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Abstract. Sufficient knowledge extraction from the teacher network
plays a critical role in the knowledge distillation task to improve the
performance of the student network. Existing methods mainly focus on
the consistency of instance-level features and their relationships, but ne-
glect the local features and their correlation, which also contain many
details and discriminative patterns. In this paper, we propose the local
correlation exploration framework for knowledge distillation. It models
three kinds of local knowledge, including intra-instance local relation-
ship, inter-instance relationship on the same local position, and the inter-
instance relationship across different local positions. Moreover, to make
the student focus on those informative local regions of the teacher’s fea-
ture maps, we propose a novel class-aware attention module to highlight
the class-relevant regions and remove the confusing class-irrelevant re-
gions, which makes the local correlation knowledge more accurate and
valuable. We conduct extensive experiments and ablation studies on chal-
lenging datasets, including CIFAR100 and ImageNet, to show our supe-
riority over the state-of-the-art methods.

Keywords: Knowledge Distillation, Local Correlation Consistency, Class-
Aware Attention

1 Introduction

Convolutional Neural Networks have achieved great successes in the vision com-
munity, significantly facilitating the development of many practical tasks, such as
image classification [14, 23, 7] and face recognition [24, 19, 28]. Currently, many
complicated neural networks with deeper and wider architectures have been pro-
posed to pursuit high performance [25, 34]. However, these networks cost plenty
of parameters and computations, which limits their deployments on computa-
tionally limited platforms, such as mobile devices, embedded systems. Towards
this issue, model compression and acceleration become popular research topics
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Fig. 1. Comparison between traditional global correlation methods and our proposed
method. Instead of directly using the global feature maps to construct the relationship
matrix, we first select the class-relevant regions by a class-aware attention module and
then construct the local correlation matrix based on the selected local parts to guide
the learning of the student network. Feature distributions comparison in the rightmost
figure shows that the proposed method can help the student model to better mimic
the teacher model than the global correlation method

recently. Typical methods include network pruning [6, 17, 4], compact architec-
ture design [9, 40], network quantization [5, 31, 11], knowledge distillation [8, 41,
35, 36, 1, 26], and so on. Among them, knowledge distillation has been validated
as a very effective approach to improving the performance of a light-weight net-
work, i.e. student, with the guidance of a pre-trained large deep network, i.e.
teacher. It encourages the student to learn the teacher’s knowledge by applying
some consistency based regularization between teacher and student.

The essential point of knowledge distillation is to extract sufficient knowl-
edge from a teacher network to guide a student network. Conventional methods
mostly focused on instance-level feature learning, which aims to mimic output
activations [8, 41, 2, 1] or transfer the correlation in feature space [16, 18, 27, 20].
The instance-level based methods have achieved good performance, but they
still suffer from the following limitations. Firstly, it is hard for a student to thor-
oughly understand the transferred knowledge from the teacher only based on
global supervision. We observe that the local features are also important for the
network to understand and recognize an object. As can be seen in Figure 1, the
teacher network can make the right predictions for different categories of objects
with similar appearance based on those distinguishing local regions, such as the
head, the streaks of the body, or the foot appearance, but the student network
may fail. We consider that the teacher network with more learn-able parame-
ters can generate more discriminative local features, while the student is hard
to achieve that with its limited capacity. Therefore, learning local knowledge
from the teacher should be considered as an important factor to improve the
discriminative ability of the student network. Secondly, the images may contain
regions that are irrelevant to the category information, e.g. background. Directly
making the student mimic the global features or their relationships without se-
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lection is not an optimal way. Besides, each pixel of the class-aware region also
has different contributions to the final classification. This property requires the
knowledge distillation methods to transfer knowledge selectively according to its
importance.

To resolve the above limitations, a novel local correlation exploration frame-
work is proposed for knowledge distillation, which models sufficient relationships
of those class-aware local regions. For the first limitation, we greatly enrich the
family of network knowledge by proposing three different kinds of local relation-
ships: (1) the local intra-instance relationship across different positions; (2) the
local inter-instance relationship in the same position; (3) the local inter-instance
relationship across different positions. Based on the above local relationships,
we represent the intermediate feature maps using a more concise and struc-
tural form. Further, we hope the correlations computed by the teacher network
could be well preserved by the student network. Therefore, we define the consis-
tency regularization to minimize their difference between the teacher and student
models. For the second limitation, to transfer the knowledge of those valuable
class-aware regions and reduce the influence of invalid class-irrelevant informa-
tion, we propose a novel class-aware attention module to generate the attention
maps before the construction of the local correlation matrices.

We conduct extensive experiments on typical datasets to validate the effec-
tiveness of the proposed framework as well as the local relationships. As shown
in the rightmost figure of Figure 1, we allocated a set of feature maps from the
middle layer of a set of models and draw the cos(θ) similarity distributions be-
tween the local patches of those feature maps. The red one is the distribution of
the teacher. The yellow one is from the student trained from scratch. The blue
one is from the student supervised by global correlation. And the green one is
from the student supervised by our local correlation. The higher the coincidence
between the histograms of the student and teacher, the more knowledge the stu-
dent learns from the teacher. This graph shows that the student supervised by
our local correlation achieves higher distribution coincidence with the teacher as
well as higher accuracy than the student supervised by global correlation.

Our main contributions are summarized as follows:

1) We make the first attempt to explore local relationships in knowledge dis-
tillation and propose a novel local correlation consistency based framework.
Instead of the traditional global feature based relationship, we mainly fo-
cus on the local correlation knowledge, which contains more details and
discriminative patterns. By thoroughly investigating three kinds of local re-
lationships, the student network in our framework can sufficiently preserve
the important knowledge of the large teacher network. nt

2) To make the local correlation knowledge more accurate and valuable, we
propose a novel class-aware attention module to generate attention masks
for valuable class-relevant regions, which can reduce the influence of invalid
class-irreleva regions, highlight the contribution of important pixels, and
improve the performance as well.
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3) Extensive experiments and ablation studies conducted on CIFAR100 [13] and
ImageNet [3] show the superiority of the proposed method and effectiveness
of each proposed module.

2 Related Works

The concept of knowledge distillation (KD) with neural networks is first pre-
sented by Hinton et al. in 2015 [8], where they come up with the teacher-student
framework. Since then, many works have been proposed to improve its applica-
bility and generalization ability. According to the types of knowledge to trans-
fer, existing KD methods can be divided into three categories, including the
feature representation learning based methods, attention based methods, and
graph learning based methods. We briefly introduce them in this section.

Feature learning based methods mainly aim to train the student to mimic
output activations of individual data examples represented by the teacher. Zhang
et al. [41] learn a projection matrix to project the teacher-level knowledge and
its visual representations from an intermediate layer of teacher network to an in-
termediate layer of student network. Yim et al. [33] construct the flow of solution
procedure matrix across two different layers and minimize the difference between
that matrix of teacher and student. Aguilar et al. [1] adopt both the activations
and internal representations of the teacher network to guide the learning of the
student network and achieve good performance on text classification. Chung et
al. [2] try to capture the consistent feature map of intermediate layers by the
adversarial learning. Similarly, Shu et al. [22] incorporate the intermediate super-
vision under the adversarial training framework. To better learn discriminative
feature representation, Tian et al. [26] come up with the contrastive learning
framework. Lan et al. [15] construct a multi-branch network, whose ensemble
predictions are taken as supervision for the training of every single branch.

Attention mechanisms have been widely used in computer vision [29, 32, 10]
and have been successfully applied in the field of KD [38, 39, 12]. Zagoruyko et
al. [38] first show that attention transfer can significantly improve the perfor-
mance of convolutional neural networks. Zhang et al. [39] present the self distil-
lation framework to distill knowledge within the network itself. Kim et al. [12]
make use of the output errors for self-attention based KD models.

Correlation learning [30] receives much attention for KD recently. Instead of
directly teach the student to fit the instance features of the teacher, it transfers
the correlation among training samples from the teacher network to the stu-
dent network. Liu et al. [16] construct the instance relationship matrix, which
takes the instance features, instance relationships, and feature space transforma-
tion into consideration to transfer sufficient knowledge. Park et al. [18] propose
distance-wise and angle-wise distillation losses to penalize structural differences
in relations. Both Tung et al. [27] and Peng et al. [20] hope to preserve the
pair-wise similarity based on the correlation consistency.

Our method focuses on correlation learning and introduces a class-aware
attention module. Compared with existing work, our differences mainly lie in
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two aspects. First, we are the first to explore local correlation during knowledge
transfer, while previous methods mainly use the global features to compute the
correlations among instances. Second, our class-aware attention module learns
the soft attention mask under the supervision of the ground-truth label, which
can strengthen the class-aware regions and weaken the class-irrelevant regions
during knowledge transfer. To our knowledge, the above attention mechanism is
new in the knowledge distillation area.

3 Methods

In this section, we first summarize the basic framework of traditional global em-
bedding based feature learning and correlation learning KD methods. Then we
describe our local relationship based KD framework, and introduce the class-
aware attention module to filter the semantic-irrelevant knowledge from the fea-
ture maps before the correlation construction. Finally, we come up with the
overall loss function to supervise the training of the student network.

3.1 Problem Formulation

Given a teacher model T , a student model S and N training samples X =
{xi}Ni=1, we denote fT (xi) and fS(xi) as the outputs of teacher and student net-
work for sample xi, which can be the final outputs after softmax or intermediate
feature maps from the middle layers. In the preliminary stage, the conventional
KD methods mainly focus on transferring individual outputs from teacher to
student. For example, the milestone of KD proposed by Hinton et al. [8] makes
the student mimic the teacher’s behavior by minimizing the Kullback-Leibler
divergence between predictions of student and teacher:

LKD =
1

n

∑
xi∈X

KL(softmax(
fT (xi)

τ
), softmax(

fS(xi)

τ
)), (1)

where τ is a relaxation hyperparameter referred to as temperature in [8]. Re-
cently, many methods have started to take the relationships among instances
as a new kind of knowledge for transfer. Based on the outputs of the network,
they construct the instance correlations and minimizes the following objective
function:

LGKD =
1

n2
D(G(fT (x1), fT (x2), ...fT (xn)), G(fS(x1), fS(x2), ...fS(xn))),

(2)

where D(·) is a loss function that penalizes the difference between correlations
of teacher and student, and G(·) is the function to construct the similarity corre-
lation, which in this paper is represented by a correlation matrix. Given feature
vectors of n samples, the (i, j) element of similarity correlation G is computed
as follows:

Gij = ϕ(f(xi), f(xj)), G ∈ Rn×n, (3)
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Fig. 2. Overall framework of the proposed method. (a) We supervise the training of
the student network by the local correlation consistency losses. Class-aware attention
module is trained using the teacher’s feature maps to extract those class-specific fore-
ground information before constructing the local correlation matrices of the teacher or
student network. (b) We crop the main region of the attention feature maps based on
the thresholding attention mask and split it into k2 patches to investigate the proposed
three kinds of local relationships

where ϕ can be any function that calculates the similarity between two examples,
such as the cosine similarity [18] and the Gaussian kernel based similarity [20].

The above similarity correlation among instances has been validated as an
effective knowledge for transfer. However, existing methods usually utilize the
global features to construct the relationship correlation and neglect the dis-
crimination power implied in local image regions. To make full use of the dis-
criminative local information, we propose our local correlation based knowledge
distillation framework.

3.2 Local Correlation Construction

The overall architecture of the proposed method is shown in Figure 2(a). Specif-
ically, we divide both the teacher and the student networks into several stages
according to the resolution of the feature maps. For each stage, based on its corre-
sponding feature maps, we investigate three different kinds of local relationships
and construct the similarity matrix, after which we minimize the difference of
local similarities between the teacher and student models. Before we construct
the local correlation, we propose a novel class-aware attention module to extract
the semantic foreground area of the image, which will be introduced in the next
subsection.
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As local information contains more details, we hope to take advantage of this
information to learn discriminative correlations and improve the performance of
the student model. For the local information, it is a simple way to construct it
by dividing the original image or intermediate feature maps into several patches,
based on which we can further investigate various correlations. In Figure 2(b),
we present the overall procedure of local correlation construction. It models the
distilled knowledge of one network stage in a more detailed way, which mainly
contains three different kinds of relationships:

(1) Local correlation based intra-instance relationship across different local po-
sitions: it corresponds to the relationship between different spatial regions
in one image, which can be regarded as a more relaxed way to represent the
intermediate features of one image.

(2) Local correlation based inter-instance relationship on the same position: it
corresponds to the relationship between regions at the same position among
images in one mini-batch, which is a more strict way than the global corre-
lation method to achieve the correlation consistency.

(3) Local correlation based inter-instance relationship across different positions:
it corresponds to the relationship between regions at different positions
among images in one mini-batch, which contains more abundant knowledge
compared with the second relationship and explores more knowledge between
local regions without the limitation of position.

For each mini-batch with n images, we compute the correlation matrix of
the local regions based on the output feature maps of the teacher and student
network. We denote the activation maps produced by the teacher network at l-th
stage as fTl ∈ Rn×c×h×w, where c, h, w are the size of the channel, height and
width, respectively. The corresponding activation maps of the student network
can be represented by fSl′ ∈ Rn×c′×h′×w′

. Note that c does not necessarily have
to equal c′ in our method since our correlation-based knowledge transfer method
only needs to compute the correlation among features of the same model. For
the feature maps fTl or fSl′ of each stage, we split it into k × k patches for each
sample and get nk2 patches for the whole mini-batch, where each patch has the
shape of c × h

k ×
w
k or c′ × h′

k ×
w′

k (to simplify, here we suppose that h, h′, w
and w′ can be fully divided by k). For the j-th patch from image xi, we denote
fTl (xi,j) and fSl′ (xi,j) as the corresponding local patch features of the teacher
and student networks, respectively. After reshaping the features of each patch
to a vector, we compute the local correlations we introduced before.

For the first kind of local relationship, it models the intra-instance relation-
ship across different local positions. For the l-th stage, we denote Fl,intra(xi) =
{fl(xi,1), ..., fl(xi,k2)} as the collection of k2 local features for sample xi. Then
we can define the corresponding loss function in a mini-batch with n samples as:

Lintra =

n∑
i=1

L∑
l=1

‖G(FT
l,intra(xi))−G(FS

l′,intra(xi))‖2F , (4)

where G(·) is the function defined in Eq. (3) to construct the similarity matrix,
and L is the total number of stages. The permutations of k2 local features in



8 X. Li et al.

FT
l,intra(xi) and FS

l,intra(xi) are the same. We adopt the Frobenius norm ‖.‖F to
penalize the distance between local correlation matrices computed by student
and teacher. For the similarity matrix construction, we use cosine similarity to
compute the correlation between the embeddings of two local patches to penalize
angular differences.

The second one is the inter-instance relationship on the same local position.
Similarly, we denote Fl,inter−s(i) = {fl(x1,i), ..., fl(xn,i)} as the collection of local
features of the l-th stage, corresponding to the i-th local patch (i ∈ [1, 2, · · · , k2])
for n samples of the mini-batch. Then we can define the corresponding loss
function as:

Linter−s =

k2∑
i=1

L∑
l=1

‖G(FT
l,inter−s(i))−G(FS

l′,inter−s(i))‖2F . (5)

Similarly, the loss function for the third relationship that explores inter-
instance relationship across different positions can be defined by:

Linter−d =

k2∑
p,q=1,p6=q

n∑
i,j=1,i6=j

L∑
l=1

(
ϕ
(
fTl (xi,p), fTl (xj,q)

)
− ϕ

(
fSl′ (xi,p), fSl′ (xj,q)

))2
,

(6)

where ϕ(·) is the function to compute cosine similarity between two feature
vectors.

Based on the above loss functions for the above three local relationships, we
combine them to get the following overall loss function:

LLKD = Lintra + Linter−s + Linter−d. (7)

The local correlation based relationships we explored mainly have two ad-
vantages. On the one hand, the local features contain more detailed information
about this category, which can introduce some discriminative knowledge to fa-
cilitate the distillation. For example, many classes in ImageNet belong to a large
category. The difference only lies in small local regions, while other regions are
very similar. Our local feature based method can well capture and transfer these
local patterns, while previous global feature based methods may ignore it. On
the other hand, our method investigates various kinds of correlations, which
are much more sufficient than previous methods. While the key challenge of
knowledge distillation lies in extracting moderate and sufficient knowledge for
guidance [16], our method can better guide the learning of the student network.

3.3 Class-Aware Attention

In the previous subsection, we divide the feature map into several non-overlapped
patches as the local information. However, the original images also contain a part
of unrelated information, which contributes less to the final prediction and may
even have a negative influence on the quality of local patches as well as the local
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correlation. To solve this issue and extract these high related semantic regions,
we introduce a class-aware attention module (CAAT) to filter out the invalid
information.

The module consists of two parts: a mask generator and an auxiliary clas-
sifier. Supervised by the ground-truth label, CAAT can generate the pixel-level
attention mask, which can identify the importance of each pixel and its corre-
lation with the final prediction of the teacher. Given the feature maps of the
teacher model fTl ∈ Rn×c×h×w, the generated spatial masks M ∈ Rn×h×w can
be computed by:

M = G(fTl ), (8)

where G(·) denotes the mask generator network, which is constructed by a stack
of conv-bn-relu blocks followed by the Sigmoid thresholding layer so that each
value in the mask is a continuous value between 0 and 1. M(i, :, :) (i ∈ [1, n])
corresponds to the mask for the feature maps of i-th image in the mini-batch.
Each value in M(i, :, :) reflects the contribution of the corresponding location to
the final prediction of the teacher network. For the same position of different
channels, we assign the same mask information. By repeating the mask M along
the channel dimension, we can make the mask have the same shape as the feature
map fTl and fSl′ . Then we can get the class-aware attention feature map f̃Tl and

f̃Sl′ by the following element-wise product:

f̃Tl = Orepeat(M)⊗ fTl , f̃Sl′ = Orepeat(M)⊗ fSl′ , (9)

where Orepeat(.) denotes the repeat operation.
To guide the training of network G, we further introduce an auxiliary classi-

fier network C, which takes f̃T as input and is supervised by the ground truth
label. This sub-network consists of a sequence of bottleneck blocks and utilizes
a fully-connected layer for final classification. By minimizing the softmax loss,
the auxiliary classifier C forces the generated mask to pay more attention to
informative regions and ignore helpless information like background.

We get the attention feature maps of teacher and student by applying the
class-aware attention mask to the original feature maps to highlight those impor-
tant pixels and weaken those class-irrelevant pixels. Furthermore, we generate a
bounding box of the main part of the feature maps based on the thresholding
attention mask (the value that larger than threshold H will be set to 1. The
opposite will be set to 0). The top-left point and the right-down point of the
bounding box are decided by the boundaries of the thresholding attention mask.
We crop the main part of the attention feature maps based on the generated
bounding box and divide it into several patches like the way we introduced in
the last subsection. Finally, we resize the patches to the same size as the original
patch by bilinear interpolation and calculated the local correlation we introduced
in the last section. In this part, we modify the proposed losses LLKD in Eq. (7)
by replacing the original local features with the cropped masked local features
and then get L̃LKD, which is formulated as follows:

L̃LKD = L̃intra + L̃inter−s + L̃inter−d. (10)
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3.4 The Overall Model and Optimization

By combining the cross-entropy loss LCE supervised by the ground truth labels,
the classic KD loss LKD, and the proposed local correlation based consistency
loss L̃LKD, we come up with the final overall loss function:

L = (1− α)LCE + αLKD + βL̃LKD, (11)

where α, β are hyper-parameters to balance contributions of different terms.
During training, we first optimize network G and C by minimizing the softmax

loss. Then we fix the parameters of mask generator G, and train the student
network by minimizing the overall loss function in Eq. (11).

3.5 Complexity Analysis

We present the computational complexity in training a mini-batch. The com-
putational complexities of Eqs. (4), (5) and (6) for l-th stage of teacher are
O(nk2chw), O(nchw) and O(n2k2chw), respectively. Therefore, the total com-
putational complexity of our method is O(n2k2chw). For comparison, SP [27]
has O(n2chw) complexity and CCKD [20] has O(n2pd) complexity, where p and
d correspond to the p-order Taylor-series and dimension of feature embedding.
In fact, k is very small in our method. For example, we set k to 4 on CIFAR100,
and 3 on ImageNet. In this case, the complexity of our method is comparable
and in the same order with these conventional KD methods. Besides, the com-
plexity of Eq. (4) is much smaller than SP and CCKD. With only Eq. (4) as
the loss function, the accuracy of our method is also better than SP and CCKD,
which will be proved by the ablation study. Therefore, when the computation
resources are limited, you can only use this term as the loss function.

4 Experiments

In this section, we conduct several experiments to demonstrate the effectiveness
of our proposed local graph supervision as well as the class-aware attention mod-
ule. We first compare the results on CIFAR100 [13] and ImageNet [3] with four
knowledge distillation methods, including Hinton’s traditional knowledge distil-
lation (KD) [8], attention transfer (AT) [38], similarity-preserving knowledge dis-
tillation (SP) [27], and correlation congruence knowledge distillation (CC) [20].
Besides, cross-entropy (CE) loss is also chosen as a baseline. Then we perform
ablation studies to evaluate the effect of different modules.

4.1 Evaluation on CIFAR100

The CIFAR100 dataset contains 100 classes. For each class, there are 500 images
in the training set and 100 images in the testing set. Similar to the settings in [20],
we randomly crop 32 × 32 image from zero-padded 40 × 40 image, and apply
random horizontal flipping for data augmentation. SGD is used to optimize the
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Table 1. Comparison of classification accuracy on CIFAR100. The best results of the
student network are highlighted in bold

Teacher Net. Student Net. CE KD AT SP CC LKD Teacher

ResNet110 ResNet14 67.45 69.78 69.51 69.59 69.77 70.48 75.76

ResNet110 ResNet20 69.47 71.47 71.8 71.42 71.78 72.63 75.76

WRN-40-2 WRN-16-1 66.79 66.74 66.75 66.4 66.76 67.72 75.61

WRN-40-2 WRN-16-2 73.1 74.89 75.15 74.69 75.05 75.44 75.61

model with batch size 64, momentum 0.9, and weight decay 5e−4. For the class-
aware attention module, we train the mask generators and auxiliary classifiers for
60 epochs with learning rate starting from 0.05 and multiplied by 0.1 at 30, 40,
50 epochs. The threshold H is set to 0 because most of the images in CIFAR100
are occupied by the main object. For the extraction of the local features, we set
k = 4 for all the stages to split the feature maps to 16 patches. Then we train
the student network for 200 epochs with the learning rate starting from 0.1 and
multiplied by 0.1 at 80, 120, 160 epochs. For CE, we set α = 0 in Eq. (11).
For traditional KD, AT, CC, SP and our methods, we set α = 1 and τ = 4
following the CIFAR100 experiments in [38]. For a fair comparison, we carefully
tune the loss weight of all the methods by grid-search for each teacher-student
pair and report the average accuracy over 3 runs with the chosen loss weight.
β ∈ [0.001, 0.1] works reasonably well for our methods.

We also test the performance under four combinations of teacher and student
networks using ResNet [7] and Wide ResNet (WRN) [37]. For the teacher network
of ResNet110, the accuracy is 75.76%, and we adopt ResNet14 and ResNet20
as two different student networks. For the teacher network of WRN-40-2, the
accuracy is 75.61%, and we adopt WRN-16-1 and WRN-16-2 as two different
student networks.

In Table 1, we show the results of different methods on CIFAR100. We can
see that our proposed LKD method achieves the best performance under all
these four different settings of the teacher and student networks, which can
demonstrate the effectiveness and robustness of our method. Based on the re-
sults, we also have the following observations. First, our method substantially
surpasses the baseline methods KD and AT by a large margin. While these two
methods mainly minimize the distance between instance features of the teacher
and student models, our improvement can verify that mimicking the correlation
between local regions of the feature maps is a more effective way. Second, we
find that compared with these methods with global feature based correlation,
including SP and CC, our local features based correlation consistency shows the
superiority, which can be attributed to the sufficient details and discriminative
patterns that local features contain.



12 X. Li et al.

Table 2. Comparison of classification accuracy on ImageNet. The best results of the
student network are highlighted in bold

Accuracy CE KD AT SP CC LKD Teacher

Top-1 70.58 71.34 71.33 71.38 71.45 71.54 73.27

Top-5 89.45 90.27 90.26 90.28 90.26 90.30 91.27

4.2 Evaluation on ImageNet

After successfully demonstrating our method’s superiority on the relatively small
CIFAR100 dataset, we move to validate its effectiveness on the large-scale Ima-
geNet dataset, which contains 128k training images and 50k testing images. The
resolution of input images after pre-processing in ImageNet is 224× 224, which
is much larger than that in CIFAR100. With more images and larger resolution,
classification on ImageNet is more challenging than that on CIFAR100.

Following the setting in AT [38], we adopt ResNet34 as the teacher network
and ResNet18 as the student network. Mask generators and auxiliary classifiers
are trained for 48 epochs with learning rate starting from 0.8 and multiplied by
0.1 at 36, 44 epochs. The thresholdH is set to 0.1 for the cropping of the attention
feature maps. The local relationships based loss function L̃LKD is added on the
last stage of the network following the implementation of SP [27] with the loss
scale β = 0.5. The patch number k is set to 3. The student network is trained
for 120 epochs with mini-batch size 1024 (on 16 GPUs, each with batch size 64
and weight decay 4e−4). The learning rate starts from 0.4 and is multiplied by
0.1 at 40, 72, and 96 epochs. The α is set to 1 with temperature τ = 2.

In Table 2, we compare the classification accuracy with other methods on
ImageNet. We can see that our method continuously outperforms the competing
methods on both Top-1 and Top-5 accuracy. Because the ImageNet dataset is
very challenging, our small improvement is also very hard. The above result
further demonstrates the effectiveness of our LKD on the large-scale and high-
resolution dataset.

4.3 Ablation Study

To verify the effectiveness of each of the three kinds of local relationships based
knowledge and the class-aware attention module in our method, we conduct abla-
tion studies on CIFAR100 with ResNet110 as the teacher network and ResNet14,
ResNet20 as the student networks. Results are shown in Table 3. By adding
each of these three local relationship based loss functions into the baseline KD
method, the result can be stably improved. By combining these three loss func-
tions, it can achieve a much better result. Based on L̃LKD, our class-aware
attention module can further improve the performance. The above results can
sufficiently show the effectiveness of each local correlation based knowledge as
well as the attention module. Besides, we can observe similar results with both
ResNet14 and ResNet20, which also demonstrates the robustness and general-
ization ability of our contributions.



LKD 13

Table 3. Ablation study on CIFAR100. intra, inter-same and inter-diff denote three
local relationships introduced in Section 3. CAAT is the class-aware attention module

Methods
Local Relationships

CAAT
Top1 accuracy

intra inter-same inter-diff ResNet14 ResNet20

LKD 69.78 71.47

LKD + Lintra X 70.00 72.04

LKD + Linter−s X 70.20 71.96

LKD + Linter−d X 70.03 72.10

LKD + LLKD X X X 70.37 72.31

LKD + L̃LKD X X X X 70.48 72.63

Table 4. Results on CIFAR100 with different number of k, which denotes how many
patches that we divide the feature map into along each axis

Student LKD(k=1) LKD(k=2) LKD(k=4)

ResNet14 69.98 70.09 70.37

ResNet20 71.82 71.86 72.31

4.4 Sensitivity Analysis

Influence of the Parameter k. To extract local features, recall that we split
the foreground feature map of each image into k × k patches. In the above
experiments on CIFAR100, we simply set k = 4 on CIFAR100. In this part,
we purely evaluate the performance of the student network with different k.
For simplification, we only add the local correlation based loss on ResNet14
and ResNet20 and do not add the class-aware attention module. The results are
presented in Table 4. We can observe that with the increase of k, the performance
is improved gradually. The results with k = 4 obviously surpasses that of k = 1
and k = 2. The reason is that the larger k we use to extract the local features,
the more sufficient knowledge we will extract from the teacher to transfer, which
can bring the performance improvement in return.
Effect of Class-Aware Attention. In this part, we evaluate the effect of
our class-aware attention module and show whether it can filter out the invalid
information. We conduct experiments on CIFAR100 with several different at-
tention methods, including the activation-based attention in AT [38] and Grad-
CAM [21]. In all experiments, the grid number k is set to 4, and the baseline
experiment is conducted without the attention module. For a fair comparison,
we utilize a sigmoid function to normalize the attention masks obtained by all
the attention methods mentioned above.

The results are summarized in Table 5. We can see that our proposed CAAT
module works much better than other attention methods as well as the baseline.

We also visualize the attention masks of some sample images in Figure 3. We
can find that the informative regions are assigned relatively high value while the
confusing background regions are on the contrary. The mask generated by CAAT
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Table 5. Top-1 accuracy on CIFAR100 for LKD with different attention methods

Student LKD LKD+AT LKD+Grad-CAM LKD+CAAT

ResNet14 70.37 69.88 70.41 70.48

ResNet20 72.31 72.34 72.18 72.63

Fig. 3. Visualization of the attention maps. First row: images sampled from ImageNet.
Second row: original feature maps generated by the teacher model. Third row: corre-
sponding attention masks generated by CAAT module at the third stage of teacher
network. High value is shown in red and low value in blue

can well filter out the background that has less contribution to the classification
task. And more importantly, it helps the student network to focus on those class-
relevant regions and ignore these confusing regions in images, such as the messy
background of all the images in Figure 3.

5 Conclusions

In this paper, we proposed the local correlation consistency: a novel form of
knowledge distillation that aims to represent the relationships of local regions in
the feature space. By minimizing the local correlation matrices of teacher and
student, we could make the student generate more discriminative local features.
Furthermore, we applied a class-aware attention mask to both the teacher and
the student’s feature maps before constructing the local correlation matrices.
We trained the class-aware attention module using teacher’s feature maps to
highlight those informative and class-relevant regions and weaken the effect of
those confusing regions. Our Experiments on CIFAR100 and ImageNet demon-
strate the effectiveness of the proposed local correlation consistency knowledge
distillation and the class-aware attention module.
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