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Abstract. 3D hand pose estimation based on RGB images has been
studied for a long time. Most of the studies, however, have performed
frame-by-frame estimation based on independent static images. In this
paper, we attempt to not only consider the appearance of a hand but
incorporate the temporal movement information of a hand in motion
into the learning framework, which leads to the necessity of a large-scale
dataset with sequential RGB hand images. We propose a novel method
that generates a synthetic dataset that mimics natural human hand move-
ments by re-engineering annotations of an extant static hand pose dataset
into pose-flows. With the generated dataset, we train a newly proposed
recurrent framework, exploiting visuo-temporal features from sequential
synthetic hand images and emphasizing smoothness of estimations with
temporal consistency constraints. Our novel training strategy of detaching
the recurrent layer of the framework during domain finetuning from syn-
thetic to real allows preservation of the visuo-temporal features learned
from sequential synthetic hand images. Hand poses that are sequentially
estimated consequently produce natural and smooth hand movements
which lead to more robust estimations. Utilizing temporal information for
3D hand pose estimation significantly enhances general pose estimations
by outperforming state-of-the-art methods in our experiments on hand
pose estimation benchmarks.

Keywords: 3D Hand Pose Estimations, Pose-flow Generation, Synthetic-
to-real domain gap reduction, Synthetic hand motion dataset

1 Introduction

Since expressions of hands reflect much of human behavioral features in a daily
basis, hand pose estimations are essential for many human-computer interactions,
such as augmented reality (AR), virtual reality (VR) [16] and computer vision
tasks that require gesture tracking [8]. Hand pose estimations conventionally
struggle from an extensive space of pose articulations and occlusions including
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Fig. 1: Illustrations of sequential 2D im-
ages of hand pose-flows that are gener-
ated by the proposed method.

Fig. 2: Each frame of sequential hand
motion videos is composed of varying
poses and moving backgrounds.

self-occlusions. Some recent 3D hand pose estimators that take sequential depth
image frames as inputs have tried to enhance their performance considering
temporal information of hand motions [14,22,26,43]. Motion context provides
temporal features for narrower search space, hand personalizing, robustness to
occlusion and refinement of estimations. In this paper we focus on the hand pose
estimation considering its movements using only RGB image sequences for better
inference of 3D spatial information.

Although the problem of estimating a hand pose in a single RGB image is an
ill-posed problem, its performance is rapidly improving due to the development
of various deep learning networks [3, 11, 24]. However, most studies have focused
on accurately estimating 3D joint locations for each image without considering
motion tendency. Pose of hands changes very quickly and in many cases contains
more information on the movements of the successive poses than on the momentary
ones. In addition, the current pose is greatly affected by the pose from the previous
frames. Until now, there has been a lack of research on the estimation network
considering the continuous changes of poses. The main reason that conventional
RGB-based deep 3D hand pose estimators [1, 3, 24, 49] have only proposed
frameworks with per-frame pose estimation approaches is that any large scale
RGB sequential hand image dataset has not been available unlike the datasets
with static images of hand poses. The diversity and the authenticity of hand
motions along with generalization over skin colors, backgrounds and occlusions
is a challenging factor for a dataset to be assured.

In this paper, we present a novel perspective on hand pose and shape esti-
mation tasks and propose to consider temporal movements of hands as well as
their appearances for more accurate 3D estimations of hand poses based on RGB
image inputs. In order to train a framework that exploits visuo-temporal features
to manage successive hand pose images, we are required to have sufficient pose
data samples that are sequentially correlated. We thus propose a new generation
method of dataset, SeqHAND dataset, with sequential synthetic RGB images of
natural hand movements, re-enginerring extant static hand pose annotations of
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BigHand2.2M dataset [46].To effectively test our generated dataset, we extend
the framework of [3] with a recurrent layer based on empirical validity of its
structure. Also since it is widely accepted that models trained with synthetic
images perform poorly on real images [24], we present a new training pipeline to
preserve pre-trained image-level temporal mapping during synthetic-real domain
transition. Our contributions to this end are as follows :

– We design a new generation method for sequential RGB image dataset with
realistic hand motions that allows 3D hand pose and shape estimators to
learn the dynamics of hand pose variations (See Figure 1) by proposing a
pose-flow generation procedure.

– We propose a new recurrent framework with convolution-LSTM layer to
directly exploit visuo-temporal information from hand pose and shape varia-
tions in image space and map to 3D space.

– We present a novel training pipeline of preserving extracted spatio-temporal
features from sequential RGB hand images during domain finetuning from
synthetic to real.

– Our approach achieves not only state-of-the-art performance in standard 3D
hand pose estimation dataset benchmarks, but also smooth human-like 3D
pose fittings for the image sequences.

To the best of our knowledge, we propose the first deep-learning based 3D hand
pose and shape estimator without any external 2D pose estimator that exploits
temporal information directly from sequential RGB images.

2 Related Works

Many approaches of hand pose estimation (HPE) have been actively studied. To
acquire hand information, the literature of single hand 3D pose estimation has
been mainly based on visual inputs of depth sensors and/or RGB cameras.

Per-frame RGB-based 3D HPE. As views of a single 3D scene in multiple
perspectives are correlated, efforts of 3D estimation based on multiple RGB images
of a hand have also been introduced [6, 12,27,34,37]. Multi-view camera setups
allow refinements against occlusions, segmentation enhancements and better
sense of depth. In the work of [34], bootstrapping pose estimations among images
from multiple perspectives help the estimator to retrain badly annotated data
samples and refine against occlusions. A pair of stereo images provides similar
effects in a more limited setting. Integration of paired stereo images has yielded
better 3D hand pose estimations through manipulations of disparity between
paired images [28,30,32,48].

Monocular RGB-only setup is even more challenging because it only provides
visual 2D vision of hand poses. With deep learning methods that have allowed
successful achievements of hand detection [13, 19], deep pose estimators have
recently been able to concentrate on per-frame hand 3D pose estimation problems
[51]. To overcome the lack of 3D spatial information from the 2D inputs, there are
needs of constraints and guidance to infer 3D hand postures [29]. Most recently,
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works of [1, 3, 49] employ a prior hand model of MANO [31] and have achieved
significant performance improvement in the RGB-only setup.

Temporal information in 3D HPE. Considering temporal features of
depth maps, sequential data of hand pose depth images [25, 26, 46, 48] have
been trained with hand pose estimators. The temporal features of hand pose
variations are used for encoding temporal variations of hand poses with recurrent
structure of a model [14, 43], modeling of hand shape space [17], and refinement
of current estimations [22,26]. With sequential monocular RGB-D inputs, Taylor
et al. [41] optimize surface hand shape models, updating subdivision surfaces
on corresponding 3D hand geometric models. Temporal feature exploitation has
not been done for deep-learning based 3D hand pose estimators that take color
images as inputs because large scale sequential RGB hand pose datasets have
not been available in the literature. We share the essential motivation with the
work of [5], but believe that, even without the assistance of 2D pose estimation
results, sequential RGB images provide sufficient temporal information and spatial
constraints for better 3D hand pose inference with robustness to occlusions.

Synthetic hand data generations. Since RGB images also consist of
background noise and color diversity of hands that distract pose estimations,
synthetic RGB data samples are generated from the hand model to incite the
robustness of models [3, 4, 11,25]. In [35,45], cross-modal data is embedded in a
latent space, which allows 3D pose labeling of unlabeled samples generated from
(disentangled) latent factor traverses. Mueller et al. [24] had applied cycleGAN [50]
for realistic appearances of generated synthetic samples to reduce the synthetic-
real domain gap. While there have been recent attempts to solve an issue of
lacking reliable RGB datasets through generations of hand images [3,4,24,35,51],
most of the works have focused on generation of realistic appearances of hands
that are not in motions. To strictly imitate human perception of hand poses, it
is critical for RGB-based hand pose estimators to understand the dynamics of
pose variations in a spatio-temporal space. We further consider that synthetic
hand pose dataset in realistic motions provides efficient information for pose
estimations as much as appearances.

3 SeqHAND Dataset

3.1 Preliminary: MANO Hand Model

MANO hand model [31] is a mesh deformation model that takes two low-
dimensional parameters θ and β as inputs for controlling the pose and the
shape, respectively, of the 3D hand mesh outputs. With a given mean template
T̄ , the rigid hand mesh is defined as:

M(θ, β) = W (T (θ, β, T̄ ), J(β), θ, ω) (1)

where T (·) defines the overall shape for the mesh model based on pre-defined
deformation criteria with pose and shape, and J(·) yields 3D joint locations
using a kinematic tree. W (·) represents the linear blend skinning function that is
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applied with blend weights ω. MANO model may take up to 45-dimensional pose
parameters θ and 10-dimensional shape parameters β while the original MANO
framework uses 6-dimensional PCA (principal component analysis) subspace of θ
for computational efficiency.
2D Reprojeciton of MANO Hands: The location of joints J(β) can be
globally rotated based on the pose θ, denoted as Rθ, to obtain a hand posture P
with corresponding 3D coordinates of 21 joints:

P = J(θ, β) = Rθ(J(β)). (2)

After 3D estimations for mesh verticesM(θ, β) and joints J(θ, β) are computed
by MANO model, in [3], 3D estimations are re-projected to 2D image plane with
a weak-perspective camera model to acquire 2D estimations with a given rotation
matrix R ∈ SO(3), a translation t ∈ R2 and a scaling factor s ∈ R+ :

M2D = sΠRM(θ, β) + t (3)

J2D = sΠRJ(θ, β) + t (4)

where Π represents orthographic projections. Hand mesh M(θ, β) is composed
of 1,538 mesh faces and defined by 3D coordinates of 778 vertices, and joint
locations J(θ, β) are represented by 3D coordinates of 21 joints. The re-projected
2D coordinates of M2D and J2D are represented in 2D locations in the image
coordinates. We have utilized MANO hand model in both synthetic hand motion
data generation and the proposed pose and shape estimator.

3.2 Generation of SeqHAND Dataset

Although the potential of temporal features have been shown promising results
for 3D HPE tasks [5, 26, 41], large scale RGB sequential hand image datasets
have not been available during recent years in the literature of RGB-based 3D
HPE. In this section, we describe a new generation method of hand motions that
consist of sequential RGB frames of synthetic hands.

To generate sequential RGB image data with human-like hand motions, all
poses during the variation from an initial pose to a final pose need to be realistic.
We thus utilize BigHand2.2M (BH) [46] for sequential hand motion image dataset
generation. BH dataset consists of 2.2 million pose samples with 3D annotations
for joint locations acquired from 2 hour-long hand motions collected from 10 real
subjects. With BH datasets, the generated samples are expected to inherit the
manifold of its real human hand articulation space and kinematics of real hand
postures. As 3D mapping of BH samples using t-SNE [21] in Figure 3 shows, BH
is known that the pose samples are densely and widely collected.
Pose-flow generation: We firstly define a pose-flow, a set of poses at each
time step during the variation. Putting gradually changing poses in a sequential
manner, we newly propose a pose-flow generation method. For each pose-flow
generation, an initial and a final poses, Pinitial and Pfinal, are independently
and randomly selected from BH dataset. While varying from the initial to the
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Fig. 3: 3D t-SNE visualization of 10,000
of BH data samples randomly selected.
BH dataset completes a pose space that
covers previously reported datasets, hav-
ing a dense pool of related neighboring
poses.

Fig. 4: An illustration of the pose-flow
generation procedure. All poses per
pose-flow are selected from the anno-
tations of BH dataset. At each frame, a
current pose is updated by the difference
between the previous pose and the final
pose. The pose nearest to the updated
pose is then selected for the frame.

final pose during n frames, the coordinates of joints are updated by α/n of the
difference between the current coordinates and the ones of the final pose.3 The
update size α is empirically chosen for the desirable speed of pose variations. A
pose PBHi from BH dataset that is the nearest to the updated pose in terms of
Euclidean distance is then newly selected as the current pose for the k-th frame:

P0 = PBHinitial (5)

Pupdated = Pk−1 −
α

n
(Pk−1 − PBHfinal) (6)

Pk = PBHi s.t. min
i
||Pupdated − PBHi ||. (7)

The overall procedure of the Pose-flow generation is summarized in Figure 4. The
intermediate pose (Pupdated) is calculated as stochastic update. Such stochasticity
of our pose updates helps avoiding strict updates of pose gradients and encourages
wandering more within the pose space. Pose selections from the BH annotations,
again, allows assurance on the authencity of hand poses during the variation.

To generate RGB images for a pose, a shallow four-layer network with which
takes inputs of 3D coordinates for joints of BH annotations is trained to output
corresponding pose parameters θ for MANO hand model. For each pose at a
frame, we feed corresponding 21 joint location coordinates to the this network
to acquire a hand mesh model in the desired pose, which is then re-projected
to an image plane. As done in [3], we assign each vertex in a mesh the RGB

3 Note that direct random samplings from continuous pose parameter space θ ∈ R
does not assure diversity and authenticity of poses [31].
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Table 1: Among the contemporary 3D hand pose datasets, SeqHAND dataset is
the first dataset for 3D hand pose estimations that provides sequential RGB hand
image frames along with stable annotations in both 3rd-person and egocentric
perspectives.

Datasets RGB/Depth Real/Synth Static/Sequential 3rd/Ego view # of frames

SynthHands [25] RGB+Depth Synth Static Ego 63k

RHD [51] RGB+Depth Synth Static 3rd 43.7k

FHAD [10] RGB+Depth Real Sequential Ego 100k

NYU [42] Depth Real Sequential 3rd 80k

ICVL [40] Depth Real Sequential 3rd 332.5k

MSRA15 [38] Depth Real Sequential 3rd 76,375

MSRC [33] Depth Synth Sequential 3rd+Ego 100k

SynHand5M [23] Depth Synth Sequential 3rd 5M

GANerated [24] RGB Synth Static Ego 330k

SeqHAND RGB Synth Sequential 3rd+Ego 410k

value of predefined color templates of hands to create appearances of hands.
Sampled hand shape parameter β ∈ [−2, 2]10 and selected color template are
set unchanged along per flow. Camera parameters of rotation R, scale s and
translation t factors are independently sampled for initial and final poses and
updated at each frame in the same way as the poses are. All frames are in the
size of w and h. Figure 1 depicts illustrations of our generated pose-flows.

Further mimicking images of hand motions in the wild, we sample two (initial
and ending) random patches from VOC2012 data [9] with the size of w and h
and move the location of the patch for backgrounds along the frames. As Table 1
denotes, the generated SeqHAND dataset provides not only both 3rd-person and
egocentric viewpoints of hand postures but also sequential RGB images of hand
poses that firstly allow data-hungry neural networks to exploit visuo-temporal
features directly from RGB inputs.4

4 SeqHand-Net for Visuo-Temporal Feature Exploitation

With SeqHAND dataset, we are able to overcome the scarcity of sequential
RGB dataset which limits conventional RGB-based 3D HPE methods from
exploiting temporal image features. Motivated by [3], we design sequential hand
pose and shape estimation network (SeqHAND-Net). On top of the encoder
network of [3], we incorporate convolution-LSTM (ConvLSTM) layer [44] to
capture sequential relationship between consecutive hand poses. Our method does
not consider additional hand 2D joint locations as inputs, and purely performs 3D
hand pose estimation based on sequentially streaming RGB images in an effort
to overcome the dependency on external 2D pose estimators. We also propose,
in this section, a training pipeline for domain adaptation from synthetic to real,
adapting low-level features with real hand images while preserving high-level
visuo-temporal features of hand motions.

4 Although we can generate as many synthetic data as we want, our SeqHand dataset
contains 400K/10K samples used for training/validation.
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Fig. 5: Our training strategy for preservation
of temporal features during domain adapta-
tion synth-to-real. SeqHAND-Net is created
from [3] with an extra visuo-temporal feature
exploitation layer for sequential RGB inputs.
During finetuning, SeqHAND-Net considers
a static real data as 1-frame-long sequence.
The temporal high-level feature encoding is
preserved while low-level image feature en-
coding layers are finetuned.

From each frame, a cropped
hand image is fed into SeqHAND-
Net as illustrated in Figure 5. Our
problem scope is to better perform
hand pose estimations on stream-
ing cropped frames that are un-
seen by the estimator. The encoder
of our SeqHAND-Net has the back-
bone structure of ResNet-50 [13]
and, for training, expects sequen-
tial inputs with k frames. A single
ConvLSTM is implemented right
before the last layer as a recurrent
visual feature extractor so that the
dynamics of hand motions are em-
bedded in the highest-level latent
space. Learning of hand motion se-
quential dynamics in the high-level
space is important since low-level
visual features are changed with
the ConvLSTM layer fixed during
finetuning for real hand images.
After the recurrent layer, a simple
linear mapping layer from hidden
features to the output vector is set.
The encoder’s resultant vector consists of parameters for pose θ ∈ R10, shape
β ∈ R10, scale s ∈ R+, translation t ∈ R2 and rotation r ∈ R3 which turns into a
matrix R ∈ SO(3) through Rodrigues rotation formula for Eqs (3) and (4).

Synth-to-Real Domain Transfer with Preservation of Temporal Fea-
tures As mentioned earlier, many recent researches have used synthetic hand
images for pre-training and finetuned into real domain to overcome the scarcity
of real hand images. While finetuning into real domain may allow faster training
convergence, further training with a smaller dataset not only causes overfitting
and may result in catastrophic forgetting [18]. To preserve visuo-temporal fea-
tures learned from synthetic hand motions of SeqHAND dataset, we exclude the
ConvLSTM layer of SeqHAND-Net from domain transfer to real hand images,
allowing the network to only finetune low-level image features. Only the ‘Encoder’
and ‘MLP’ layers from Figure 5 are finetuned with a real static hand image
dataset (e.g. FreiHand [52]). SeqHAND-Net is therefore trained, considering each
image sample as 1-frame-long sequential image during domain transition to real.

Training Objectives The followings are the types of criteria used for train-
ing our proposed framework to consider visuo-temporal features and emphasize
the temporal smoothness of estimations :
2D joint regression loss: The re-projected 2D joint loss is represented as :

LJ2D = ||J2D − xJ2D||1, (8)
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where x2D represents the ground-truth 2D locations of hand joints within a frame
image. We have used the L1 loss because of inaccuracies in annotations in the
training datasets.
3D joint regression loss: The ground-truth joint locations and the ones pre-
dicted are regressed to be the same using the following loss:

LJ3D = ||RJ(θ, β)− xJ3D||22, (9)

where xJ3D represents ground-truth 3D joint coordinates. If a dataset provides
ground-truth coordinates of 3D vertex points (e.g. FreiHand dataset), the 3D
coordinates of each vertex predicted and the ones of ground-truth is minimized
as done for 3D joint loss, based on the following loss:

LM3D = ||RM(θ, β)− xM3D||22 (10)

where xM3D represents ground-truth 3D mesh vertex coordinates.
Hand mask fitting loss: The hand mask loss is proposed in [3] to fit the shape
and pose predictions in the binary mask of hands in the image plane. This loss
ensures predicted coordinates of mesh vertices to be inside of a hand region when
re-projected:

Lmask = 1− 1

N

∑
i

H(M i
2D), H(x) =

{
1, if x inside a hand region.

0, otherwise.
(11)

where H is a hand mask indicator function that tells if vertex point x is inside
the hand region or not. The loss represents the percentage of vertices that are
outside the region.
Temporal consistency loss: For pre-training on SeqHAND dataset, our method
needs to be constrained with temporal consistency to ensure smoothness of pose
and shape predictions. Similar to [5], we have adopted the temporal consistency
loss for smoothness of temporal variation of poses:

Ltemp = ||βt−1 − βt||22 + λθtemp||θt−1 − θt||22. (12)

While finely penalizing current estimations with the previous ones, this loss allows
the reduction of search space and natural 3D hand motion estimations.
Camera parameter regression loss: During training with SeqHAND dataset
where all ground-truths for pose, shape and viewpoint parameters {θ, β, r, t, s}
are available, our model is trained with L2-norm loss between predictions and
the ground-truth.

Lcam =
∑

i∈{θ,β,r,t,s}

||̂i− i||22 (13)

where î and i respectively refer to predicted and ground-truth parameters for
pose, shape and viewpoint.
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5 Experiments

Datasets for Training. For visuo-temporal feature encodings of sequential
RGB hand images, we pretrain SeqHAND-Net with our SeqHAND dataset. We
have generated 40,000 sequences for training and 1,000 for validate samples each
of which is 10-frames-long. All images are generated in the size of 224×224 for
ResNet-50 input size. SeqHAND data samples are exemplified in Figure 1 and 2.

To finetune SeqHAND-Net for synthetic-real domain gap reduction, we have
used STB (Stereo Hand Pose Tracking Benchmark) [48] and FR (FreiHand) [52]
datasets. STB dataset consists of real hand images captured in a sequential
manner during 18,000 frames with 6 different lighting conditions and backgrounds.
Each frame image is labeled with 2D and 3D annotations of 21 joints. Since
STB dataset has annotations for joint locations of palm centers instead of wrist,
we have interpolated related mesh vertices of MANO hand model to mach the
annotation of STB dataset. The dataset is divided into training and testing sets
as done in [3].

FR dataset has 130,240 data samples that are made up of 32,560 non-sequential
real hand images with four different backgrounds. Since the dataset has hands
that are centered within the image planes, we have modified each sample by re-
positioning the hand randomly within the image for more robust training results.
FR dataset provides MANO-friendly annotations of 21 joint 3D/2D locations
along with 778 vertex ground-truth 2D/3D coordinates with hand masks.

We have finetuned the SeqHAND-Net pretrained on SeqHAND dataset with
real-hand image datasets mentioned above in a non-sequential manner while
conserving hand motion dynamic features detached from further learning.
Datasets for Evaluation. We evaluate various framework structures that con-
sider temporal features on the validation set of SeqHAND dataset for the logical
framework choice. For the comparison against other state-of-the-art methods, we
have selected standard hand pose estimation datasets of the splitted test set of
STB, EgoDexter(ED) [25] and Dexter+Obeject(DO) [36] in which there exists
temporal relations among data samples since our network requires sequential
RGB inputs for fair comparisons. While STB and DO datasets consist of real hand
images in 3rd-person viewpoints, ED dataset has samples that are in egocentric
perspective. For all datasets, our method is evaluated on every frame of input
sequences.
Metrics. For evaluation results, we measure the percentage of correct key-points
for 3D joint locations (3D-PCK) along with the area under the curve (AUC) of
various thresholds. In addition, we provide average Euclidean distance error for
all 2D/3D joint key-points so that more absolute comparisons can be made.
Hand Localizations. For all experiments, we have used MobileNet+SSD version
of hand detection implementation [19] trained with a hand segmentation dataset
[2] for providing sequential cropped hand images to SeqHAND-Net. For localized
hands with tight bounding rectangular boxes, we choose the longer edge with a
length size l and crop the region based on the center point of boxes so that the
cropped images have a square ratio with width and height size of 2.2 ∗ l, as done
in [3].
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Table 2: Ablation study results of various structures of the framework proposed
in [3] for sequential inputs.

Frameworks
AUC Error (px/mm)

# params
2D 3D 2D 3D

ResNet50-Encoder (baseline) [3] 0.855 0.979 3.44 7.85 28.8M

ResNet101-Encoder [3] 0.861 0.981 3.31 7.54 47.8M

I3D-Encoder [7] 0.831 0.967 4.19 9.24 31.5M

MFNet-Encoder [20] 0.818 0.912 5.48 10.54 41.7M

ResNet50-Encoder+LSTM 0.826 0.956 4.64 9.63 39.3M

ResNet50-Encoder+ConvLSTM 0.873 0.986 3.17 7.18 43.2M

Table 3: Performances of differently (partially) trained models on ED, DO, STB
datasets.

Methods
AUC Avg. 3D Error (mm)

ED DO STB ED DO STB

Encoder + Train(SynthHAND) 0.350 0.095 0.140 52.11 100.84 68.86

Encoder + Train(SynthHAND) + Train(FH + STB) 0.397 0.516 0.985 49.18 33.12 9.80

Encoder + ConvLSTM + Train(SeqHAND) 0.373 0.151 0.121 52.18 81.51 71.10

Encoder + ConvLSTM + Train(SeqHAND) + Train(FH + STB) 0.444 0.581 0.981 40.94 29.41 9.82

Encoder + ConvLSTM + Train(SeqHAND) + TrainC(FH + STB) 0.766 0.843 0.978 17.16 18.12 9.87

5.1 Ablation Study

Framework Selection: To show the logic behind the selection of the proposed
framework, we evaluate various forms of extended baseline model [3] shown in
Table 2 for managing sequential inputs on our newly generated SeqHAND dataset.
The extended versions of baseline encoder (ResNet-50) include the baseline model
with a LSTM layer [39], the baseline model with a ConvLSTM layer [44], the
baseline encoder with the structure of I3D [7] and the baseline encoder with
the structure of MF-Net [20]. Both I3D-Encoder and MFNet-Encoder represent
methods that incorporate sequential inputs with 3D convolutional neural network.
For I3D, we have changed few features from the original form of I3D so that its
structure fits into the hand pose estimation task. The original backbone structure
of I3D with Inception modules have changed into ResNet-50 for a fair comparison.
MFNet is another examplary 3D convolution network proposed specifically for
motion feature extractions. Of the candidates, the encoder with a ConvLSTM
layer has performed the best.
Effectiveness of SeqHAND-Net and SeqHAND Dataset: To clarify the
effectiveness of our proposed framework and our generated dataset, variations of
the proposed method and the baseline model are investigated. We report AUCs
of 3D PCK curves and average 3D joint location errors for ED, DO and the
evaluation set of STB datasets. In Table 3, ‘Encoder’ denotes the baseline model
with ResNet50 backbone structure while ‘Encoder + ConvLSTM’ denotes our
proposed framework SeqHAND-Net. ‘Train(SynthHAND)’ and ‘Train(SeqHAND)’
represent training a model with synthetic hand image dataset respectively in
non-sequential and sequential manner. ‘Train(FH + STB)’ and ‘TrainC(FH +
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Table 4: Average 3D joint distance
(mm) to ground-truth for RGB Se-
quence datasets hand pose bench-
marks.

Avg. 3D Error (mm)
ED DO STB

Our Method 17.16 18.12 9.87

Bouk. et al. (RGB) 51.87 33.16 9.76

Bouk. et al. (Best) 45.33 25.53 9.76

Spurr et al. 56.92 40.20 -

Zimmer. et al. 52.77 34.75 - Fig. 6: 3D PCK for ED

Fig. 7: 3D PCK for DO Fig. 8: 3D PCK for STB

STB)’ refers to training with STB and FreiHand datasets for the synthetic-real
domain transfer with the ConvLSTM layer, respectively, attached and detached
from finetuning.

We show in the Table 3 how much performance enhancement can be obtained
with SeqHAND dataset and our proposed domain adaptation strategy. Encoder
with the ConvLSTM layer finetuned to real domain consequently performs
similar to the encoder that does not consider visuo-temporal correlations. If the
ConvLSTM layer is detached from finetuning and visuo-temporal features learned
are preserved, the performance significantly improves. Also, SeqHAND dataset
does not consist with any occluded hands except for self-occlusions. With training
for FH dataset, our method is able to learn the visual features of not only real
hands but also occluded real hands since FH dataset’s augmentations consist of
occlusions. Due to the temporal constraint that penalizes large difference among
sequential estimations, per-frame estimation performs slightly better for the STB
dataset.

5.2 Comparison with the State-of-the-art Methods

In Figures 6, 7 and 8, we have plotted 3D-PCK graph with various thresholds
for STB, ED and DO datasets. For STB dataset, deep-learning based works
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- Baseline (frame-by-frame estimator)

- Our Method (sequential estimator)

(a) Pose Flow Smoothness

(b) Temporal Consistency
- Baseline (frame-by-frame estimator)

- Our Method (sequential estimator)

(c) Hand Shape Consistency
- Baseline (frame-by-frame estimator) - Our Method (sequential estimator)

Fig. 9: Qualitative Results of SeqHAND-Net.
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of [3, 4, 15,24,35,51] and approaches from [29,47] are compared. Many previous
methods have reached near the maximum performance for STB dataset. With
our temporal constraints and fixing the ConvLSTM layer during finetuning, our
method reaches a competitive performance. For both ED and DO datasets, our
method outperforms other methods. For ED dataset, contemporary works of
[3,15,35,51] are compared to our method. The best performance of our baseline [3]
is reached with inputs of RGB and 2D pose estimations provided by an external
2D pose estimator. Our method results in outstanding performance against other
compared methods [3, 15, 24, 35, 51] for DO dataset with heavy occlusions, which
shows that the learning of pose-flow continuity enhances robustness to occlusions.
Temporal information exploitation from sequential RGB images affect our model
to be robust against dynamically moving scene. For more absolute comparisons,
we provide our average 3D error of joint location in Table 4.

We provide qualitative results in Figure 9 for visual comparison against a
frame-by-frame 3D pose estimator, our reproduced work of [3]. All images in the
figure are sequentially inputted to both estimators from left to right. Per-frame
estimations that fit postures at each frame result in unnatural 3D hand posture
changes over a sequence while our method’s leaning trajectories biased by previous
frames produces natural hand motions and robust estimations to frames that
lack visual information of hand postures. Our method models estimated hand
shapes as consistent as possible per sequence. During the qualitative evaluation
on a RGB image sequence of a single real hand, our method’s average difference
among temporal changes of shape parameters βt−1 − βt is 4.16e−11 while that of
the frame-by-frame estimator is 2.38e−5. The average difference among temporal
changes of the pose parameters θt−1− θt are 1.88e−6 for our method and 6.90e−6

for the other.

6 Conclusion

In this paper, we have addressed and tackled the scarcity of sequential RGB
dataset which limits conventional methods from exploiting temporal features for
3D HPE. We have proposed a novel method to generate SeqHAND dataset, a
dataset with sequential RGB image frames of synthetic hand poses in motions that
are interpolated from existing static pose annotations. We have then also proposed
a framework that exploits visuo-temporal features for 3D hand pose estimations in
a recurrent manner. Our proposed method outperforms other existing approaches
that take RGB-only inputs that are based on solely appearance-based methods,
and consequently produces pose-flow estimations that mimick natural movements
of human hands. We plan to enable the framework to solve (self-)occlusion
problems more robustly.
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