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Abstract. Humans view the world through many sensory channels, e.g.,
the long-wavelength light channel, viewed by the left eye, or the high-
frequency vibrations channel, heard by the right ear. Each view is noisy
and incomplete, but important factors, such as physics, geometry, and
semantics, tend to be shared between all views (e.g., a “dog” can be seen,
heard, and felt). We investigate the classic hypothesis that a powerful
representation is one that models view-invariant factors. We study this
hypothesis under the framework of multiview contrastive learning, where
we learn a representation that aims to maximize mutual information
between different views of the same scene but is otherwise compact.
Our approach scales to any number of views, and is view-agnostic. We
analyze key properties of the approach that make it work, finding that
the contrastive loss outperforms a popular alternative based on cross-view
prediction, and that the more views we learn from, the better the resulting
representation captures underlying scene semantics. Code is available at:
http://github.com/HobbitLong/CMC/.

1 Introduction

A foundational idea in coding theory is to learn compressed representations
that nonetheless can be used to reconstruct the raw data. This idea shows up
in contemporary representation learning in the form of autoencoders [64] and
generative models [39,23], which try to represent a data point or distribution as
losslessly as possible. Yet lossless representation might not be what we really want,
and indeed it is trivial to achieve — the raw data itself is a lossless representation.
What we might instead prefer is to keep the “good” information (signal) and
throw away the rest (noise). How can we identify what information is signal and
what is noise?

To an autoencoder, or a max likelihood generative model, a bit is a bit. No
one bit is better than any other. Our conjecture in this paper is that some bits
are in fact better than others. Some bits code important properties like semantics,
physics, and geometry, while others code attributes that we might consider less
important, like incidental lighting conditions or thermal noise in a camera’s
sensor.

We revisit the classic hypothesis that the good bits are the ones that are
shared between multiple views of the world, for example between multiple sensory
modalities like vision, sound, and touch [69]. Under this perspective “presence of
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Fig.1: Given a set of sensory views, a
deep representation is learnt by bringing
views of the same scene together in embed-
ding space, while pushing views of different
scenes apart. Here we show and example
of a 4-view dataset (NYU RGBD [52]) and
its learned representation. The encodings
5 : for each view may be concatenated to form
viev | vheVe  wels  vieWs  Unmatchingview  the fyy]] representation of a scene.

Matching views

dog” is good information, since dogs can be seen, heard, and felt, but “camera
pose” is bad information, since a camera’s pose has little or no effect on the
acoustic and tactile properties of the imaged scene. This hypothesis corresponds
to the inductive bias that the way you view a scene should not affect its semantics.
There is significant evidence in the cognitive science and neuroscience literature
that such view-invariant representations are encoded by the brain (e.g., [69,14,31]).
In this paper, we specifically study the setting where the different views are
different image channels, such as luminance, chrominance, depth, and optical flow.
The fundamental supervisory signal we exploit is the co-occurrence, in natural
data, of multiple views of the same scene. For example, we consider an image in
Lab color space to be a paired example of the co-occurrence of two views of the
scene, the L view and the ab view: {L, ab}.

Our goal is therefore to learn representations that capture information shared
between multiple sensory channels but that are otherwise compact (i.e. discard
channel-specific nuisance factors). To do so, we employ contrastive learning, where
we learn a feature embedding such that views of the same scene map to nearby
points (measured with Euclidean distance in representation space) while views
of different scenes map to far apart points. In particular, we adapt the recently
proposed method of Contrastive Predictive Coding (CPC) [56], except we simplify
it — removing the recurrent network — and generalize it — showing how to apply it
to arbitrary collections of image channels, rather than just to temporal or spatial
predictions. In reference to CPC, we term our method Contrastive Multiview
Coding (CMC), although we note that our formulation is arguably equally related
to Instance Discrimination [79]. The contrastive objective in our formulation,
as in CPC and Instance Discrimination, can be understood as attempting to
maximize the mutual information between the representations of multiple views
of the data.

We intentionally leave “good bits” only loosely defined and treat its definition
as an empirical question. Ultimately, the proof is in the pudding: we consider a
representation to be good if it makes subsequent problem solving easy, on tasks of
human interest. For example, a useful representation of images might be a feature
space in which it is easy to learn to recognize objects. We therefore evaluate
our method by testing if the learned representations transfer well to standard
semantic recognition tasks. On several benchmark tasks, our method achieves
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results competitive with the state of the art, compared to other methods for
self-supervised representation learning. We additionally find that the quality of
the representation improves as a function of the number of views used for training.
Finally, we compare the contrastive formulation of multiview learning to the
recently popular approach of cross-view prediction, and find that in head-to-head
comparisons, the contrastive approach learns stronger representations.

The core ideas that we build on: contrastive learning, mutual information
maximization, and deep representation learning, are not new and have been
explored in the literature on representation and multiview learning for decades
[63,44,80,3]. Our main contribution is to set up a framework to extend these
ideas to any number of views, and to empirically study the factors that lead to
success in this framework. A review of the related literature is given in Section 2;
and Fig. 1 gives a pictorial overview of our framework. Our main contributions
are:

— We apply contrastive learning to the multiview setting, attempting to maxi-
mize mutual information between representations of different views of the
same scene (in particular, between different image channels).

— We extend the framework to learn from more than two views, and show
that the quality of the learned representation improves as number of views
increase. Ours is the first work to explicitly show the benefits of multiple
views on representation quality.

— We conduct controlled experiments to measure the effect of mutual infor-
mation estimates on representation quality. Our experiments show that the
relationship between mutual information and views is a subtle one.

— Our representations rival state of the art on popular benchmarks.

— We demonstrate that the contrastive objective is superior to cross-view
prediction.

2 Related work

Unsupervised representation learning is about learning transformations of the
data that make subsequent problem solving easier [7]. This field has a long history,
starting with classical methods with well established algorithms, such as principal
components analysis (PCA [36]) and independent components analysis (ICA [32]).
These methods tend to learn representations that focus on low-level variations in
the data, which are not very useful from the perspective of downstream tasks
such as object recognition.

Representations better suited to such tasks have been learnt using deep neural
networks, starting with seminal techniques such as Boltzmann machines [70,64],
autoencoders [29], variational autoencoders [39], generative adversarial networks
[23] and autoregressive models [55]. Numerous other works exist, for a review see
[7]. A powerful family of models for unsupervised representations are collected
under the umbrella of “self-supervised” learning [63,34,85,84,78,59,83]. In these
models, an input X to the model is transformed into an output X , which is
supposed to be close to another signal Y (usually in Euclidean space), which
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itself is related to X in some meaningful way. Examples of such X/Y pairs
are: luminance and chrominance color channels of an image [85], patches from
a single image [50], modalities such as vision and sound [57] or the frames of
a video [78]. Clearly, such examples are numerous in the world, and provides
us with nearly infinite amounts of training data: this is one of the appeals of
this paradigm. Time contrastive networks [67] use a triplet loss framework to
learn representations from aligned video sequences of the same scene, taken by
different video cameras. Closely related to self-supervised learning is the idea of
multi-view learning, which is a general term involving many different approaches
such as co-training [8], multi-kernel learning [12] and metric learning [6,87]; for
comprehensive surveys please see [30,44]. Nearly all existing works have dealt
with one or two views such as video or image/sound. However, in many situations,
many more views are available to provide training signals for any representation.

The objective functions used to train deep learning based representations in
many of the above methods are either reconstruction-based loss functions such
as Euclidean losses in different norms e.g. [33], adversarial loss functions [23]
that learn the loss in addition to the representation, or contrastive losses e.g.
[25,24,35] that take advantage of the co-occurence of multiple views.

Some of the prior works most similar to our own (and inspirational to us)
are Contrastive Predictive Coding (CPC) [56], Deep InfoMax [30], and Instance
Discrimination [79]. These methods, like ours, learn representations by contrasting
between congruent and incongruent representations of a scene. CPC learns from
two views — the past and future — and is applicable to sequential data, either in
space or in time. Deep Infomax [30] considers the two views to be the input to a
neural network and its output. Instance Discrimination learns to match two sub-
crops of the same image. CPC and Deep InfoMax have recently been extended in
[28] and [4] respectively. These methods all share similar mathematical objectives,
but differ in the definition of the views. Our method differs from these works in the
following ways: we extend the objective to the case of more than two views, and we
explore a different set of view definitions, architectures, and application settings.
In addition, we contribute a unique empirical investigation of this paradigm of
representation learning. The idea of contrastive learning has started to spread
over many other tasks in various other domains [73,86,60,76,47,37,74,81].

3 Method

Our goal is to learn representations that capture information shared between
multiple sensory views without human supervision. We start by reviewing pre-
vious predictive learning (or reconstruction-based learning) methods, and then
elaborate on contrastive learning within two views. We show connections to
mutual information maximization and extend it to scenarios including more
than two views. We consider a collection of M views of the data, denoted as
Vi,..., V. For each view V;, we denote v; as a random variable representing
samples following v; ~ P(V;).
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Fig. 2: Predictive Learning vs Contrastive Learning.
Cross-view prediction (Top) learns latent represen-
tations that predict one view from another, with
loss measured in the output space. Common pre-
diction losses, such as the £; and L2 norms, are
unstructured, in the sense that they penalize each
output dimension independently, perhaps leading
to representations that do not capture all the shared
information between the views. In contrastive learn-
ing (Bottom), representations are learnt by con-
trasting congruent and incongruent views, with loss
measured in representation space. The red dotted
outlines show where the loss function is applied.

23

V2

(b) Contrastive learning

3.1 Predictive Learning

Let Vi and V5 represent two views of a dataset. For instance, V3 might be the
luminance of a particular image and V5 the chrominance. We define the predictive
learning setup as a deep nonlinear transformation from vy to vo through latent
variables z, as shown in Fig. 2. Formally, z = f(v1) and vy = ¢(z), where f
and g represent the encoder and decoder respectively and vs is the prediction
of vy given v;. The parameters of the encoder and decoder models are then
trained using an objective function that tries to bring v “close to” vy. Simple
examples of such an objective include the £ or £ loss functions. Note that these
objectives assume independence between each pixel or element of vs given vy,
i.e., p(va|vy) = II;p(ve;|u1 ), thereby reducing their ability to model correlations
or complex structure. The predictive approach has been extensively used in
representation learning, for example, colorization [84,85] and predicting sound
from vision [57].

3.2 Contrastive Learning with Two Views

The idea behind contrastive learning is to learn an embedding that separates
(contrasts) samples from two different distributions. Given a dataset of V; and
Va that consists of a collection of samples {vi,vi}Y | we consider contrasting
congruent and incongruent pairs, i.e. samples from the joint distribution z ~
p(v1,v2) or & = {v}, v4}, which we call positives, versus samples from the product
of marginals, y ~ p(v1)p(v2) or y = {v, v}, which we call negatives.

We learn a “critic” (a discriminating function) hg(-) which is trained to
achieve a high value for positive pairs and low for negative pairs. Similar to recent
setups for contrastive learning [56,24,50], we train this function to correctly select
a single positive sample x out of a set S = {x,y1,y2,...,yx} that contains k
negative samples:

he(x)
ho(@) + 5 ho(y:)

(1)

Econt?“ast = _Ig IOg
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To construct S, we simply fix one view and enumerate positives and negatives
from the other view, allowing us to rewrite the objective as:

h 17 1
E‘c/;'r’L‘t/iast = E b1 0g k+01({vl vf})j (2)
{vivd,vs Y Zj:l ho({vi,va})

where k is the number of negative samples vg for a given sample v;. In practice, k
can be extremely large (e.g., 1.2 million in ImageNet), and so directly minimizing
Eq. 2 is infeasible. In Section 3.4, we show two approximations that allow for
tractable computation.

Implementing the critic We implement the critic hg(-) as a neural network. To
extract compact latent representations of vy and v, we employ two encoders
fo,(+) and fg,(-) with parameters 6; and s respectively. The latent representions
are extracted as z1 = fp, (v1), 22 = fo,(v2). We compute their cosine similarity
as score and adjust its dynamic range by a hyper-parameter 7:

f&l(vl)'fOQ('UQ) . 1
[ for (o)l - [ foo (02)|| - 7
Loss £Z;;l‘{iast in Eq. 2 treats view V; as anchor and enumerates over V.
: V2,1
Symmetrically, we can get £.2) 7 qst
two-view loss:

ho({v1,v2}) = exp(

3)

by anchoring at V5. We add them up as our

LA Vo) = L + L0 (1)

contrast contrast

After the contrastive learning phase, we use the representation zi, 2o, or
the concatenation of both, [z1, 29|, depending on our paradigm. This process is
visualized in Fig. 1.

Connecting to mutual information The optimal critic hj is proportional to the
density ratio between the joint distribution p(z1, z2) and the product of marginals
p(z1)p(22) (proof provided in supplementary material):

p(z1,22)  p(z1]22)
hy({v1,v2}) o x (5)
o p(z1)p(22) — p(21)
This quantity is the pointwise mutual information, and its expectation, in Eq.
2, yields an estimator related to mutual information. A formal proof is given
by [56,61], which we recapitulate in supplement, showing that:

I(zi; Zj) > log(k) — Leontrast (6)

where, as above, k is the number of negative pairs in sample set S. Hence
minimizing the objective £ maximizes the lower bound on the mutual information
I(z;; zj), which is bounded above by I(v;;v,) by the data processing inequality.
The dependency on k also suggests that using more negative samples can lead to
an improved representation; we show that this is indeed the case (see supplement).
We note that recent work [46] shows that the bound in Eq. 6 can be very weak;
and finding better estimators of mutual information is an important open problem.
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Fig. 3: Graphical models and information

diagrams [1] associated with the core view

@) (v5) @) (%) and full graph paradigms, for the case of

v 4 views, which gives a total of 6 learning

" objectives. The numbers within the regions

show how much “weight” the total loss

places on each partition of information (i.e.

how many of the 6 objectives that partition

contributes to). A region with no number

corresponds to 0 weight. For example, in

the full graph case, the mutual information

_ between all 4 views is considered in all 6

() Core View (b) Full Graph objectives, and hence is marked with the
number 6.

3.3 Contrastive Learning with More than Two Views

We present more general formulations of Eq. 2 that can handle any number of
views. We call them the “core view” and “full graph” paradigms, which offer
different tradeoffs between efficiency and effectiveness. These formulations are
visualized in Fig. 3.

Suppose we have a collection of M views Vi,...,Vas. The “core view” for-
mulation sets apart one view that we want to optimize over, say V7, and builds
pair-wise representations between V; and each other view V}, j > 1, by optimizing
the sum of a set of pair-wise objectives:

M
Lo = Zz:(vhvj) (7)

A second, more general formulation is the “full grap” where we consider all pairs
(1,7),1 # j, and build (g) relationships in all. By involving all pairs, the objective
function that we optimize is:

Lrp= Y LViV) (8)

1<i<j<M

Both these formulations have the effect that information is prioritized in propor-
tion to the number of views that share that information. This can be seen in the
information diagrams visualized in Fig. 3. The number in each partition of the
diagram indicates how many of the pairwise objectives, £(V;, V;), that partition
contributes to. Under both the core view and full graph objectives, a factor, like
“presence of dog”, that is common to all views will be preferred over a factor that
affects fewer views, such as “depth sensor noise”.

The computational cost of the bivariate score function in the full graph
formulation is combinatorial in the number of views. However, it is clear from
Fig. 3 that this enables the full graph formulation to capture more information
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between different views, which may prove useful for downstream tasks. For
example, the mutual information between V5 and V3 or V5 and Vjy is completely
ignored in the core view paradigm (as shown by a 0 count in the information
diagram). Another benefit of the full graph formulation is that it can handle
missing information (e.g. missing views) in a natural manner.

3.4 Implementing the Contrastive Loss

Better representations using Elﬁ,’l‘;ﬁast in Eqn. 2 are learnt by using many negative

samples. In the extreme case, we include every data sample in the denominator
for a given dataset. However, computing the full softmax loss is prohibitively
expensive for large dataset such as ImageNet. One way to approximate this full
softmax distribution, as well as alleviate the computational load, is to use Noise-
Contrastive Estimation [24,79] (see supplement). Another solution, which we
also adopt here, is to randomly sample m negatives and do a simple (m+1)-way
softmax classification. This strategy is also used in concurrent work [4,28] and
dates back to [71].

Memory bank. Following [79], we maintain a memory bank to store latent
features for each training sample. Therefore, we can efficiently retrieve m negative
samples from the memory buffer to pair with each positive sample without
recomputing their features. The memory bank is dynamically updated with
features computed on the fly. The benefit of a memory bank is to allow contrasting
against more negative pairs, at the cost of slightly stale features.

4 Experiments

We extensively evaluate Contrastive Multiview Coding (CMC) on a number of
datasets and tasks. We evaluate on two established image representation learning
benchmarks: ImageNet [15] and STL-10 [11] (see supplement). We further validate
our framework on video representation learning tasks, where we use image and
optical flow modalities, as the two views that are jointly learned. The last set of
experiments extends our CMC framework to more than two views and provides
empirical evidence of its effectiveness.

4.1 Benchmarking CMC on ImageNet

Following [84], we evaluate task generalization of the learned representation by
training 1000-way linear classifiers on top of different layers. This is a standard
benchmark that has been adopted by many papers in the literature.

Setup. Given a dataset of RGB images, we convert them to the Lab image
color space, and split each image into L and ab channels, as originally proposed
in SplitBrain autoencoders [85]. During contrastive learning, L and ab from
the same image are treated as the positive pair, and ab channels from other
randomly selected images are treated as a negative pair (for a given L). Each split
represents a view of the orginal image and is passed through a separate encoder.
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Setting ‘ ResNet-50 x0.5 ResNet-50 x1  ResNet-50 x2
{L,ab} 57.5 / 80.3 64.0 / 85.5 68.3 / 88.2
{Y,DbDr} 58.4 / 81.2 64.8 / 86.1 69.0 / 88.9

{Y,DbDr} + RA | 60.0 / 82.3 66.2 / 87.0 70.6 / 89.7
Table 1: Top-1/5 Single crop classification accuracy (%) on ImageNet with a supervised
logistic regression classifier. We evaluate CMC using ResNet50 with different width as
encoder for each of the two views (e.g., L and ab). “RA” stands for RandAugment [13].

As in SplitBrain, we design these two encoders by evenly splitting a given deep
network, such as AlexNet [42], into sub-networks across the channel dimension.
By concatenating representations layer-wise from these two encoders, we achieve
the final representation of an input image. As proposed by previous literature
[56,30,3,87,79], the quality of such a representation is evaluated by freezing the
weights of encoder and training linear classifier on top of each layer.
Implementation. Unless otherwise specified, we use PyTorch [58] default data
augmentation. Following [79], we set the temperature 7 as 0.07 and use a mo-
mentum 0.5 for memory update. We use 16384 negatives. The supplementary
material provides more details on our hyperparameter settings.

CMC with ResNets. We verify the effectiveness of CMC with larger networks
such as ResNets [27]. We experiment on learning from luminance and chrominance
views in two colorspaces, {L,ab} and {Y, DbDr} (see Section 4.6 for validation
of this choice), and we vary the width of the ResNet encoder for each view. We
use the feature after the global pooling layer to train the linear classifier, and the
results are shown in Table 1. {L, ab} achieves 68.3% top-1 single crop accuracy
with ResNet50x2 for each view, and switching to {Y, DbDr} further brings
about 0.7% improvement. On top of it, strengthening data augmentation with
RandAugment [13] yields better or comparable results to other state-of-the-art
methods [10,79,87,26,48,18,28 ]

CMC with AlexNet. As many previous unsupervised methods are evaluated
with AlexNet [42] on ImageNet [15,41,16,84,53,17,85,54,21,10,83], we also include
the the results of CMC using this network in supplementary material.

4.2 CMC on videos

We apply CMC on videos by drawing insight from the two-streams hypothesis
[66,22], which posits that human visual cortex consists of two distinet processing
streams: the ventral stream, which performs object recognition, and the dorsal
stream, which processes motion. In our formulation, given an image i; that is a
frame centered at time ¢, the ventral stream associates it with a neighbouring
frame 4;4, while the dorsal stream connects it to optical flow f; centered at ¢.
Therefore, we extract i;, ig1r and f; from two modalities as three views of a
video; for optical flow we use the TV-L1 algorithm [82]. Two separate contrastive
learning objectives are built within the ventral stream (i, i¢1%) and within the
dorsal stream (i, fi). For the ventral stream, the negative sample for i; is chosen
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Method |# of Views UCF-101 HMDB-51

Random - 48.2 19.5

ImageNet - 67.7 28.0 Table 2: Test accuracy (%)
VGAN* [77 2 52.1 - on UCF-101 which evaluates
LT-Motion* [45] 2 53.0 - task transferability and on
TempCoh [51] 1 45.4 15.9 HMDB-51 which evaluates
Shuffle and Learn [49] 1 50.2 18.1 task and dataset transferabil-
Geometry [2[,)] 2 55.1 23.3 ity. Most methods either use
OPN [43] 1 56.3 22.1 single RGB view or addi-
ST Order [9] 1 58.6 25.0 tional optical flow view, while
Cross and Learn [65] 2 58.7 27.2 VGAN explores sound as the
CMC (V) 2 55.3 _ second view. * indicates dif-
CMC (D) 2 57.1 - ferent network architecture.

CMC (V+D) 3 59.1 26.7

as a random frame from another randomly chosen video; for the dorsal stream,
the negative sample for 7; is chosen as the flow corresponding to a random frame
in another randomly chosen video.

Pre-training. We train CMC on UCF101 [72] and use two CaffeNets [42] for
extracting features from images and optical flows, respectively. In our implemen-
tation, f; represents 10 continuous flow frames centered at t. We use batch size
of 128 and contrast each positive pair with 127 negative pairs.

Action recognition. We apply the learnt representation to the task of action
recognition. The spatial network from [68] is a well-established paradigm for
evaluating pre-trained RGB network on action recognition task. We follow the
same spirit and evaluate the transferability of our RGB CaffeNet on UCF101
and HMDB51 datasets. We initialize the action recognition CaffeNet up to convh
using the weights from the pre-trained RGB CaffeNet. The averaged accuracy
over three splits is present in Table 2. Unifying both ventral and dorsal streams
during pre-training produces higher accuracy for downstream recognition than
using only single stream. Increasing the number of views of the data from 2 to 3
(using both streams instead of one) provides a boost for UCF-101.

4.3 Does representation quality improve as number of views
increases?

We further extend our CMC learning framework to multiview scenarios. We
experiment on the NYU-Depth-V2 [52] dataset which consists of 1449 labeled
images. We focus on a deeper understanding of the behavior and effectiveness
of CMC. The views we consider are: luminance (L channel), chrominance (ab
channel), depth, surface normal [19], and semantic labels.

Setup. To extract features from each view, we use a neural network with 5
convolutional layers, and 2 fully connected layers. As the size of the dataset
is relatively small, we adopt the sub-patch based contrastive objective (see
supplement) to increase the number of negative pairs. Patches with a size of
128 x 128 are randomly cropped from the original images for contrastive learning
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Fig.4: We show the Intersection

36{ T i e T over Union (IoU) (left) and Pixel

- ‘__/ ;556 /// Accuracy (rlght) for the NYU-

32 . 554 e Depth-V2 dataset, as CMC is
9 — — - . . .

Ezg . Supervised §52 .. Supervised trained with increasingly more

e . Random 250 Random views from 1 to 4. As more views

2 EPR are added, both these metrics

2 . % steadily increase. The views are (in

7 3 3 7 7 3 3 ; order of inclusion): L, ab, depth

Number of Views Number of Views and surface normals.
Pixel Table 3: Results on the task of predicting

Accuracy (%) mloU (% )semantic .labfals from L.channel represen-
tation which is learnt using the patch-based

Random ] 45.5 214 ontrastive loss and all 4 views. We com-
CMC (core-view) 57.1 34.1 pare CMC with Random and Supervised
CMC (.full-graph) 57.0 34.4 baselines, which serve as lower and upper
Supervised 57.8 35.9

bounds respectively. Th core-view paradigm
refers to Fig. 3(a), and full-view Fig. 3(b).

(from images of size 480 x 640). For downstream tasks, we discard the fully
connected layers and evaluate using the convolutional layers as a representation.

To measure the quality of the learned representation, we consider the task of
predicting semantic labels from the representation of L. We follow the core view
paradigm and use L as the core view, thus learning a set of representations by
contrasting different views with L. A UNet style architecture [62] is utilized to
perform the segmentation task. Contrastive training is performed on the above
architecture that is equivalent of the UNet’s encoder. After contrastive training
is completed, we initialize the encoder weights of the UNet from the L encoder
(which are equivalent architectures) and keep them frozen. Only the decoder is
trained during this finetuning stage.

Since we use the patch-based contrastive loss, in the 1 view setting case,
CMC coincides with DIM [30]. The 2-4 view cases contrast L with ab, and then
sequentially add depth and surface normals. The semantic labeling results are
measured by mean IoU over all classes and pixel accuracy, shown in Fig. 4. We
see that the performance steadily improves as new views are added. We have
tested different orders of adding the views, and they all follow a similar pattern.

We also compare CMC with two baselines. First, we randomly initialize and
freeze the encoder, and we call this the Random baseline; it serves as a lower
bound on the quality since the representation is just a random projection. Rather
than freezing the randomly initialized encoder, we could train it jointly with
the decoder. This end-to-end Supervised baseline serves as an upper bound. The
results are presented in Table 3, which shows our CMC produces high quality
feature maps even though it’s unaware of the downstream task.
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[Metric (%)l L ab Depth Normal Table 4: Performance on the task of

mloU 21.4 15.6 30.1 29.5 using single view v (L, ab, depth or sur-
Rand. pix. acc. |45.5 37.7 51.1 50.5 face normal) to predict the semantic
mloU 34.4 26.1 39.2 37.8 labels. Our CMC framework improves
CMC pix. acc. |57.0 49.6 59.4 57.8 the quality of unsupervised representa-
mloU |35.9 29.6 41.0 41.5 tions towards that of supervised ones,
Sup. pix. acc. |57.8 52.6 59.1 59.6 for all of views investigated. This uses

the full-graph paradigm Fig. 3(b).

4.4 Is CMC improving all views?

A desirable unsupervised representation learning algorithm operating on multiple
views or modalities should improve the quality of representations for all views.
We therefore investigate our CMC framwork beyond L channel. To treat all views
fairly, we train these encoders following the full graph paradigm, where each view
is contrasted with all other views.

We evaluate the representation of each view v by predicting the semantic
labels from only the representation of v, where v is L, ab, depth or surface normals.
This uses the full-graph paradigm. As in the previous section, we compare CMC
with Random and Supervised baselines. As shown in Table 4, the performance of
the representations learned by CMC using full-graph significantly outperforms
that of randomly projected representations, and approaches the performance of
the fully supervised representations. Furthermore, the full-graph representation
provides a good representation learnt for all views, showing the importance of
capturing different types of mutual information across views.

4.5 Predictive Learning vs. Contrastive Learning

While experiments in section 4.1 show that contrastive learning outperforms
predictive learning [85] in the context of Lab color space, it’s unclear whether
such an advantage is due to the natural inductive bias of the task itself. To
further understand this, we go beyond chrominance (ab), and try to answer this
question when geometry or semantic labels are present.

We consider three view pairs on the NYU-Depth dataset: (1) L and depth, (2)
L and surface normals, and (3) L and segmentation map. For each of them, we
train two identical encoders for L, one using contrastive learning and the other
with predictive learning. We then evaluate the representation quality by training
a linear classifier on top of these encoders on the STL-10 dataset.

The comparison results are shown in Table 5, which shows that contrastive
learning consistently outperforms predictive learning in this scenario where both
the task and the dataset are unknown. We also include “random” and “supervised”
baselines similar to that in previous sections. Though in the unsupervised stage
we only use 1.3K images from a dataset much different from the target dataset
STL-10, the object recognition accuracy is close to the supervised method, which
uses an end-to-end deep network directly trained on STL-10.
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‘Accuracy on STL-10 (%)

Views Predictive Contrastive Table 5: We compare predictive learn-
L, Depth 55.5 58.3 ing with contrastive learning by eval-
L, Normal 58.4 60.1 uating the learned encoder on un-
L, Seg. Map| 57.7 59.2 seen dataset and task. The contrastive
Random 25.9 learning framework consistently out-
Supervised 65.1 performs predictive learning.

Given two views V7 and V5 of the data, the predictive learning approach
approximately models p(vz|vy). Furthermore, losses used typically for predictive
learning, such as pixel-wise reconstruction losses usually impose an independence
assumption on the modeling: p(va|v1) =~ II;p(ve;|v1). On the other hand, the
contrastive learning approach by construction does not assume conditional inde-
pendence across dimensions of vy. In addition, the use of random jittering and
cropping between views allows the contrastive learning approach to benefit from
spatial co-occurrence (contrasting in space) in addition to contrasting across
views. We conjecture that these are two reasons for the superior performance of
contrastive learning approaches over predictive learning.

4.6 How does mutual information affect representation quality?

Given a fixed set of views, CMC aims to maximize the mutual information between
representations of these views. We have found that maximizing information in
this way indeed results in strong representations, but it would be incorrect to
infer that information maximization (infomax) is the key to good representation
learning. In fact, this paper argues for precisely the opposite idea: that cross-view
representation learning is effective because it results in a kind of information
minimization, discarding nuisance factors that are not shared between the views.

The resolution to this apparent dilemma is that we want to maximize the
“good” information — the signal — in our representations, while minimizing the
“bad” information — the noise. The idea behind CMC is that this can be achieved
by doing infomax learning on two views that share signal but have independent
noise. This suggests a “Goldilocks principle” [38]: a good collection of views is
one that shares some information but not too much. Here we test this hypothesis
on two domains: learning representations on images with different colorspaces
forming the two views; and learning representations on pairs of patches extracted
from an image, separated by varying spatial distance.

In patch experiments we randomly crop two RGB patches of size 64x64 from
the same image, and use these patches as the two views. Their relative position is
fixed. Namely, the two patches always starts at position (x,y) and (z + d,y + d)
with (z,y) being randomly sampled. While varying the distance d, we start from
64 to avoid overlapping. There is a possible bias that with an image of relatively
small size (e.g., 512x512), a large d (e.g., 384) will always push these two patches
around boundary. To minimize this bias, we use high resolution images (e.g. 2k)
from DIV2K [2] dataset.
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Fig. 5: How does mutual information between views relate to representation quality?
(Left) Classification accuracy against estimated MI between channels of different color
spaces; (Right) Classification accuracy vs estimated MI between patches at different
distances in pixels. MI estimated using MINE [5].

Fig. 5 shows the results of these experiments. The left plot shows the result
of learning representations on different colorspaces (splitting each colorspace into
two views, such as (L, ab), (R, GB) etc). We then use the MINE estimator [5] to
estimate the mutual information between the views. We measure representation
quality by training a linear classifier on the learned representations on the STL-10
dataset [11]. The plots clearly show that using colorspaces with minimal mutual
information give the best downstream accuracy (For the outlier HSV in this
plot, we conjecture the representation quality is harmed by the periodicity of
H. Note that the H in HED is not periodic.). On the other hand, the story is
more nuanced for representations learned between patches at different offsets
from each other (Fig. 5, right). Here we see that views with too little or too
much MI perform worse; a sweet spot in the middle exists which gives the best
representation. That there exists such a sweet spot should be expected. If two
views share no information, then, in principle, there is no incentive for CMC
to learn anything. If two views share all their information, no nuisances are
discarded and we arrive back at something akin to an autoencoder or generative
model, that simply tries to represent all the bits in the multiview data.

These experiments demonstrate that the relationship between mutual infor-
mation and representation quality is meaningful but not direct. Selecting optimal
views, which just share relevant signal, has been further discussed in a follow-up
work [75] of CMC, and may be a fruitful direction for future research.

5 Conclusion

We have presented a contrastive learning framework which enables the learning of
unsupervised representations from multiple views or modalities of a dataset. The
principle of maximization of mutual information enables the learning of powerful
representations. A number of empirical results show that our framework performs
well compared to predictive learning and scales with the number of views.
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