Vg(h(zi)/s2
. (16)

Bicubic interpolation is used to transfer g(yi) and (zi) to f(xi).
As a result of the ML-estimation we obtain: (1) the parameters θ̂, (2) their

covariances Σθ̂θ̂, and (3) the variance factor

σ̂2
0 =

Ω(θ̂, f̂)

R
, (17)

where R is the redundancy of the system, i.e., the efficient number of observa-
tions Kg+Kh minus the number of unknown parameters 8+Kf , where we take
the approximation Kf =

√
KgKh:

R = Kg +Kh − (8 +
√
KgKh) . (18)

If the model holds, the variance factor is Fisher distributed with F (R,∞) and
should thus be close to 1. Therefore, it is reasonable to multiply the covariance
matrix Σθ̂θ̂ with the variance factor to arrive at a realistic characterization

Σ̂θ̂θ̂ = σ̂2
0Σθ̂θ̂ (19)

of the uncertainty of the estimated parameters.
The covariance matrix Σ̂ψ̂ψ̂ of the parameters in the 8-vector ψ of the geo-

metric and radiometric affinities

hA =

[
A a
0T 1

]
=

ψ1 ψ3 ψ5

ψ2 ψ4 ψ6

0 0 1

 and hR =

[
ψ7 ψ8

0 1

]
(20)
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finally is derived by variance propagation from A(ψ) = B(θ)2, resulting from
(1) and (2). We have

A = B2 , a = (B+ I2)b and ψ7 = θ27 , ψ8 = (θ7 + 1)θ8 , (21)

with the Jacobian:

Jψθ =



2 θ1 θ3 θ2 0 0 0 0 0 0
θ2 θ1 + θ4 0 θ2 0 0 0 0 0
θ3 0 θ1 + θ4 θ3 0 0 0 0 0
0 θ3 θ2 2 θ4 0 0 0 0 0
θ5 0 θ6 0 θ1 + 1 θ3 0 0 0
0 θ5 0 θ6 θ2 θ4 + 1 0 0 0
0 0 0 0 0 0 2 θ7 0 0
0 0 0 0 0 0 θ8 θ7 + 1 0


. (22)

Empirical tests with simulated data confirm the desired properties: (1) Ex-
changing the two images g and h leads to the inverse transformation A−1, (2)
the covariance matrix derived from samples with different noise do not show
significant deviations from the theoretical covariance matrix, and (3) the mean
variance factor is not much larger than 1, usually by 20% to 40%. The deviations
from 1 are significant and can be explained by the approximations resulting from
the bicubic interpolations of the same function based on different grids. Hence
the internal quality measures can be used for self-diagnosis.

We now show the potential of the refinement of the affinitiy using LSM,
namely: the expected precision of the affinity for ideal cases. This is based on
the part of the normal equation matrix N related to the 6 parameters of the
geometric affinity: N = σ−2n

∑
ij ∇fθ(i, j)∇fTθ (i, j), where the sum is over all

pixels in an N ×N window. If we assume the distortion is zero and f is known,
then the gradient is ∇f = [xfx, yfx, xfy, yfy, fx, fy]. Observe, the 2 × 2 matrix
referring to the translation parameters is proportional to the structure tensor
of the patch. We now assume that the gradients in the window have the same
variance σ2

f ′ and are mutually uncorrelated. Then the normal equation matrix
will be diagonal leading to the covariance matrix

Σαα =

[
σ2
aI4 0

0 σ2
pI3

]
with σa =

√
12

N2

σn
σf ′

and σp =
1

N

σn
σf ′

. (23)

Fig. 2 shows the predicted standard deviations for real image patches having
different sizes, depending on the Lowe-scale s using M = 7s. In spite of the
variation of the texture within the individual patches, the theoretical relation to
the window size is visible. Deviations for large scales result from the fact that
sometimes the interior of such patches is not highly textured.

2 Solvers using ACs – Semi-calibrated case

In this section, the solver for AC-based relative pose and focal length estimation
is discussed.
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Fig. 2: Predicted standard deviations of affine parameters as a function of the
Lowe-scale of the affine correspondence. 1 and 2: Non-normalized values
σαi

, i = 1, ..., 4 are unit less, the values σαi
, i = 5, 6 have unit [pixel]. Observe,

subpixel accuracy can be reached and the affinity parameters have a standard
deviation below 1%, except for very small scales. 3 and 4: Normalized standard
deviations N2 σαi

, i = 1, ..., 4 and Nσαi
, i = 5, 6 would be constant if the texture

in all windows had the same gradient variance. The deviations from a constant
reflect the variation of the texture in the images. Observe, the ratio between
the mean values for the normalized standard deviations of the affine and the
shift parameters is 3.7/1.3=2.77 (see the dashed lines in 3 and 4). It is in fair
coherence with the theoretical value

√
12 = 3.46

Essential matrix and focal length from 2ACs: The problem of estimating the
relative pose and a common focal length of two semi-calibrated cameras, i.e.,
estimating the unknown essential matrix E ∈ R3×3 and focal length f ∈ R, has
six degrees of freedom (three for rotation, two for translation and one for focal
length) and there exists several well-known hidden variable or Gröbner basis
6PCs solvers [?,9]. This problem has recently been solved from 2ACs [1]. Each AC
gives three linear constraints [3]. One approach to solve for E and f from 2ACs
is to apply the solver of [1]. The 2ACs solver [1] as well as the hidden variable
and Gröbner basis 6PCs solvers [?,9] are based on ten well-known constraints on
the essential matrix E, i.e., the singularity constraint det(E) = 0 and the trace
constraint 2EE>E − tr(EE>)E = 0. These solvers are therefore solving a system
of ten polynomial equations in three unknowns.

Recently, however, a more efficient solver for the 6PC problem was proposed
in [10]. This solver is based on the fact that for a fundamental matrix of the
form F = K−>EK−1, where K = Diag([f, f, 1]) is the calibration matrix with focal
length f , two constraints can be derived. These constraints can by obtained
by eliminating the focal length from the singularity and the trace constraint.
The first constraint corresponds to the singularity constraint and the second
one is a fifth degree polynomial in the elements of F (see Eq 18 in [10]). The
final solver, after calculating the three dimensional null-space using six equations
from the epipolar constraint, then solves these two equations in two unknowns
(unknowns from the parameterization of F as a linear combination of basis null-
space vectors). Note that in the solver the scale of F is fixed by fixing one element
in the linear combination of the null-space vectors. However, for the uncertainty
propagation the scale will be fixed by applying a different constraint on F, i.e., the
constraint ||vec(F)||−1 = 0. The parameterization from [10], with two constraints
instead of ten from the singularity and the trace constraints [?,9], not only leads
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to a simpler solver but will also be useful for fast uncertainty propagation as we
will discuss in Sec. 3.4.

The formulation with two constraints on F can be straightforwardly adapted
for the 2ACs solver. We propose to use the solver from [10] by first calculating
the null-space using the linear system which 2 ACs imply. The rest of the solver
remains unchanged and can be similarly applied as when using point correspon-
dences.

3 Uncertainty Calculation

All geometric problems we address in the paper are based on a set of constraints
g(y,θ) = 0 between some observations y, and some parameters θ. The classical
variance propagation for implicit functions leads to

Σθθ = B−1AΣyyA
TB−T with A =

∂g

∂y
and B =

∂g

∂θ
, (24)

see [7, Sect. 2.7.5]. In our context, the covariance matrix Σyy refers to the in-
put measurements (e.g ., keypoints coordinates or affinity correspondences), the
covariance matrix Σθθ refers to the model parameters.

For minimal problems, the number of constraints g is usually smaller than the
number of parameters of the model and hence the matrix B cannot be inverted.
Therefore, we propose to redefine the implicit function by adding constraints
h(θ) = 0 between the model parameters only, i.e., we use the extended implicit
function with their Jacobians[

g(y,θ)
h(θ)

]
= 0 with A =

[
∂g/∂y
0T

]
, B =

[
∂g/∂θ
∂h/∂θ

]
. (25)

This way we have exactly the same number of constraints as the parameters,
and – except for critical geometric configurations – the matrix B is regular. The
following paragraphs list the minimal set of constraints g, h used by individual
solvers in our paper.

3.1 Homography estimation

The homography matrix has eight degrees of freedom and is defined by the nine
parameters θ, i.e., the elements of the matrix H ∈ R3×3. In the case of PCs,
we used eight constraints g from 4 PCs following [8] (the DLT algorithm for
homography estimation) and one constraint h(H) = ||vec(H)|| − 1 = 0, which
avoids the trivial all-zeros solution. Observe, the this norm constraint influences
both, the scale of H and the scale of its covariance matrix.

Assuming two ACs, one can select the subset of constraints used for the
uncertainty propagation. We defined g as four constraints from two point corre-
spondences [2] (Eqn. 1 in [2]), and four constraints from one affinity matrix [2]
(Eqn. 4 in [2]). The constraint h(H) = ||vec(H)|| − 1 = 0 is the same as for PCs.
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3.2 Fundamental matrix estimation

The fundamental matrix has seven degrees of freedom and is defined by the nine
parameters of the matrix F ∈ R3×3. In the case of PCs, we used seven constraints
gi = y>i Fzi = 0 where i ∈ {1, . . . , 7} and two constraints h = [h1, h2]

T = 0,
where h1(F) = det(F)− 1 = 0 and h2(F) = ||vec(F)|| − 1 = 0.

The constraints for 3 ACs are composed of (1) three point constraints fol-
lowing [8] of the form

cpi := z
T
i Fyi = 0 , i = 1, 2, 3 , (26)

(2) three pairs of affine constraints [1], (Eqn. 8 in [1]) of the form

cai
2×1

:= [I2 | 0] Fyi + [A−Ti | 0] FT zi = 0 , i = 1, 2, 3 , (27)

and (3) the two constraints h = [h1, h2]
T = 0. The propagation function uses

the three point constraints, i.e., cpi = 0 (i = 1, 2, 3), the first two pairs cai = 0
(i = 1, 2) of the three pairs of affine constraints, and the two constraints h = 0
on F.

3.3 Essential matrix estimation

We list two ways how to propagate the uncertainty to the parameters of the
essential matrix. The essential matrix E ∈ R3×3 has nine variables and five de-
grees of freedom. Assuming point correspondences, a straightforward solution is
to employ five points constraints gi = y>i Ezi = 0, where i ∈ {1, . . . , 5} and four
constraints h = [h1, h2, h3, h4]

T on vec(E). The constraints h1(E) = det(E) = 0
and h2(E) = ||vec(E)||2 − 2 = 0 correspond to those for the fundamental matrix.
The essential matrix has also nine trace constraints C := 2EE>E− tr(EE>)E = 0.
Generally, we can select any two of this nine constraints such that the con-
straints in h are independent, except for certain cases, such as E = [1; 0; 0]×,
where the Jacobian ∂vec(C)/∂vec(E) has 4 zero rows, not allowing us to use
the corresponding constraints, and one is proportional to the Jacobian of the
determinant constraint.

The propagation can also be obtained by using a minimal set of parameters,
e.g ., a unit translation vector b = [b1, b2, b3]

> and the Euler vector parametriza-
tion of the rotation R(r) ∈ SO(3). For this parametrization, we assume the
essential matrix has the form E = [b]xR(r), where

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , α =
√
r>r , (28)

R(r) = I3 + (1− cosα) [r]2× + sinα [r]× . (29)

Here, the matrix I3 ∈ R3x3 is the identity matrix. This representation leads to
five points constraints and only one constraint h(b) = ||b||−1 = 0. We used this
second representation for our experiments.
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The minimal problem using two AC has three constraints for each point, i.e.,
gi = y

>
i Ezi = 0, and constraints provided by Eqn. 9 and 10 in [1]. We used the

reduced set of parameters b, r with the constraint h(b) = ||b|| − 1 = 0 and five
of six constraints on the two ACs, i.e., we suppress one equation of the form of
Eq. 10 in [1] to have the same number of constraints as parameters.

3.4 Essential matrix + focal length estimation

The essential matrix with focal length has six degrees of freedom and nine pa-
rameters as it can be described as F = K−>EK−1, where K = Diag([f, f, 1]) is the
calibration matrix with focal length f . We assume six point or two affine corre-
spondences as input, which lead to the same constraints as for the essential ma-
trix, i.e., six constraints g(θ). Further, we used the constraints h = [h1, h2, h3]

T

where h1, h2 are the same constraints as for the fundamental matrix and h3
corresponds to Eqn. 18 from [10].

4 Preemptive Verification

We used the a-priori determined parameters of the inlier ratio distributions (c.f .
Fig. 3), to measure the probability of having a good model based on its uncer-
tainty. For determining the parameters of the distributions, we saved the uncer-
tainty (measured by the trace of the covariance matrix) of all models generated
in the RANSAC loop, on all scenes from all datasets, and, also, their number of
inliers divided by the number of inliers of the best model found on that partic-
ular image pair, i.e., we saved their inlier ratios. We found that calculating the
parameters of the distributions using only those models which lead to an inlier
ratio of, at least, 0.95 works well for for all problems considered in the paper.

In our experiments, we fit the exponential distribution parameter λ̂ = (n −
2)/
∑n
i=1(ti), where n is the number of good models θi and ti is the trace of

covariance matrices, i.e., ti = tr(Σθiθi). For solvers using affine correspondences,
the distributions are described by a log-normal distribution, i.e., by mean µ =
1/n

∑n
i=1 log10(ti) and variance σ2 = 1/(n− 1)

∑n
i=1(log10(ti)− µ)2).

5 Local Optimization

The cumulative distribution functions of the wall-clock times and log10 iteration
numbers using different local optimizations for affine correspondence (AC) and
point-based (PC) solvers are shown in Fig. 4. For homography and fundamental
matrix estimation, the proposed combined preemptive model verification strat-
egy was used. For essential matrices, SPRT [5] was applied. It can be seen that
Graph-Cut RANSAC [4] (GC-RANSAC) is the fastest and leads to the fewest
RANSAC iterations on all investigated problems. Also, methods using ACs are
significantly faster than point-based ones.
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(a) Homography estimation

(b) Fundamental matrix estimation

Fig. 3: The inlier ratio (vertical) of homographies and fundamental matrices from
all tested real scenes as a function of the trace of their covariance matrices
(horizontal). This shows that, for points, uncertain models (on right) generate
small numbers of inliers. For affine correspondences, the traces have a log-normal
distribution.
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(c) Essential matrix estimation

Fig. 4: The cumulative distribution functions of the wall-clock times and log10
iteration numbers using different local optimizations for affine correspondence
(AC) and point-based (PC) solvers.
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