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Abstract. Margin-based deep face recognition methods (e.g. SphereFace,
CosFace, and ArcFace) have achieved remarkable success in unconstrained
face recognition. However, these methods are susceptible to the massive
label noise in the training data and thus require laborious human effort
to clean the datasets. In this paper, we relax the intra-class constraint
of ArcFace to improve the robustness to label noise. More specifically,
we design K sub-centers for each class and the training sample only
needs to be close to any of the K positive sub-centers instead of the
only one positive center. The proposed sub-center ArcFace encourages
one dominant sub-class that contains the majority of clean faces and
non-dominant sub-classes that include hard or noisy faces. Extensive
experiments confirm the robustness of sub-center ArcFace under mas-
sive real-world noise. After the model achieves enough discriminative
power, we directly drop non-dominant sub-centers and high-confident
noisy samples, which helps recapture intra-compactness, decrease the in-
fluence from noise, and achieve comparable performance compared to
ArcFace trained on the manually cleaned dataset. By taking advantage
of the large-scale raw web faces (Celeb500K), sub-center Arcface achieves
state-of-the-art performance on IJB-B, IJB-C, MegaFace, and FRVT.
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1 Introduction

Face representation using Deep Convolutional Neural Network (DCNN) embed-
ding with margin penalty [26,15,32,5] to simultaneously achieve intra-class com-
pactness and inter-class discrepancy is the method of choice for state-of-the-art
face recognition. To avoid the sampling problem in the Triplet loss [26], margin-
based softmax methods [15,32,31,5] focused on incorporating margin penalty
into a more feasible framework, the softmax loss, which has global sample-to-
class comparisons within the multiplication step between the embedding feature
and the linear transformation matrix. Naturally, each column of the linear trans-
formation matrix is viewed as a class center representing a certain class [5].

* Equal contributions.
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(a) ArcFace vs. Sub-center ArcFace (b) Example of Sub-classes

Fig. 1. (a) Difference between ArcFace and the proposed sub-center ArcFace. In this
paper, we introduce sub-class into ArcFace to relax the intra-class constraint, which can
effectively improve robustness under noise. (b) The sub-classes of one identity from the
CASIA dataset [40] after using the sub-center ArcFace loss (K = 10). Noisy samples
and hard samples (e.g. profile and occluded faces) are automatically separated from
the majority of clean samples.

Even though remarkable advances have been achieved by the margin-based
softmax methods [8,15,32,31,5,39], they all need to be trained on well-annotated
clean datasets [30,5], which require intensive human efforts. Wang et al. [30]
found that faces with label noise significantly degenerate the recognition accu-
racy and manually built a high-quality dataset including 1.7M images of 59K
celebrities. However, it took 50 annotators to work continuously for one month
to clean the dataset, which further demonstrates the difficulty of obtaining a
large-scale clean dataset for face recognition.

Since accurate manual annotations can be expensive [30], learning with mas-
sive noisy data 1 has recently attracted much attention [14,4,11,41,33]. However,
computing time-varying weights for samples [11] or designing piece-wise loss
functions [41] based on the current model’s predictions can only alleviate the
influence from noisy data to some extent as the robustness and improvement de-
pend on the initial performance of the model. Besides, the co-mining method [33]
requires to train twin networks together thus it is less practical for training large
models on large-scale datasets.

As shown in Fig. 1(a), the objective of ArcFace [5] has two parts: (1) intra-
class compactness: pushing the sample close to the corresponding positive center;
and (2) inter-class discrepancy: pushing the sample away from all other negative
centers. If a face is a noisy sample, it does not belong to the corresponding posi-
tive class. In ArcFace, this noisy sample generates a large wrong loss value, which
impairs the model training. In this paper, we relax the intra-class constraint of
forcing all samples close to the corresponding positive center by introducing sub-
classes into ArcFace. For each class, we design K sub-centers and the training
sample only needs to be close to any of the K positive sub-centers instead of

1 Generally, there are two types of label noise in face recognition [30,11,41,33]: one is
open-set label noise, i.e., faces whose true labels are out of the training label set but
are wrongly labeled to be within the set; and the other one is close-set label noise,
i.e., faces whose true labels are in the training label set but are wrongly labeled.
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the only one positive center. As illustrated in Fig. 1(b), the proposed sub-center
ArcFace will encourage one dominant sub-class that contains the majority clean
faces and multiple non-dominant sub-classes that include hard or noisy faces.
This happens because the intra-class constraint of sub-center ArcFace enforces
the training sample to be close to one of the multiple positive sub-classes but
not all of them. The noise is likely to form a non-dominant sub-class and will
not be enforced into the dominant sub-class. Therefore, sub-center ArcFace is
more robust to noise. Extensive experimental results in this paper indicate that
the proposed sub-center ArcFace is more robust than ArcFace [5] under massive
real-world noises.

Although the proposed sub-center ArcFace can effectively separate clean data
from noisy data. However, hard samples are also kept away. The existing of sub-
centers can improve the robustness but also undermine the intra-class compact-
ness, which is important for face recognition [34]. As the devil of face recognition
is in the noise [30], we directly drop non-dominant sub-centers and high-confident
noisy samples after the model achieves enough discriminative power. By pushing
hard samples close to the dominant sub-center, we gradually recapture intra-class
compactness and further improve the accuracy.

To summarise, our key contributions are as follows:

– We introduce sub-class into ArcFace to improve its robustness on noisy
training data. The proposed sub-center ArcFace consistently outperforms
ArcFace under massive real-world noises.

– By dropping non-dominant sub-centers and high-confident noisy samples,
our method can achieve comparable performance compared to ArcFace
trained on the manually cleaned dataset.

– Sub-center Arcface can be easily implemented by using the parallel toolkit
and thus enjoys scalability to large-scale datasets. By taking advantage of
the large-scale raw web faces (e.g. Celeb500K [1]), the proposed sub-center
Arcface achieves state-of-the-art performance on IJB-B, IJB-C, MegaFace,
and FRVT 1:1 Verification.

2 Related work

Face Recognition with Margin Penalty. The pioneering work [26] uses the
Triplet loss to exploit triplet data such that faces from the same class are closer
than faces from different classes by a clear Euclidean distance margin. Even
though the Triplet loss makes perfect sense for face recognition, the sample-
to-sample comparisons are local within mini-batch and the training procedure
for the Triplet loss is very challenging as there is a combinatorial explosion
in the number of triplets especially for large-scale datasets, requiring effective
sampling strategies to select informative mini-batch [25,26] and choose repre-
sentative triplets within the mini-batch [36,21,28]. Some works tried to reduce
the total number of triplets with proxies [19,23], i.e., sample-to-sample compar-
ison is changed into sample-to-proxy comparison. However, sampling and proxy
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methods only optimise the embedding of partial classes instead of all classes in
one iteration step.

Margin-based softmax methods [15,8,32,31,5] focused on incorporating mar-
gin penalty into a more feasible framework, softmax loss, which has extensive
sample-to-class comparisons. Compared to deep metric learning methods (e.g.,
Triplet [26], Tuplet [21,28]), margin-based softmax methods conduct global com-
parisons at the cost of memory consumption on holding the center of each class.
Sample-to-class comparison is more efficient and stable than sample-to-sample
comparison as (1) the class number is much smaller than sample number, and
(2) each class can be represented by a smoothed center vector which can be
updated during training.

Face Recognition under Noise. Most of the face recognition datasets [40,9,2,1]
are downloaded from the Internet by searching a pre-defined celebrity list, and
the original labels are likely to be ambiguous and inaccurate [30]. Learning
with massive noisy data has recently drawn much attention in face recogni-
tion [37,11,41,33] as accurate manual annotations can be expensive [30] or even
unavailable.

Wu et al. [37] proposed a semantic bootstrap strategy, which re-labels the
noisy samples according to the probabilities of the softmax function. However,
automatic cleaning by the bootstrapping rule requires time-consuming iterations
(e.g. twice refinement steps are used in [37]) and the labelling quality is affected
by the capacity of the original model. Hu et al. [11] found that the cleanness pos-
sibility of a sample can be dynamically reflected by its position in the target logit
distribution and presented a noise-tolerant end-to-end paradigm by employing
the idea of weighting training samples. Zhong et al. [41] devised a noise-resistant
loss by introducing a hypothetical training label, which is a convex combination
of the original label with probability ρ and the predicted label by the current
model with probability 1−ρ. However, computing time-varying fusion weight [11]
and designing piece-wise loss [41] contain many hand-designed hyper-parameters.
Besides, re-weighting methods are susceptible to the performance of the initial
model. Wang et al. [33] proposed a co-mining strategy which uses the loss values
as the cue to simultaneously detect noisy labels, exchange the high-confidence
clean faces to alleviate the error accumulation caused by the sampling bias, and
re-weight the predicted clean faces to make them dominate the discriminative
model training. However, the co-mining method requires training twin networks
simultaneously and it is challenging to train large networks (e.g. ResNet100 [10])
on a large-scale dataset (e.g. MS1M [9] and Celeb500K [1]).

Face Recognition with Sub-classes. Practices and theories that lead to “sub-
class” have been studied for a long time [42,43]. The concept of “sub-class”
applied in face recognition was first introduced in [42,43], where a mixture of
Gaussians was used to approximate the underlying distribution of each class.
For instance, a person’s face images may be frontal view or side view, resulting
in different modalities when all images are represented in the same data space.
In [42,43], experimental results showed that subclass divisions can be used to
effectively adapt to different face modalities thus improve the performance of face
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recognition. Wan et al. [29] further proposed a separability criterion to divide
every class into sub-classes, which have much less overlaps. The new within-
class scatter can represent multi-modality information, therefore optimising this
within-class scatter will separate different modalities more clearly and further
increase the accuracy of face recognition. However, these work [42,43,29] only
employed hand-designed feature descriptor on tiny under-controlled datasets.

Concurrent with our work, Softtriple [22] presents a multi-center softmax loss
with class-wise regularizer. These multi-centers can capture the hidden distribu-
tion of the data better [20] due to the fact that they can capture the complex
geometry of the original data and help reduce the intra-class variance. On the
fine-grained visual retrieval problem, the Softtriple [22] loss achieves better per-
formance than the softmax loss as capturing local clusters is essential for this
task. Even though the concept of “sub-class” has been employed in face recog-
nition [42,43,29] and fine-grained visual retrieval [22], none of these work has
considered the large-scale (e.g. 0.5 million classes) face recognition problem un-
der massive noise (e.g. around 50% noisy samples within the training data).

3 The Proposed Approach

3.1 ArcFace

ArcFace [5] introduced an additive angular margin penalty into the softmax loss,

`ArcFace = − log
es cos(θyi+m)

es cos(θyi+m) +
∑N
j=1,j 6=yi e

s cos θj
, (1)

where θj is the angle between the embedding feature xi ∈ R512×1 of the i-th face
sample and the j-th class center Wj ∈ R512×1. Given that the corresponding class
label of xi is yi, θyi represents the angle between xi and the ground-truth center
Wyi . m = 0.5 is the angular margin parameter, s = 64 is the feature re-scale
parameter, and N is the total class number. As there is a `2 normalisation step
on both xi and Wj , θj = arccos

(
WT
j xi

)
.

Taking advantage of parallel acceleration on both xi and Wj , the implemen-
tation of ArcFace2 can efficiently handle million-level identities on a single server
with 8 GPUs (11GB 1080ti). This straightforward solution has changed the in-
grained belief that large-scale global comparison with all classes is usually not
attainable due to the bottleneck of GPU memory [26,28].

3.2 Sub-center ArcFace

Even though ArcFace [5] has shown its power in efficient and effective face feature
embedding, this method assumes that training data are clean [5,30]. However,
this is not true especially when the dataset is in large scale. How to enable
ArcFace to be robust to noise is one of the main challenges that impeding the

2 https://github.com/deepinsight/insightface/tree/master/recognition
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Fig. 2. Training the deep face recognition model by minimizing the proposed sub-center
ArcFace loss. The main contribution in this paper is highlighted by the blue dashed
box. Based on a `2 normalisation step on both embedding feature xi ∈ R512×1 and all
sub-centers W ∈ RN×K×512, we get the subclass-wise similarity score S ∈ RN×K by a
matrix multiplication WTxi. After a max pooling step, we can easily get the class-wise
similarity score S ′ ∈ RN×1. The following steps are same as ArcFace [5].

Table 1. The strictness and robustness analysis of different comparison strategies. In
the angular space, “Min” is closest and “Max” is farest. “intra” refers to comparison
between the training sample and the positive sub-centers (K). “inter” refers to compar-
ison between the training sample and all negative sub-centers ((N − 1)×K). “outlier”
denotes the open-set noise and “label flip” denotes the close-set noise.

Constraints Sub-center? Strictness? Robustness to outlier? Robustness to label flip?

(1) Min(inter) - Min(intra) ≥ m
√

+++ ++ +

(2) Max(inter) - Min(intra) ≥ m
√

+ ++ ++

(3) Min(inter) - Max(intra) ≥ m ++++

(4) Max(inter) - Max(intra) ≥ m ++ +
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(b) Clean Data Isolation

Fig. 3. (a) Angle distribution of samples to their corresponding centers predicted by
the pre-trained ArcFace model [5]. Noise exists in the CASIA dataset [40,30]. (b) Angle
distribution of samples from the dominant and non-dominant sub-classes. Clean data
are automatically isolated by sub-center ArcFace (K=10).
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(a) K=3, Dominant
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(b) K=3, Non-dominant
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(c) K=1, All
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(d) K = 3 ↓ 1, Non-dominant

Fig. 4. Data distribution of ArcFace (K=1) and the proposed sub-center ArcFace
(K=3) before and after dropping non-dominant sub-centers. MS1MV0 [9] is used here.
K = 3 ↓ 1 denotes sub-center ArcFace with non-dominant sub-centers dropping.

development of face representation and recognition [30]. In this paper, we address
this problem by proposing the idea of using sub-classes for each identity, which
can be directly adopted by ArcFace and will significantly increase its robustness.
Foster Sub-classes. As illustrated in Fig. 2, we set a sufficiently large K for
each identity. Based on a `2 normalisation step on both embedding feature xi ∈
R512×1 and all sub-centers W ∈ RN×K×512, we get the subclass-wise similarity
scores S ∈ RN×K by a matrix multiplication WTxi. Then, we employ a max
pooling step on the subclass-wise similarity score S ∈ RN×K to get the class-
wise similarity score S ′ ∈ RN×1. The proposed sub-center ArcFace loss can be
formulated as:

`ArcFacesubcenter
= − log

es cos(θi,yi+m)

es cos(θi,yi+m) +
∑N
j=1,j 6=yi e

s cos θi,j
, (2)

where θi,j = arccos
(
maxk

(
WT
jk

xi
))

, k ∈ {1, · · · ,K}.
Robustness and Strictness Analysis. Given a large K, sub-classes are able
to capture the complex distribution of the whole training data. Except for ap-
plying max pooling on the subclass-wise cosine similarity score, we can also
consider other different comparison strategies. In Tab. 1, we give the strictness
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and robustness analysis of four comparison strategies. (1) adds angular margin
between the closest inter-class sub-center and the closest intra-class sub-center.
For intra-class comparison, choosing the closest positive sub-center can relax the
intra-class constraint and improve the robustness under noise. For inter-class
comparison, choosing the closest negative sub-center will enhance the inter-class
constraint as sub-centers can better capture the complex geometric distributions
of the whole data set compared to a single center for each class. However, the en-
hanced inter-class comparison is less robust under the close-set noise. The train-
ing procedure of (2) can not converge as the initial status between inter-classes is
orthogonal and relaxing both of the inter-class and intra-class comparisons will
disorient the training, as there is no loss from inter-class comparisons. (3) and
(4) can not foster sub-classes as stiffening intra-class comparison will compress
sub-centers into one point in the high-dimension feature space thus undermine
the robustness to noise.

Dominant and Non-dominant Sub-classes. In Fig. 1(b), we have visualised
the clustering results of one identity from the CASIA dataset [40] after employing
the sub-center ArcFace loss (K = 10) for training. It is obvious that the proposed
sub-center ArcFace loss can automatically cluster faces such that hard samples
and noisy samples are separated away from the dominant clean samples. Note
that some sub-classes are empty asK = 10 is too large for a particular identity. In
Fig. 3(a) and Fig. 3(b), we show the angle distribution on the CASIA dataset [40].
We use the pre-trained ArcFace model [5] to predict the feature center of each
identity and then calculate the angle between the sample and its corresponding
feature center. As we can see from Fig. 3(a), most of the samples are close to their
centers, however, there are some noisy samples which are far away from their
centers. This observation on the CASIA dataset matches the noise percentage
estimation (9.3% ∼ 13.0%) in [30]. To automatically obtain a clean training
dataset, the noisy tail is usually removed by a hard threshold (e.g. angle ≥ 77◦ or
cosine ≤ 0.225). Since sub-center ArcFace can automatically divide the training
samples into dominant sub-classes and non-dominant sub-classes, we visualise
these two different kinds of samples in Fig. 3(b). As we can see from the two
histograms, sub-center ArcFace can automatically separate clean samples from
hard and noisy samples. More specifically, the majority of clean faces (85.6%)
go to the dominant sub-class, while the rest hard and noisy faces go to the
non-dominant sub-classes.

Drop Non-dominant Sub-centers and High-confident Noises. Even though
using sub-classes can improve the robustness under noise, it undermines the
intra-class compactness as hard samples are also kept away as shown in Fig. 3(b).
In [9], MS1MV0 (around 10M images of 100K identities) is released with the es-
timated noise percentage around 47.1% ∼ 54.4% [30]. In [6], MS1MV0 is refined
by a semi-automatic approach into a clean dataset named MS1MV3 (around
5.1M images of 93K identities). Based on these two datasets, we can get clean
and noisy labels on MS1MV0. In Fig. 4(a) and Fig. 4(b), we show the angle dis-
tributions of samples to their closest sub-centers (training settings: [MS1MV0,
ResNet-50, Sub-center ArcFace K=3]). In general, there are four categories of
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samples: (1) easy clean samples belonging to dominant sub-classes (57.24%), (2)
hard noisy samples belonging to dominant sub-classes (12.40%), (3) hard clean
samples belonging to non-dominant sub-classes (4.28%), and (4) easy noisy sam-
ples belonging to non-dominant sub-classes (26.08%). In Fig. 4(c), we show the
angle distribution of samples to their corresponding centers from the ArcFace
model (training settings: [MS1MV0, ResNet50, ArcFace K=1]). By comparing
the percentages of noisy sample in Fig. 4(a) and Fig. 4(c), we find that sub-
center ArcFace can significantly decrease the noise rate to around one third
(from 38.47% to 12.40%) and this is the reason why sub-center ArcFace is more
robust under noise. During the training of sub-center ArcFace, samples belonging
to non-dominant sub-classes are pushed to be close to these non-dominant sub-
centers as shown in Fig. 4(b). Since we have not set any constraint on sub-centers,
the sub-centers of each identity can be quite different and even orthogonal. In
Fig. 4(d), we show the angle distributions of non-dominant samples to their
dominant sub-centers. By combining Fig. 4(a) and Fig. 4(d), we find that even
though the clean and noisy data have some overlaps, a constant angle threshold
(between 70◦ and 80◦) can be easily searched to drop most of high-confident
noisy samples.

Based on the above observations, we propose a straightforward approach to
recapture intra-class compactness. We directly drop non-dominant sub-centers
after the network has enough discriminative power. Meanwhile, we introduce a
constant angle threshold to drop high-confident noisy data. After that, we retrain
the model from scratch on the automatically cleaned dataset.
Comparison with Re-weighting Methods. The main difference between
the proposed sub-center ArcFace and re-weighting methods [11,41] is that sub-
center ArcFace is less affected by the noisy data from the beginning of the model
training. By contrast, the discriminative power of the initial model is important
for both NT [11] and NR [41] methods as their adaptive weights are predicted
from the model.

Our sub-center ArcFace achieves high accuracy in face recognition while keeps
extreme simplicity, only adding two hyper-parameters: the sub-center number
and the constant threshold to drop high-confident noisy data.

4 Experiments

4.1 Experimental Settings

Datasets. Our training datasets include MS1MV0 (∼10M images of 100K iden-
tities) [9], MS1MV3 (∼5.1M faces of 91K identities) [6], and Celeb500K [1].
MS1MV0 is a raw data with the estimated noise percentage around 47.1% ∼
54.4% [30]. MS1MV3 is cleaned from MS1MV0 by a semi-automatic approach [6].
Celeb500K [1] is collected as MS1MV0 [9], using half of the MS1M name list [9]
to search identities from Google and download the top-ranked face images. Our
testing datasets consist of IJB-B [35], IJB-C [17], MegaFace [13], and Face Recog-
nition Vendor Test (FRVT). Besides, we also report our final results on widely
used verification datasets (e.g. LFW [12], CFP-FP [27], and AgeDB-30 [18]).
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Table 2. Ablation experiments of different settings on MS1MV0, MS1MV3 and
Celeb500K. The 1:1 verification accuracy (TAR@FAR) is reported on the IJB-B and
IJB-C datasets. ResNet-50 is used for training.

Settings
IJB-B IJB-C

1e−6 1e−5 1e-4 1e−3 1e−2 1e−6 1e−5 1e-4 1e−3 1e−2

(1) MS1MV0,K=1 34.14 74.74 87.87 93.27 96.40 67.08 81.11 90.27 94.59 97.08

(2) MS1MV0,K=3 40.89 85.62 91.70 94.88 96.93 86.18 90.59 93.72 95.98 97.60
(3) MS1MV0,K=3, softmax pooling [22] 38.4 85.49 91.53 94.76 96.83 85.43 90.40 93.55 95.87 97.36

(4) MS1MV0,K=5 39.24 85.48 91.47 94.68 96.96 85.49 90.38 93.62 95.88 97.59
(5) MS1MV0,K=10 19.81 49.03 63.84 76.09 87.73 45.98 55.74 67.94 79.44 89.29

(6) MS1MV0, K = 3 ↓ 1, drop > 70◦ 47.61 90.60 94.44 96.44 97.71 90.40 94.05 95.91 97.42 98.42
(7) MS1MV0, K = 3 ↓ 1, drop > 75◦ 46.78 89.40 94.56 96.49 97.83 89.17 94.03 95.92 97.40 98.41
(8) MS1MV0, K = 3 ↓ 1, drop > 80◦ 38.05 88.26 94.04 96.19 97.64 86.16 93.09 95.74 97.19 98.33
(9) MS1MV0, K = 3 ↓ 1, drop > 85◦ 42.89 87.06 93.33 96.05 97.59 81.53 92.01 95.10 97.01 98.24
(10) MS1MV0, K=3, regularizer [22] 39.92 85.51 91.53 94.77 96.92 85.44 90.41 93.64 95.85 97.40

(11) MS1MV0,Co-mining [33] 40.96 85.57 91.80 94.99 97.10 86.31 90.71 93.82 95.95 97.63
(12) MS1MV0,NT [11] 40.84 85.56 91.57 94.79 96.83 86.14 90.48 93.65 95.86 97.54
(13) MS1MV0,NR [41] 40.86 85.53 91.58 94.77 96.80 86.07 90.41 93.60 95.88 97.44

(14) MS1MV3, K=1 35.86 91.52 95.13 96.61 97.65 90.16 94.75 96.50 97.61 98.40
(15) MS1MV3, K=3 40.16 91.30 94.84 96.66 97.74 90.64 94.68 96.35 97.66 98.48
(16) MS1MV3, K = 3 ↓ 1 40.18 91.32 94.87 96.70 97.81 90.67 94.74 96.43 97.66 98.47

(17) Celeb500K, K=1 42.42 88.18 90.96 92.19 93.00 88.18 90.87 92.15 95.47 97.64
(18) Celeb500K, K=3 43.84 90.91 93.76 95.12 96.00 90.92 93.66 94.90 96.21 98.02
(19) Celeb500K, K = 3 ↓ 1 44.64 92.71 95.65 96.94 97.89 92.73 95.52 96.91 97.87 98.42

Implementation Details. For data pre-possessing, we follow ArcFace [5] to
generate the normalised face crops (112 × 112) by utilising five facial points
predicted by RetinaFace [7]. We employ ResNet-50 and ResNet-100 [10,5] to get
the 512-D face embedding feature. Following [5], the feature scale s is set to
64 and the angular margin m is set to 0.5. All experiments in this paper are
implemented by MXNet [3]. We set the batch size for back-propagation as 512
and train models on 8 NVIDIA Tesla P40 (24GB) GPUs. We set momentum to
0.9 and weight decay to 5e − 4. For the training of ArcFace on MS1MV0 and
MS1MV3, the learning rate starts from 0.1 and is divided by 10 at the 100K,
160K, and 220K iteration steps. We finish the training process at 240K steps.
For the training of the proposed sub-center ArcFace, we also employ the same
learning rate schedule to train the first round of model (K=3). Then, we drop
non-dominant sub-centers (K = 3 ↓ 1) and high-confident noisy data (> 75◦)
by using the first round model through an off-line way. Finally, we retrain the
model from scratch using the automatically cleaned data.

4.2 Ablation Study

To facilitate comparisons, we abbreviate different settings by the experiment
number (E*) in the table and only focus on the TAR@FAR=1e-4 of IJB-C,
which is more objective and less affected by the noise within the test data [38].
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Table 3. Ablation experiments of different settings under synthetic open-set and close-
set noise. The 1:1 verification accuracy (TAR@FAR) is reported on the IJB-B and
IJB-C datasets. ResNet-50 is used for training.

Settings
IJB-B IJB-C

1e−6 1e−5 1e-4 1e−3 1e−2 1e−6 1e−5 1e-4 1e−3 1e−2

Synthetic Open-set Noise

(1) 75%CleanID,K=1 37.49 90.02 94.48 96.48 97.72 90.10 94.18 96.00 97.45 98.38
(2) 75%CleanID+25%NoisyID,K=1 37.80 86.68 92.96 94.72 95.80 86.19 92.03 94.52 95.89 97.29
(3) 75%CleanID+25%NoisyID,K=3 38.31 87.87 94.17 95.83 97.15 87.23 93.01 95.57 96.95 97.75
(4) 75%CleanID+25%NoisyID,K = 3 ↓ 1 38.36 88.14 94.20 96.15 97.94 87.51 93.27 95.89 97.29 98.43

(5) 50%CleanID,K=1 34.43 89.36 93.97 96.26 97.63 88.35 93.49 95.65 97.28 98.35
(6) 50%CleanID+50%NoisyID,K=1 35.96 81.45 90.77 92.69 94.56 80.97 88.49 92.25 93.84 95.10
(7) 50%CleanID+50%NoisyID,K=3 34.15 85.13 92.62 94.98 96.77 84.43 91.00 94.50 95.79 97.33
(8) 50%CleanID+50%NoisyID,K = 3 ↓ 1 34.55 86.43 93.85 96.13 97.37 85.22 91.82 95.50 96.73 98.16

Synthetic Close-set Noise

(9) 75%CleanIM,K=1 38.44 89.41 94.76 96.42 97.71 89.31 94.19 96.19 97.39 98.43
(10) 75%CleanIM+25%NoisyIM,K=1 36.16 83.46 92.29 94.85 95.61 82.20 91.24 94.28 95.58 97.58
(11) 75%CleanIM+25%NoisyIM,K=3 36.09 83.16 91.45 94.33 95.23 81.28 90.02 93.57 94.96 96.32
(12) 75%CleanIM+25%NoisyIM,K = 3 ↓ 1 37.79 85.50 94.03 95.53 97.42 84.09 93.17 95.13 96.85 97.61

(13) 50%CleanIM,K=1 36.85 90.50 94.59 96.49 97.65 90.46 94.32 96.08 97.44 98.33
(14) 50%CleanIM+50%NoisyIM,K=1 17.54 43.10 71.76 82.08 93.38 28.40 55.46 75.80 88.22 94.68
(15) 50%CleanIM+50%NoisyIM,K=3 17.47 41.63 66.42 78.70 91.37 26.03 54.23 72.04 86.36 94.19
(16) 50%CleanIM+50%NoisyIM,K = 3 ↓ 1 22.19 68.11 85.86 88.13 95.08 44.34 69.25 78.12 90.51 96.16

Real-world Noise. In Tab. 2, we conduct extensive experiments to investi-
gate the proposed Sub-center ArcFace. We train ResNet-50 networks on differ-
ent datasets (MS1MV0, MS1MV3 and Celeb500K) with different settings. From
Tab. 2, we have the following observations: (a) ArcFace has an obvious perfor-
mance drop (from E14 96.50% to E1 90.27%) when the training data is changed
from the clean MS1MV3 to the noisy MS1MV0. By contrast, sub-center ArcFace
is more robust (E2 93.72%) under massive noise. (b) Too many sub-centers (too
large K) can obviously undermine the intra-class compactness and decrease the
accuracy (from E2 93.72% to E5 67.94%). This observation indicates that ro-
bustness and strictness should be balanced during training, thus we select K=3
in this paper. (c) The nearest sub-center assignment by the max pooling is
slightly better than the softmax pooling [22] (E2 93.72% vs. E3 93.55%). Thus,
we choose the more efficient max pooling operator in the following experiments.
(d) Dropping non-dominant sub-centers and high-confident noisy samples can
achieve better performance than adding regularization [22] to enforce compact-
ness between sub-centers (E7 95.92% vs. E10 93.64%). Besides, The performance
of our method is not very sensitive to the constant threshold (E6 95.91%, E7
95.92% and E8 95.74%), and we select 75◦ as the threshold for dropping high-
confident noisy samples in the following experiments. (e) Co-mining [33] and
re-weighting methods [11,41] can also improve the robustness under massive
noise, but sub-center ArcFace can do better through automatic clean and noisy
data isolation during training (E7 95.92% vs. E11 93.82%, E12 93.65% and E13
93.60%). (f) On the clean dataset (MS1MV3), sub-center ArcFace achieves sim-
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ilar performance as ArcFace (E16 96.43% vs. E14 96.50%). (g) The proposed
sub-center ArcFace trained on noisy MS1MV0 can achieve comparable perfor-
mance compared to ArcFace trained on manually cleaned MS1MV3 (E7 95.92%
vs. E14 96.50%). (h) By enlarging the training data, sub-center ArcFace can
easily achieve better performance even though it is trained from noisy web faces
(E19 96.91% vs. E13 96.50%).
Synthetic Noise. In Tab. 3, we investigate the robustness of the proposed sub-
center ArcFace under synthetic open-set and close-set noise. We train ResNet-
50 networks on MS1MV3 with different noise types and levels. To simulate the
training data with controlled open-set noise, we randomly select 75% and 50%
identities from MS1MV3 [6] and the face images of the rest identities are assigned
with random labels of selected identities. To simulate the training data with
controlled close-set noise, we use all identities (∼ 100K) from MS1MV3 [6] but
randomly select 25% and 50% face images of each identity and assign random
labels to these face images.

From Tab. 3, we have the following observations: (a) Performance drops
as the ratio of synthetic noise increases, especially for the close-set noise (E2
94.52% vs. E6 92.25% and E10 94.28% vs. E14 75.80%). In fact, close-set noise
is also found to be more harmful than open-set noise in [30]. (b) Under the
open-set noise, the proposed sub-center can effectively enhance the robustness of
ArcFace (E3 95.57% vs. E2 94.52% and E7 94.50% vs. E6 92.25%). By dropping
non-dominant sub-centers and high-confident noisy samples, the performance of
sub-center arcface can even approach Arcface trained on the clean dataset (E4
95.89% vs. E1 96.00% and E8 95.50% vs. E5 95.65%). (c) Under the close-set
noise, the performance of sub-center Arcface is worse than ArcFace (E11 93.57%
vs. E10 94.28% and E15 72.04% vs. E14 75.80%), as the inter-class constraint of
sub-center Arcface is more strict than ArcFace. By dropping non-dominant sub-
centers and high-confident noisy samples, the performance of sub-center Arcface
outperforms ArcFace (E12 95.13% vs. E10 94.28% and E16 78.12% vs. E14
75.80%) but still lags behind ArcFace trained on the clean dataset (E12 95.13%
vs. E9 96.19% and E16 78.12% vs. E13 96.08%), which indicates the capacity of
the network to drop noisy samples depends on its initial discriminative power.
Sub-center ArcFace trained on 50% close-set noise is far from accurate (E15
72.04%) and the step of dropping noisy samples is also not accurate. Therefore,
it is hard to catch up with ArcFace trained on the clean dataset. However, in
the real-world data, close-set noise is not dominant, much less than 50% (e.g.
only a small part of celebrities frequently appear in others’ album).

4.3 Benchmark Results

Results on IJB-B [35] and IJB-C [35]. We employ the face detection scores
and the feature norms to re-weigh faces within templates [24,16]. In Tab. 4, we
compare the TAR (@FAR=1e-4) of ArcFace and the proposed sub-center Arc-
Face trained on noisy data (e.g. MS1MV0 and Celeb500K). The performance of
ArcFace significantly drops from 96.61% to 90.42% on the IJB-C dataset when
the training data is changed from the manually cleaned data (MS1MV3) to the
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Table 4. Column 2-3: 1:1 verification TAR (@FAR=1e-4) on the IJB-B and IJB-
C dataset. Column 4-5: Face identification and verification evaluation on MegaFace
Challenge1 using FaceScrub as the probe set. “Id” refers to the rank-1 face identification
accuracy with 1M distractors, and “Ver” refers to the face verification TAR at 10−6

FAR. Column 6-8: The 1:1 verification accuracy on the LFW, CFP-FP and AgeDB-30
datasets. ResNet-100 is used for training.

Settings
IJB MegaFace Quick Verification Datasets

IJB-B IJB-C Id Ver LFW CFP-FP AgeDB-30

MS1MV0, K=1 87.91 90.42 96.52 96.75 99.75 97.17 97.26
MS1MV0, K = 3 ↓ 1 94.94 96.28 98.16 98.36 99.80 98.80 98.31

MS1MV3, K=1 [5,6] 95.25 96.61 98.40 98.51 99.83 98.80 98.45

Celeb500K, K = 3 ↓ 1 95.75 96.96 98.78 98.69 99.86 99.11 98.35

raw noisy data (MS1MV0). By contrast, the proposed sub-center ArcFace is ro-
bust to massive noise and can achieve similar results compared with ArcFace
trained on the clean data (96.28% vs. 96.61%). When we apply sub-center Ar-
cFace on large-scale training data (Celeb500K), we further improve the TAR
(@FAR=1e-4) to 95.75% and 96.96% on IJB-B and IJB-C, respectively.

Results on MegaFace [13]. We adopt the refined version of MegaFace [5]
to give a fair evaluation. As shown in Tab. 4, the identification accuracy of
ArcFace obviously drops from 98.40% to 96.52% when the training data is
changed from MS1MV3 to MS1MV0, while the proposed sub-center ArcFace
is more robust under massive noise within MS1MV0, achieving the identifica-
tion accuracy of 98.16%. ArcFace trained on MS1MV3 only slightly outper-
forms our method trained on MS1MV0 under both verification and identifica-
tion protocols. Finally, the sub-center ArcFace model trained on the large-scale
Celeb500K dataset achieves state-of-the-art identification accuracy of 98.78% on
the MegaFace dataset.

Results on LFW [12], CFP-FP [27], and AgeDB-30 [18]. We follow the
unrestricted with labelled outside data protocol to report the verification per-
formance. As reported in Tab. 4, sub-center ArcFace trained on noisy MS1MV0
achieves comparable performance compared to ArcFace trained on clean MS1MV3.
Moreover, our method trained on the noisy Celeb500K outperforms ArcFace [5],
achieving the verification accuracy of 99.86%, 99.11%, 98.35% on LFW, CFP-FP
and AgeDB-30, respectively.

Results on FRVT. The Face Recognition Vendor Test (FRVT) is the most
strict industry-level face recognition test, and the participants need to submit
the whole face recognition system (e.g. face detection, alignment and feature em-
bedding) to the organiser. No test image has been released for hyper-parameter
searching and the submission interval is no less than three months. Besides,
the submitted face recognition system should complete face detection and face
feature embedding within 1000ms on Intel Xeon CPU (E5-2630 v4 @ 2.20GHz
processors) by using the single-thread inference. We build our face recognition
system by RetinaFace (ResNet-50) [7] and sub-center ArcFace (ResNet-100),
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Table 5. FRVT 1:1 verification results. Sub-center ArcFace (K = 3 ↓ 1) employs
ResNet-100 and is trained on the Celeb500K dataset. FNMR is the proportion of mated
comparisons below a threshold set to achieve the false match rate (FMR) specified.
FMR is the proportion of impostor comparisons at or above that threshold.

Rank Submissions WILD VISA VISA MUGSHOT MUGSHOT VISABORDER
FNMR FNMR FNMR FNMR FNMR FNMR

@FMR ≤ 1e-5 @FMR ≤ 1e-6 @FMR ≤ 1e-4 @FMR ≤ 1e-5 @FMR ≤ 1e-5 @FMR ≤ 1e-6
DT=14 YRS

1 deepglint-002 0.0301 0.0027 0.0004 0.0032 0.0041 0.0043
2 everai-paravision-003 0.0302 0.0050 0.0011 0.0036 0.0053 0.0092

3 Sub-center ArcFace 0.0303 0.0081 0.0027 0.0055 0.0087 0.0083

4 dahua-004 0.0304 0.0058 0.0019 0.0036 0.0051 0.0051
5 xforwardai-000 0.0305 0.0072 0.0018 0.0036 0.0051 0.0074
6 visionlabs-008 0.0308 0.0036 0.0007 0.0031 0.0044 0.0045
7 didiglobalface-001 0.0308 0.0092 0.0016 0.0030 0.0048 0.0088
8 vocord-008 0.0310 0.0038 0.0008 0.0042 0.0054 0.0045
9 paravision-004 0.0311 0.0046 0.0012 0.0030 0.0041 0.0091
10 ntechlab-008 0.0312 0.0061 0.0011 0.0056 0.0106 0.0042
11 tevian-005 0.0325 0.0062 0.0020 0.0057 0.0081 0.0070
12 sensetime-003 0.0355 0.0027 0.0005 0.0027 0.0033 0.0051
13 yitu-003 0.0360 0.0026 0.0003 0.0066 0.0083 0.0064

and accelerate the inference by the openVINO toolkit. In Tab. 5, we show the
top-performing 1:1 algorithms measured on false non-match rate (FNMR) across
several different tracks. As we can see from the results, the proposed sub-center
ArcFace trained on the Celeb500K dataset achieves state-of-the-art performance
on the wild track (0.0303, rank 3rd). Considering several hundred of industry
submissions to FRVT, the overall performance of our single model is very im-
pressive.

5 Conclusion

In this paper, we have proposed sub-center ArcFace which first enforces sub-
classes by nearest sub-center selection and then only keeps the dominant sub-
center to achieve intra-class compactness. As we relax the intra-class compact-
ness from beginning, the proposed sub-center ArcFace is robust under massive
label noise and can easily train face recognition models from raw downloaded
data. Extensive experimental results show that our method consistently outper-
forms ArcFace on real-world noisy datasets and achieve comparable performance
compared to using manually refined data.
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