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Abstract. Local features e.g . SIFT and its a�ne and learned vari-
ants provide region-to-region rather than point-to-point correspondences.
This has recently been exploited to create new minimal solvers for clas-
sical problems such as homography, essential and fundamental matrix
estimation. The main advantage of such solvers is that their sample
size is smaller, e.g ., only two instead of four matches are required to
estimate a homography. Works proposing such solvers often claim a sig-
ni�cant improvement in run-time thanks to fewer RANSAC iterations.
We show that this argument is not valid in practice if the solvers are
used naively. To overcome this, we propose guidelines for e�ective use of
region-to-region matches in the course of a full model estimation pipeline.
We propose a method for re�ning the local feature geometries by sym-
metric intensity-based matching, combine uncertainty propagation inside
RANSAC with preemptive model veri�cation, show a general scheme for
computing uncertainty of minimal solvers results, and adapt the sample
cheirality check for homography estimation. Our experiments show that
a�ne solvers can achieve accuracy comparable to point-based solvers at
faster run-times when following our guidelines. We make code available at
https://github.com/danini/a�ne-correspondences-for-camera-geometry.

1 Introduction

Estimating the geometric relationship between two images, such as homography
or the epipolar geometry, is a fundamental step in computer vision approaches
such as Structure-from-Motion [50], Multi-View Stereo [51], and SLAM [41].

Traditionally, geometric relations are estimated from point correspondences
(PCs) between the two images [27, 42]. This ignores that correspondences are
often rather established between image regions than between individual points
to which the descriptors are �nally often assigned. These regions, i.e. patches
extracted around keypoints found by detectors such as DoG [31] or MSER [34],
are oriented and have a speci�ed size. Thus, they provide an a�ne transformation
mapping feature regions to each other for each match [31,44].
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Many works [3�5, 8, 16, 24, 25, 29, 43, 45, 48] used this additional information
provided by a�ne correspondences (ACs), i.e., region-to-region matches, to de-
sign minimal solvers for camera geometry estimation. As each correspondence
carries more information, such solvers require fewer matches than their tradi-
tional point-based counterparts. For example, only three a�ne correspondences
are required to estimate the fundamental matrix [8] compared to seven point cor-
respondences [27]. This increases the probability of drawing an all-inlier sample,
thus decreasing the required number of RANSAC [17] iterations. Also, ACs are
known to be more robust against view changes than point correspondences [38].

In terms of noise on the measurements, a�ne solvers are a�ected di�erently
than their point-based counterparts. If the points are well-spread in the images,
the amount of noise is small compared to the distances between the points. In
this case, the in�uence of the noise on the solution computed by a minimal
solver is relatively small. In contrast, the comparatively small regions around
the keypoints that de�ne the a�ne features are much more a�ected by the same
level of noise. As such, we observe that a�ne correspondence-based solvers are
signi�cantly less accurate than point correspondence-based ones if used naively.
Yet, when explicitly modelling the impact of noise, we observe that a�ne solvers
can achieve a similar level of accuracy as classical approaches while o�ering faster
run-times. Based on our observations, we provide a practical guide for making
a�ne correspondences work well in camera geometry computation.

Contribution. (1) We demonstrate how to use a�ne solvers to obtain ac-
curate results at faster RANSAC run-times than achieved by pure point-based
solvers. (2) We present strategies for all parts of the camera geometry estimation
pipeline designed to improve the performance of a�ne solvers. This includes the
re�nement of the a�nities de�ned by the features, rejection of samples based on
cheirality checks, uncertainty propagation to detect and reject models that are
too uncertain, and the importance of local optimization. (3) Through detailed
experiments, we evaluate the impact of each strategy on the overall performance
of a�ne solvers, both in terms of accuracy and run-time, showing that a�ne
solvers can achieve a similar or higher accuracy than point-based approaches at
faster run-times. These experiments validate our guidelines. (4) We make various
technical contributions, such as a novel method for re�ning a�ne correspondence
based on image intensity; a new minimal solver for fundamental matrix estima-
tion; a strategy for combining the SPRT [11] test with uncertainty propagation
for rejecting models early; the adaptation of the sample cheirality test, which
is often used for point-based homography estimation, to a�ne features, and a
general scheme for deriving covariance matrices for minimal solvers.

2 Related Work

Our guide to best use a�ne correspondences for camera geometry estimation
problems analyzes the individual stages of the pipeline leading from matches to
transformation estimates. The following reviews prior work for each stage.
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A�ne features are described by a point correspondence and a 2 × 2 linear
transformation. For obtaining them, one can apply one of the traditional a�ne-
covariant feature detectors, thoroughly surveyed in [37], such as MSER, Hessian-
A�ne, or Harris-A�ne detectors. An alternative way to acquiring a�ne features
is via view-synthesizing, as done, e.g ., by A�ne-SIFT [40], and MODS [39] or
by learning-based approaches, e.g ., Hes-A�-Net [38], which obtains a�ne regions
by running CNN-based shape regression on Hessian keypoints.

Matching a�ne regions. Given the noise in the parameters of the regions
around a�ne matches, a natural approach to good estimation is to use high pre-
cision least squares matching (LSM) for re�ning a�ne correspondences [1,18,33].
Similar to template matching via cross correlation, a small patch from one image
is located within a larger region in a second image. While arbitrary geometric
and radiometric models are possible, practical approaches mostly consider a�ne

transformations. As a maximum likelihood estimator, LSM provides the covari-

ance matrix of the estimated parameters, the Cramer-Rao bound, reaching stan-
dard deviations for parallaxes down to below 1/100 pixel [26]. Intensity-based
re�nement has been used [16, 48] for pose estimation. Yet, no analysis on the
accuracy of the derived uncertainty is known and a symmetric formulation of
the problem is missing so far. In this paper, we close this gap by providing both.

A�ne solvers use ACs for geometric model estimation. Bentolila and Fran-
cos [8] proposed a method for estimating the epipolar geometry between two
views using three ACs by interpreting the problem via conic constraints. Per-
doch et al. [43] proposed two techniques for approximating the pose based on two
and three matches by converting each AC to three PCs and applying standard
estimation techniques. Raposo et al. [48] proposed a solution for essential ma-
trix estimation from two ACs. Baráth et al. [3, 5] showed that the relationship
between ACs and epipolar geometry is linear and geometrically interpretable.
Eichhardt et al. [16] proposed a method that uses two ACs for relative pose
estimation based on general central-projective views. Similarly, [24,25] proposed
minimal solutions for relative pose from a single a�ne correspondence when
the camera is mounted to a moving vehicle. Homographies can also be estimated
from two ACs as �rst shown by Köser [4,29]. Pritts et al. [45] used a�ne features
for simultaneous estimation of a�ne image recti�cation and lens distortion.

Uncertainty analysis of image data provides several approaches useful for
our task. Variances or covariance matrices are often used to model the uncer-

tainty of the input parameters, i.e., image intensities, coordinates of keypoints,
and a�ne parameters. Assuming an ideal camera with a linear transfer function,
the variance of the image noise increases linearly with the intensity [15, 54]. In
practice, the complexity of the internal camera processing requires an estimate of
the variance function σ2

n(I) from the given images [19]. The accuracy of keypoint
coordinates usually lies in the order of the rounding error, i.e., 1/

√
12 ≈ 0.3 pix-

els. We exploit here the uncertainty of the image intensities and keypoints for
deriving realistic covariance matrices of the a�ne correspondences.

Propagation of input uncertainty to model parameters through the estima-
tion depends on the model being estimated. The uncertainty of a homography
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Algorithm 1 Robust model estimation pipeline with ACs

Require: I1, I2 � images
1: A ← DetectACs(I1, I2). Sec. 4.1, default : SIFT desc. [32], DoG shape adapt. [31]

2: Â ← RefineACs(A) . Sec. 3.2, default : symmetric LSM re�nement
3: θ∗, q∗ ← 0, 0 . Best model and its quality
4: while ¬Terminate do . Robust estimation, default : GC-RANSAC [6]

5: S ← Sample(Â) . default : PROSAC sampler [10]
6: if ¬ TestSample(S) then . Sample degeneracy and cheirality tests, Sec. 3.4
7: continue

8: θ ← ModelEstimation(S) . default : F � Sec. 3.3, E � [5], H � [4]
9: if ¬ TestModel(θ) then . default : tests from USAC [46]
10: continue

11: if ¬ Preemption(θ) then . Sec. 3.5, default : SPRT [11] + uncertainty test
12: continue

13: q ← Validate(θ, Â) . Model quality calculation, default : MSAC score [55]
14: if q > q∗ then
15: q∗, θ∗ ← q, θ
16: θ′ ← LocalOptimization(θ, Â) . note: only PCs are used from the ACs
17: if ¬ TestModel(θ′) then . default : tests from USAC [46]
18: continue

19: q′ ← Validate(θ′, Â). Model quality calculation, default : MSAC score [55]
20: if q′ > q∗ then
21: q∗, θ∗ ← q′, θ′

estimated from four or more points has been based on the SVD [13,47] and Lie
groups [7]. The uncertainty of an estimated fundamental matrix has been also
based on the SVD [53], but also on minimal representations [14]. Finally, the
uncertainty for essential matrices has been derived using a minimal represen-
tation [21]. As far as we know, the propagation for a�ne solvers has not been
presented before, and there was no general scheme for deriving covariance matri-
ces for the solutions of minimal solvers. In this paper, we provide an e�cient and
general scheme and the uncertainty propagation for all minimal solvers used.

3 A Practical Guide to Using A�ne Features

As argued in Sec. 1, and shown experimentally in Sec. 4.1, using ACs instead
of point correspondences (PCs) leads to minimal solvers with smaller sample
sizes but also to less accurate results. In the following, we analyze the individual
stages of a classical matching pipeline and discuss how state-of-the-art results
can be obtained with ACs. The pipeline is summarized in Alg. 1.

3.1 De�nition of A�ne Correspondences

A�ne correspondences are de�ned in this paper as

AC : {y0, z0,
hA} with hA =

[
A c
0T 1

]
(1)
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Fig. 1: Left: Relations between two image patches g(y) (blue) and h(h) (green)
and the mean patch f(x) (which is the black within the red region). The two
patches g and h are related by geometric B and a radiometric S a�nities. The
correspondence is established by patch f , lying in the middle between g and
h. We choose the maximum square (black), i.e. all the pixels in g and h which
map into the black square of the reference image f . Right: The inlier ratio
(vertical) of 100k homographies from real scenes as a function of the trace of
their covariance matrices (horizontal). This shows that uncertain models (on
right) generate small numbers of inliers. We use this to reject uncertain models.

where the keypoint coordinates in the left and the right image are y0, and
z0, and the local a�nity is A = A2A

−1
1 , e.g . derived from the a�ne frames

A1 and A2 representing the a�ne shape of the underlying image region. The
matching and re�nement of the a�ne region correspondences, presented in the
next section, refers to the homogeneous matrix hA, speci�cally the translation
vector c, initially 0, and the a�nity matrix A in (1).

3.2 Matching and Re�ning A�ne Correspondences

For re�ning the ACs, we propose an intensity-based matching procedure which
(i) is symmetric and provides (ii) a statistic for the coherence between the data
and the model and (iii) a covariance matrix for the estimates of the parameters.
Let the two image windows in the two images be g(y) and h(z). We assume,
both windows are noisy observations of an unknown underlying signal f(x), with
individual geometric distortion, brightness, and contrast. We want to �nd the
geometric distortion z = A(y) and the radiometric distortion h = R(g) = pg+q.
Classical matching methods assume the geometric and radiometric distortion
of one of the two windows is zero, e.g . g(y) = f(x), with y = x. We break
this asymmetry by placing the unknown signal f(x) in the middle between the

observed signals g and h: g(y)
S,B−→ f(x)

S,B−→ h(z) leading to R = S2 and
A = B2. Assuming a�nities for the geometric and radiometric distortions, the
model is shown in Fig. 1(left). The geometric and the radiometric models are

x = By + b , z = Bx+ b and f = sg + t , h = sf + t. (2)

In the following, we collect the eight unknown parameters of the two a�nities
in a single vector θ = [b11, b21, b12, b22, b1, b2, s, t]

T.
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Now, we assume the intensities g and h to be noisy with variances σn(g)
and σm(h) depending on g and h. Hence, in an ML-approach, we minimize the
weighted sum Ω(θ, f) =

∑
j n

2
j (θ, f)/σ

2
nj
+
∑
km

2
k(θ, f)/σ

2
mk

w.r.t. the unknown

parameters θ and f , where the residuals are nj(θ, f) = gj−s−1
(
f
(
Byj + b

)
− t
)

and mk(θ, f) = hk −
(
sf
(
B−1(zk − b)

)
+ t
)
. Since the number of intensities in

the unknown signal f is quite large, we solve this problem by �xing one group of
parameters of f and θ, and solving for the other. The estimated unknown func-
tion is the weighted mean of functions g and h transformed into the coordinate
system x of f . The covariance matrix Σ̂α̂α̂ of the sought a�nity is �nally derived
by variance propagation from A = B2. The standard deviations of the estimated
a�nity Â and shift ĉ are below 1% and 0.1 pixels, except for very small scales.
Moreover, for the window sizeM ×M , the standard deviations decrease with on
average with M2 and M , respectively (see Supplementary Material).

3.3 Solvers using A�ne Correspondences

In this paper we consider three important camera geometry problems: estimating
planar homography, and two cases of estimating relative pose of two cameras:
uncalibrated and calibrated cameras. We also include the semi-calibrated case,
i.e. unknown focal length, in the supplementary material.
Homography from 1AC + 1PC: The problem of estimating a planar homog-
raphy H ∈ R3×3 is well-studied with simple linear solutions from point and/or
a�ne correspondences. The homography H has eight degrees of freedom. Since
each PC gives two linear constraints on H and each AC gives six linear constraints
on H, the minimal number of correspondences necessary to estimate the unknown
homography is either 4PC or 1AC+1PC. Both the well-known 4PC [27] and the
1AC+1PC [4, 29] solvers are solving a system of eight linear equations in nine
unknowns and are therefore equivalent in terms of e�ciency.
Fundamental matrix from 2AC + 1PC: The problem of estimating the
relative pose of two uncalibrated cameras, i.e., estimating the fundamental ma-
trix F ∈ R3×3, has a well-known 7PC solver [27]. The fundamental matrix F has
seven degrees of freedom, since it is a 3 × 3 singular matrix, i.e., det(F) = 0.
The well-known epipolar constraint gives one linear constraint on F for each PC.
We propose a solver for estimating the unknown F using the linear constraints
proposed in [3]. Here, we brie�y describe this new 2AC+1PC solver.

Each AC gives three linear constraints on the epipolar geometry [3]. There-
fore, the minimal number of correspondences necessary to estimate the unknown
F is 2AC+1PC. The solver �rst uses seven linear constraints, i.e., six from two
ACs and one from a PC, rewritten in a matrix form as Mf = 0, where f = vec(F),
to �nd a 2-dimensional null-space of the matrix M. The unknown fundamental
matrix is parameterized as F = xF1 + F2, where F1 and F2 are matrices created
from the 2-dimensional null-space of M and x is a new unknown. This parame-
terization is substituted into the constraint det(F) = 0, resulting in a polynomial
of degree three in one unknown. The �nal 2AC+1PC solver is performing the
same operations as the 7PC solver, i.e., the computation of the null-space of a
7× 9 matrix and �nding the roots of a univariate polynomial of degree three.
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Essential matrix from 2ACs: The problem of estimating the relative pose of
two calibrated cameras, i.e., estimating the unknown essential matrix E ∈ R3×3,
has �ve degrees of freedom (three for rotation and two for translation) and there
exists the well-known 5PC solver [42]. This problem has recently been solved
from two ACs [5,16]. Each AC gives three linear constraints on E [5]. Thus, two
ACs provide more constraints than degrees of freedom. One approach to solve
for E from two ACs is to use just �ve out of six constraints, which results in the
same operations as the well-known 5PC solver [42] does. Another one is to solve
an over-constrained system as suggested in [5]. In the experiments, we used the
solver of [5] since it has lower computational complexity and similar accuracy.

3.4 Sample Rejection via Cheirality Checks

It is well-known for homography �tting that some minimal samples can be re-
jected without estimating the implied homography as they would lead to impos-
sible con�gurations. Such a con�guration occurs when the plane �ips between
the two views, i.e., the second camera sees it from the back. This cheirality con-
straint is implemented in the most popular robust approaches, e.g ., USAC [46]
and OpenCV's RANSAC. We thus adapt this constraint via a simple strategy
by converting each AC to three PCs. Given a�ne correspondence {y0, z0, A},
where y0 = [y01, y02]

T and z0 = [z01, z02]
T are the keypoint coordinates in

the left, respectively the right images, the generated point correspondences are

(y0 +
[
1, 0
]T
, z0 + A

[
1, 0
]T
) and (y0 +

[
0, 1
]T
, z0 + A

[
0, 1
]T
). When estimating

the homography using the 1AC+1PC solver, the a�ne matrix is converted to
these point correspondences and the cheirality check is applied to the four PCs.

Note that any direct conversion of ACs to (non-colinear) PCs is theoretically
incorrect since the AC is a local approximation of the underlying homography [4].
However, it is a su�ciently good approximation for the cheirality check.

3.5 Uncertainty-based Model Rejection

Before evaluating the consensus of a model, it is reasonable to check its quality,
especially to eliminate con�gurations close to a singularity, see [22]. We can use
the covariance matrix Σθθ of each solution to decide on its further suitability. To
do so, we propose a new general way of deriving the Σθθ for minimal problems.

All problems we address here are based on a set of constraints g(y,θ) = 0
on some observations y, and parameters θ, e.g . the F estimation constraint
gi(yi,θ) is of the form xT

i Fyi = 0, hence (y,θ) = ([x;y], vec(F)). We want to
use classical variance propagation for implicit functions [21], Sec. 2.7.5. If Σyy is
given, the determination of Σθθ is based on linearizing g at a point (y,θ) and
using the Jacobians A = ∂g/∂y and B = ∂g/∂θ leading to covariance matrix
Σθθ = B−1AΣyyA

TB−T, provided B can be inverted. Using constraints g we derive
Jacobians A, B algebraically. Further, given the kth solution of a minimal problem
(a system of equations de�ning a minimal problem has, in general, more than
one solution), i.e. a pair (y,θk), we can compute Σθkθk without needing to know
how the problem was solved and how this speci�c solution has been selected.
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However, the number of constraints in g in most of the minimal problems is
smaller than the number of parameters θ, e.g . 7 constraints vs. 9 elements of
F. Then the matrix B cannot be inverted. We propose to append the minimum
number of constraints h(θ) = 0 (between the parameters only, e.g . det(F) and
||F|| = 1) such that the number of all constraints (g;h) is identical to the number
of parameters. This leads to a regular matrix B, except for critical con�gurations.

Such algebraic derivations should be checked to ensure the equivalence of the
algebraic and numerical solution, best by Monte Carlo simulations. However,
the empirically obtained covariance matrix Σ̂θθ is regular and cannot be directly
compared to the algebraically derived Σθθ if it is singular (e.g . for θ = vec(F)).
We propose to project both matrices on the tangent space of the manifold of
θ, leading to regular covariance matrices as follows: let J(Σ) be an orthonormal
base of the column space of some covariance matrix Σ, then Σr = JTΣJ is regular;
e.g . using J = null(null(Σ)T) where null(Σ) is the nullspace of Σ. Hence, with
J = J(Σθθ) the two covariance matrices Σθθ,r = JTΣθθJ and Σ̂θθ,r = JTΣ̂θθJ are
regular. They can be compared and an identity test can be performed checking
the hypothesis IE(Σ̂θθ,r) = Σθθ,r, see [21], p. 71. The used constraints and detailed
discussion for all listed minimal problems are in the supplementary material.

The covariance matrix Σθθ can be used in following way. Since we do not
have a reference con�guration, we eliminate models where the condition number
c = cond(Σθθ) is too large, since con�gurations close to singularity show large
condition numbers in practice. For reasons of speed, it is useful to compute an
approximation for the condition number, e.g . cs = tr(Σθθ)tr(Σ

−1
θθ ), if the inverse

covariance matrix can be obtained e�ciently, which is the case in our context
since Σ−1θθ = B(AΣyyA

T)−1BT.6 A weaker measure is tr(Σθθ), which is more e�cient
to calculate than the previous ones. It essentially measures the average variance
of the parameters θ. Thus, it can identify con�gurations where parameters are
very uncertain. We use this measure in the following for deriving a prior for
preemptive model veri�cation by the Sequential Probability Ratio Test [11].

We experimentally found, for each problem, the parameters of exponential
(for points solvers) and log-normal (for a�ne solvers) distributions for the trace.
These parameters are used to measure the likelihood of the model being too
uncertain to lead to a large number of inliers. In our experiments, for the sake
of simplicity, we model the trace values by normal distributions for all solvers.
Thus, we used the a-priori determined parameters to initialize the mean and
standard deviation from all tested image pairs. Finally, we get a probability
for each model being acceptable or not. Note that the selection of the provably
correct probabilistic kernel for a particular problem and scene is a direction for
future research. However, it is not a crucial issue due to being used only for
rejecting too uncertain models early to avoid unnecessary calculations.

As a �nal step, we feed the determined probability to the Sequential Prob-
ability Ratio Test (SPRT) [11, 35] as a prior knowledge about the model to be

6 For Σ = Diag([a,b]), with a > b, the condition number is c = a/b, while the approx-
imation is cs = (a+ b)2/(ab), which for a� b converges to the condition number.
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veri�ed. This is done by initializing the model probability, which is sequentially
updated in SPRT, to the a priori estimated one.

3.6 Local Optimization

Minimal solvers do not take noise in their input measurements into account
during the estimation process. However, noise a�ects the estimated models. As
such, not every all-inlier sample leads to the best possible transformation [12].
As shown in [20, 49], starting from the algebraic solution and performing only
a single iteration of ML estimation is often su�cient to obtain a signi�cantly
better estimate. They show that this strategy approaches the optimal result
with an error below 10%-40% of the parameters' standard deviations while only
increasing the computation time by a factor of ∼2. A strongly recommended
approach is thus to use local optimization [6,12,30] inside RANSAC: every time a
new best model is found, ML-based re�nement on its inliers is used to account for
noise in the input parameters. While this adds a computational overhead, it can
be shown that this overhead is small and is compensated by the observation that
local optimization (LO) typically helps RANSAC to terminate early. Moreover
LO is usually applied rarely [12]. As we show in Sec. 4.5, local optimization is
crucial to obtain accurate geometry estimates when using ACs.

4 Experiments

In this section, di�erent algorithmic choices are tested on homography, funda-
mental and essential matrix �tting problems to provide a pipeline which leads
to results superior to point-based methods.
Experimental setup. Tests for epipolar geometry estimation were performed
on the benchmark of [9]. The used datasets are the TUM dataset [52] consisting
of videos, of resolution 640× 480, of indoor scenes. The KITTI dataset [23] con-
sists of consecutive frames of a camera mounted to a vehicle. The images are of
resolution 1226× 370. Both KITTI and TUM have image pairs with short base-
lines. The Tanks and Temples dataset [28] provides images of real-world objects
for image-based reconstruction and, thus, contains mostly wide-baseline pairs.
The images are of sizes between 1080 × 1920 and 1080 × 2048. The benchmark
provides 1 000 image pairs for each dataset with ground truth epipolar geometry.
Homography estimation was tested on the scenes of the HPatches dataset [2].
RANSAC's inlier-outlier threshold is set to 1.0 px (F), 1.0 px (E) and 5 px (H).

When evaluating F and E matrices, we calculate the normalized symmetric
geometry errors (NSGD). The symmetric geometry error (SGD) was proposed in
[58]. It generates virtual correspondences using the ground-truth F and computes
the epipolar distance to the estimated F. It then reverts their roles to compute
symmetric distance. The SGD error (in pixels) causes comparability issues for
images of di�erent resolutions. Therefore, it is normalized into the range of [0, 1]
by regularizing by factor f = 1√

h2+w2
, where h and w are the height and width

of the image, respectively.
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The error of the estimated homographies is measured by, �rst, projecting
the �rst image to the second one and back to get the commonly visible area.
Each pixel in the visible area is projected by the ground truth and estimated
homographies and the error is calculated as the L2 distance of the projected
points. Finally, the error is averaged over all pixels of the visible area.

4.1 Matchers and descriptors

To estimate ACs in real images, we applied the VLFeat library [56] since it is
available for multiple programming languages and, thus, we considered it a prac-
tical choice. VLFeat provides several options either for the feature descriptor or
the a�ne shape adaptation technique. To select the best-performing combina-
tion, �rst, we detected ACs using all of the possible combinations. Note that
we excluded the multi-scale versions of Harris-Laplace and Hessian-Laplace [36]
a�ne shape adaptations since they were computationally expensive. Correspon-
dences are �ltered by the standard second nearest neighbor ratio test [32]. Next,
we estimated fundamental matrices using a�ne and point-based solvers and
vanilla RANSAC [17]. Fig. 2 reports the cumulative distribution function (CDF)
of the NSGD errors calculated from the estimated fundamental matrices.

Curves showing a�ne solvers have circles as markers. We applied PC-based
methods (crosses) considering only the locations of the correspondences and
ignoring the a�nities. The line style denotes the feature descriptor: straight
line � SIFT [32], dotted � LIOP [57]. A�ne shape adaption techniques (DoG,
Hessian [37], Harris- and Hessian-Leplace [36]) are shown by color. Applying
VLFeat with any a�ne shape adaptation increases the extraction time by ≈10%.

The �rst and most dominant trend visible from the plots is that methods
exploiting ACs are signi�cantly less accurate then point-based approaches when
the naive approach is used: vanilla RANSAC. The SIFT descriptor [32] and DoG
a�ne shape adaptation lead to the most accurate results. Consequently, we use
this combination in the experiments. In the next sections we will show ways of
making the a�ne solvers similarly or more accurate than point-based methods.

4.2 Match Re�nement

We demonstrate how the proposed re�nement a�ects the accuracy of the a�ne
matches by analysing the ful�llment of the constraints in the case of calibrated
cameras. For each AC, the three constraints consist of the epipolar constraint
cp = c

T
pe = 0 for the image coordinates, and the two constraints ca = CTae = 0 for

the a�nity A. Assuming the pose, i.e. the essential matrix, is known we determine
a test statistics for the residuals cp and ca as dp = ||cp||σ2

cp
and da = ||ca||Σcaca

.

For the ACs of �ve image pairs, we used the Lowe keypoint coordinates and
the scale and direction di�erences for deriving approximate a�nities and re�ned
them using the proposed LSM re�nement technique (see Section 3.2).

Fig. 3, left shows the CDF of the improvement caused by the proposed tech-
nique in the point coordinates (rp) and in the a�ne parameters (ra); a bigger



Making A�ne Correspondences Work in Camera Geometry Computation 11

PC  AC SIFT LIOP DoG Hessian Harris-Laplace Hessian-Laplace

0 0.05 0.1 0.15 0.2 0.25
NSGD Error

0

0.2

0.4

0.6

0.8

1
Pr

ob
ab

ili
ty

TUM

0 0.05 0.1 0.15 0.2 0.25
NSGD Error

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

KITTI

0 0.05 0.1 0.15 0.2 0.25 0.3
NSGD Error

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

Tanks and Temples

Fig. 2: Fundamental matrix estimation on datasets TUM, KITTI and Tanks
and Temples (from benchmark [9]; 1000 image pairs each) using ACs detected
by di�erent descriptors and detectors. The CDFs of NSGD errors are shown.
Vanilla RANSAC was applied followed by a LS �tting on all inliers.

value is better. The method improves both the a�ne parameters and point co-
ordinates signi�cantly. In Fig. 3, right the inconsistency with the epipolar con-
straints are shown; smaller values are better. The re�ned ACs are better, in
terms of ful�lling the epipolar constraints, than the input ACs.

Fig. 3: Left: Improvement of the points (rp) and a�ne parameters (ra) after
the proposed re�nement, larger values are better. Right: Inconsistency with the
epipolar constraints before (blue) and after (red) the re�nement, smaller values
are better. The CDFs are calculated from �ve images.

4.3 Sample Rejection via Cheirality Checks

The widely used technique for rejecting minimal samples early (i.e. without
estimating the model parameters) when �tting homographies is the ordering
check of the point correspondences as described earlier. Its e�ect when adapting
it to a�ne correspondences is shown in Fig. 4.

In the left plot of Fig. 4, the cumulative distribution functions of the pro-
cessing times (in seconds) are shown. It can be seen that this test has a huge
e�ect on point-based homography estimation as it speeds up the procedure signif-
icantly. The adapted criterion speeds up a�ne-based estimation as well, however,
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Fig. 4: E�ect of cheirality test on point and a�ne-based homography estimators.

not that dramatically. Note, that a�ne-based estimation is already an order of
magnitude faster than point-based methods and for AC-based homography esti-
mation the cumulative distribution curve of the processing time is already very
steep, Fig. 4 (left). This means that a�ne-based estimators do not perform many
iterations and skipping model veri�cation for even the half of the cases would
not a�ect the time curve signi�cantly. The avg. processing time of a�ne-based
estimation is dropped from 8.6 to 7.7 ms. The right plot shows the log10 iter-
ation numbers of the methods. The test does not a�ect the iteration number
signi�cantly. It sometimes leads to more iterations due to not checking samples
of impossible con�gurations, however, this is expected and does not negatively
a�ect the time.

4.4 Uncertainty-Based Preemptive Veri�cation
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(b) Fundamental matrices.
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Fig. 5: Evaluating pre-emptive model veri�cation strategies for a�ne (AC) and
point-based (PC) robust estimation. The CDFs of the processing times (in sec-
onds) are shown. Being fast is interpreted as a curve close to the top-left corner.

As it is described earlier, we combined the SPRT test [11, 35] (parameters
are set similarly as in the USAC [46] implementation) with model uncertainty
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calculation to avoid the expensive validation of models which are likely to be
worse than the current best one. Fig. 5 reports the CDFs of the processing time
for (a) homography, (b) fundamental and (c) essential matrix �tting. Note that
we excluded uncertainty-based veri�cation for essential matrices since the solvers
became too complex and, thus, the uncertainty calculation was slow for being
applied to every estimated model.

It can clearly be seen that the proposed combination of the SPRT and the
uncertainty check leads to the fastest robust estimation both for H and F �tting.
For E estimation from ACs, using the SPRT test is also important, leading to
faster termination. Most importantly, using a�ne correspondences, compared to
point-based solvers, leads to a signi�cant speed-up for all problems.

4.5 The Importance of Local Optimization

While the speed-up caused by using ACs has clearly been demonstrated, the
other most important aspect is to get accurate results. As it is shown in Fig. 2,
including AC-based solvers in vanilla RANSAC leads to signi�cantly less accu-
rate results than using PCs. A way of making the estimation by ACs accurate
is to use a locally optimized RANSAC, where the initial model is estimated
by an AC-based minimal solver and the local optimization performs the model
polishing solely on the inlier PCs. We tested state-of-the-art local optimiza-
tion techniques, i.e., LO-RANSAC [12], LO'-RANSAC [30], GC-RANSAC [6].
The results are reported in Fig. 6. It can be seen that a�ne-based estimation
with GC-RANSAC is always among the top-performing methods. In (a), it is
marginally more accurate than considering only point correspondences. In (b),
using point correspondences is slighly more accurate. Compared to the results of
vanilla RANSAC, the results of a�ne-based robust estimation improved notably.
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(b) Fundamental matrices.
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Fig. 6: Evaluating local optimization techniques for a�ne (AC) and point-based
(PC) robust model estimation. The CDFs of the geometric errors are shown.
Being accurate is interpreted as a curve close to the top-left corner.
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5 Discussion

In summary of the investigated approaches, the best practices to accurately and
e�ciently use a�ne solvers are the following. A�nity-based model estimation has
an accuracy similar or better to point-based solvers if (i) the detector and a�ne
shape re�ning method is carefully selected; and (ii), most importantly, if a locally
optimized RANSAC is applied to polish every new so-far-the-best model using
only the point locations from the inlier correspondences. Consequently, a�ne
features are used for estimating models from minimal samples, while their point
counterparts are used to obtain accurate results. E�ciency is achieved by (iii)
adapting strategies well-established for point correspondences, e.g ., cheirality
check for homography estimation. (iv) Also, uncertainty-based model rejection
and other preemptive veri�cation techniques have a signi�cant impact when
speeding up the robust estimation procedure.

6 Conclusions

In this paper, we have considered the problem of using a�ne correspondences
(ACs) for camera geometry estimation, i.e., homography and epipolar geometry
computation. Compared to classical approaches based on point correspondences
(PCs), minimal solvers based on ACs o�er the advantage of smaller sample sizes
and, thus, the possibility to signi�cantly accelerate RANSAC-based randomized
robust estimation. However, noise has a larger negative impact on a�ne solvers
as their input measurements typically originate from a smaller image region
compared to point solvers. As we have shown, this signi�cantly decreases the
accuracy of the a�ne solvers. In this work, we have thus collected a set of �best
practices", including novel contributions such as re�ning the local feature geome-
try and uncertainty-based model rejection techniques, for using ACs in practice.
Through extensive experiments, we have shown that following our guidelines
enables a�ne solvers to be used e�ectively, resulting in similar accuracy but
faster run-times compared to point-based solvers. We believe that our guide will
be valuable for both practitioners aiming to improve the performance of their
pipelines as well as researchers working on ACs as it covers a topic previously
unexplored in the literature.
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