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Abstract. The ubiquity of smartphone cameras has led to more and
more documents being captured by cameras rather than scanned. Unlike
flatbed scanners, photographed documents are often folded and crum-
pled, resulting in large local variance in text structure. The problem of
document rectification is fundamental to the Optical Character Recog-
nition (OCR) process on documents, and its ability to overcome geo-
metric distortions significantly affects recognition accuracy. Despite the
great progress in recent OCR systems, most still rely on a pre-process
that ensures the text lines are straight and axis aligned. Recent works
have tackled the problem of rectifying document images taken in-the-
wild using various supervision signals and alignment means. However,
they focused on global features that can be extracted from the docu-
ment’s boundaries, ignoring various signals that could be obtained from
the document’s content.

We present CREASE: Content Aware Rectification using Angle Super-
vision, the first learned method for document rectification that relies on
the document’s content, the location of the words and specifically their
orientation, as hints to assist in the rectification process. We utilize a
novel pixel-wise angle regression approach and a curvature estimation
side-task for optimizing our rectification model. Our method surpasses
previous approaches in terms of OCR accuracy, geometric error and vi-
sual similarity.

1 Introduction

Documents are a common way to share information and record transactions
between people. In order to digitize mass amounts of printed documents, the
hard copies are scanned and text is extracted automatically by Optical Character
Recognition (OCR) systems, such as [II/12]. In the past, most documents were
scanned in flatbed scanners. However, the past few years have seen a rise in the
use of smartphones, and with it the use of the smartphone camera as a document
scanner. Camera captured documents such as receipts are often folded, curved,
or crumpled, and vary greatly in camera angles, lighting and texture conditions.
This makes the OCR task much more challenging compared to scanned images.

* - Equal Contribution
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Fig.1: Overview of CREASE. CREASE is a document rectification method
that learns content based signals in addition to the document’s 3D structure
in order to estimate a transformation used for rectifying the image. On the
left is a synthetically generated input image, and on the right is the image
rectified using the transformation that CREASE predicted. The bottom images
are the supervision signals, from left to right: The 3D coordinates of the warped
document, the angle deformation map, the curvature map, and the text mask.

Recent OCR methods have had great success in recognizing text in very
challenging scenarios. One example is scene text recognition [III8] which aims
to recognize text in natural images. The text is often sparse, and may also be
rotated or curved. Another scenario is retrieving the content of a document with
dense text, that poses the challenge of detecting and recognizing many words
that are closely located.

While recognizing dense text, and similarly detecting sparse curved text, had
been studied thoroughly, the combined problem of both dense and warped text
detection and recognition has received significantly less attention. Many text
detectors assume axis-aligned text and struggle with deformed lines [8)26], while
text recognition systems struggle with fine deformations on the character level.
Taking this into account, a line of works proposed to rectify the document as
a pre-process to the recognition phase. Recent methods harnessed the power
of deep learning to solve this task [GJI3], but put more emphasis on the page
boundaries and less emphasis on the contents of the document.

In this paper, we present CREASE: Content Aware Rectification using Angle
Supervision. This method performs document rectification by relying on both
global and local hints, with an emphasis on content. Our method predicts the 3D
structure globally while simultaneously optimizing for the local structure of both
the text orientation, the location of folds and creases, and the output backward
map. CREASE provides results that are superior in readability, similarity and
geometric reconstruction.
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CREASE predicts the mapping of a warped document image to its “flatbed”
version. First, we estimate the 3D structure of the input document. Then, we
transform this estimation into a mapping, specifically, a backward mapping.
Finally, the mapping is used to resample the warped image into the flattened
form. A general overview of CREASE is given in Figure [Il Our contributions
are as follows:

1. We present a per-pixel angle regression loss that complements the 3D struc-
ture estimation by optimizing different aspects of the rectification process.

2. We present a curvature estimation task, which predicts the lines along which
the document is crumpled or folded, complementing the per-pixel angle re-
gression loss by emphasizing its discontinuities.

3. The losses are learned as side tasks, focusing on the areas of the document
that contain strong signals regarding the text orientation, and are optimized
alongside the 3D structure estimation in an end-to-end optimization process.

4. We reduce the relative OCR error in a challenging warped document dataset
by 20.2% and the relative geometric error by 14.1%, compared to the state-
of-the-art method.

We train CREASE using synthetic data, which provides us with intricate
details regarding each document in our training set without requiring manual
annotation: the ground-truth transformation for every pixel, the 3D coordinates,
angles, curvature values for every pixel, and the text segmentation mask.

We present visual and quantitative results and comparisons on both synthetic
and real evaluation datasets. We also present a detailed study of the contribution
of each individual model component.

2 Background

Many works have addressed the problem of extracting text from documents cap-
tured in challenging scenarios. These works have focused on different elements
that improve OCR accuracy, such as illumination and noise correction [T6l2],
resolution enhancement [27], and document rectification [7II3J6]. This work fo-
cuses on the last problem of rectifying a warped document from a single image
by prediction of the 3D model.

Early document rectification methods used hand crafted features to detect
the structure of a document. These methods usually made strong assumptions
on the deformation process such as smoothness [I0/] and folding structure [7].
Several works utilized special equipment to capture the 3D model of the docu-
ment [3], or reconstructed the 3D model from multi-view images [25].

More recently, approaches such as [I3J6JT6] have used deep learning to rec-
tify single-image, camera-captured documents, and were designed to solve the
rectification problem by directly predicting the document warp. These works
placed the focus on the aforementioned warp, and gave no special treatment to
the content of the document, i.e., the data we wish to ultimately recognize.
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The first in this line of works is DocUnet [13], which used a stacked hour-
glass architecture to predict the original 2D coordinates of each pixel in the
warped document. This prediction, in essence, gives the forward mapping from
the rectified image to the warped one, which can be inverted to get the final
result.

A followup work presented DewarpNet [0], which added three learned post-
processing components for calculating the backward map, the surface normals
and the shading, each as a separate hourglass network. Additionally, the original
2D forward map of [I3] was replaced by a prediction of its 3D counterpart, and
the stacked hourglass was substituted by a single hourglass network for this
prediction. This method mostly relied on the document boundary, and did not
explicitly address the document’s content in the rectification module.

Another work by Li et al. [16] focused mainly on uneven background illumi-
nation, however it did this by predicting the document warp. This work com-
puted a forward map in a method similar to [I3], but divided the prediction into
three phases. First, a local, patch-based network predicted the gradients of the
forward map. Then, a graph-cut model stitched these patch-predictions into a
global warp. Finally, the un-warped image underwent an illumination correction.
The local and global level prediction allowed the warp estimation to take into
account both the document boundaries and areas in the center of the document,
but this pipeline required an expensive patch-stitching process and worked best
on input documents with minimal background. Additionally, this method was
not end-to-end trainable and did not take into account the document content.

One of the key points in our approach is the importance of predicting text
orientation in the warped image. The notion of text angle prediction was previ-
ously explored in scene text recognition at the word (or, object) level [28/T9JT7],
as opposed to our pixel-level approach.

The EAST text detector by Zhou et al. [28] and FOTS detector by Liu et al.
[I7] both predicted the angle for each word detection candidate in conjunction
with other parameters, like bounding box size and quadrangle coordinates. Ma
et al. [19] extended upon the Faster-RCNN [20] architecture by adding rotated
anchors to accommodate for arbitrarily oriented text. It is important to stress
that scene text methods deal with a sparse set of words, and moreover, each
word is rectified separately. Documents, on the other hand, benefit more from a
rectification process before word localization, due to the denser text but also due
to a stronger prior on the structure thereof. To make use of this prior, CREASE
applies an angle regression loss at the pixel level, focused on the salient text areas
in the document, and optimized in an end-to-end manner over the predicted
backward map.

3 Method

We design CREASE to exploit a document’s content and geometry on both local
and global levels. CREASE addresses different aspects of the input, such as global
structure, creases and fold lines, and per-pixel angular deformation. This allows
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Fig.2: Architecture of CREASE. The rectification process (in orange ar-
rows) contains two steps: a 3D estimator predicts the 3D coordinates of the
document in the image, and a backward map estimator that infers the backward
map from the 3D estimation. The input image is rectified using the backward
map. Red and blue frames denote ground truth supervisions and predictions,
accordingly. Black arrows denote the training process, and the losses used for
optimization. Training is performed first on the 3D estimation model, and is
then fine-tuned in an end-to-end fashion.

it to capture an accurate mapping for the entire document globally, and for fine-
grained features such as characters and words locally (without detecting them
explicitly).

First, we present the general architecture of our model (sub-section .
Next, we present the properties of documents that CREASE relies on: the flow
field angles (sub-section [3.2), and the curvature estimation (sub-section [3.3).
Finally, we present the optimization objective tying the various signals together

(sub-section [3.4).

3.1 Architecture

CREASE is comprised of a two-stage network, illustrated in Figure 2| The first
stage is used for estimating the location of each pixel in a normalized 3D coordi-
nate system, the warp field angle values, and the curvature in each pixel. The 3D
estimation module is followed by a backward mapping network. This network
transforms the estimated 3D coordinate image into a backward map that can be
used for rectifying the input image.

3D Estimation. The first stage provides per-pixel estimation for 3D coordi-
nates (based on [6]) along with the angle and curvature outputs, used as side-
tasks. A Unet [21] based architecture is used for mapping an input image into the
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angle, curvature and 3D coordinate maps. The three maps are used for super-
vision, and the 3D coordinate map also functions as the input for the backward
mapping stage.

Backward Mapping. The second network stage transforms the 3D coordinate
map outputted from the first stage to the backward mapping of the image. This
mapping describes the transformation from the warped image to the rectified re-
sult. In other words, the backward map determines for every pixel in the rectified
(output) image domain, its location in the input image.

The authors of [I3] used a straightforward implementation of deducing the
backward map by inverting their UV forward map prediction. This inversion is
done by ‘placing’ the pixels of the forward map in the rectified image based on
their values, and performing interpolation over the resulting non-regular gridﬂ
This inversion is very sensitive to noise in the forward map, e.g., if two neigh-
boring pixels swap their predictions. The same task was addressed in [16] using
a parallel iterative method that isn’t applicable for an end-to-end differential
solution.

We rely on the DenseNet [9] based model provided by [6] for the backward
mapper in our solution. The work of [6] introduced a learned model for this warp
and trained it in a manner independent of the input texture. We rely on their
work for transforming our 3D coordinate maps into backward maps. The use
of a differentiable backward mapper allows for end-to-end training of the model
using a combined objective, optimizing the 3D estimation and backward mapping
networks jointly using a combined objective, as discussed in sub-section [3.4]

3.2 Angle Supervision

While the 3D estimation network learns the global document structure, we wish
the network will also be aware of the local angular deformation that each point
of the document has undergone during the warping. Angular deformation esti-
mation complements the 3D regression used in [6] because it is more sensitive
to small deformations that might warp parts of words. To calculate this value,
we warp a local Cartesian system from the source to the target image. We use
angular deformation estimation in two places in our framework.

Angle from backward map. The first place we estimate the angle is the
backward map, where in each pixel we create two infinitesimal vectors e, and
€y, respectively directed at the x and y directions. We then measure the rotation
that ¢, and &, undergo due to the warping process, and denote the resulting
angles as 0, and ¢,. This process is illustrated in Figure @ These angles capture
the rotation and shear parts of a local affine transform, without the translation
and scale counterparts that are captured by the coordinate regression.

! For more details see the Matlab code in [I3]
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Fig. 3: Per-Pixel Angle Calculation. Illustration of the local warp angle
calculation in three locations on the document. The green point is enlarged
to provide better details, showing the resulting angles per axis, denoted by 6,
and 6,. This process is used to penalize for angle prediction errors in the the
backward map. A similar process is done for the forward map, by selecting points
from the warped image and transferring them using 7.

Auxiliary Angle Prediction. In addition to deriving the angles from the
backward map, we predict them directly from the 3D estimator network as two
auxiliary prediction maps. These are learned in parallel to the 3D coordinates
prediction, as shown in Figure [2] to better guide the training, and are not used
during test time. Specifically, each of the two angles 6, and 0, is derived from
its own pair of channels, followed by a Cartesian-to-polar conversion (see sup-
plementary material for details). This conversion yields, in addition to angles 6,
and 60, corresponding magnitude values denoted p, and p,. We use the magni-
tude values as ‘angle-confidence’ to penalize the angle loss proportionally. This
is beneficial since predictions that have small magnitude are more sensitive to
small perturbations.

Angle Estimation Loss. We employ a per-pixel angle penalty on the two
aforementioned predictions: one as derived from the backward map, and the
other as an auxiliary prediction. The per-pixel prediction provided by the 3D
estimation network is masked by a binary text segmentation map. Often, the
strongest deformations appear around the borders, and far from content. Mask-
ing content-less areas allows the loss to target areas of interest, and avoid bias
towards the highly deformed boundaries. Our loss minimizes the smallest an-
gle (modulo 27) between each of the predicted angles {6,,6,} and their ground
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truth counterparts {él, 9y} The per-pixel loss for angles is therefore:

angle 0 0 P Z Pz ||9 éz” - 7T) mod 2777 (1)

ie{z,y}

where ® denotes the Hadamard product. In the backward map angles the loss is
without the confidence values p, that are set to 1, because the angles are derived
from the backward map and are not predicted as an auxiliary.

3.3 Curvature Estimation

A key observation we utilize in this work is that the surface of a crumpled docu-
ment behaves in manner similar to a 2D piecewise-planar surface. Each interface
between two approximately-planar sections introduces a section of higher cur-
vature, and higher local distortion. We wish to give the network a supervision
signal that indicates the presence of such high curvature.

Intuitively, the more crumpled the paper, the more creases or discontinuities
the warp function exhibits. The curvature map highlights non-planar areas of
the paper, where 3D and angle regression might be less accurate. A point in the
middle of a plane would have zero curvature, while a point at the tip of a needle
would have the maximal curvature value. To generate this signal, we utilize the
3D mesh used to generate each document image.

Formally, for a paper mesh M we calculate a curvature map H (M) using the
Laplace-Beltrami operator, as defined for meshes in [23]. The mean curvature
per mesh vertex v; € R3 is obtained by:

M) =11 vi=v))llz. (2)

JEN;

The maps used for supervision are created by thresholding the curvature, to
avoid noise and slight perturbations while emphasizing the actual lines defining
the global deformation for the paper. The maps are used as supervision and are
predicted as an additional segmentation mask by the 3D estimation network.

3.4 Optimization

The optimization of our model consists of two stages: An initial training stage
for the 3D estimation network using the side-tasks, followed by an end-to-end
fine tuning stage in which the network is optimized w.r.t. a combined loss term.

3D Estimation Model. Initially, we optimize the 3D estimation model using
a loss objective that includes the 3D coordinate estimation loss and the afore-
mentioned auxiliary losses, described in Equation . We denote the predicted
and ground-truth normalized world coordinates C and C. The first loss term is
the L; loss over coordinate error, similarly to [6]. The second term is the angle
loss term presented in Equation , masked by the binary text segmentation
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mask D, averaged over all text containing pixels. The last term is the curvature
estimation Ly loss. The 3D estimation loss is:

Lsp = ||C = C|li + D ® Langie + ||H — H]2. (3)

End-to-end Fine Tuning. The first stage of our model may either be trained
individually, or as part of an end-to-end architecture. When training the model
end-to-end, the backward map B is inferred and used for penalizing the pre-
dicted 3D coordinates by the final result. We penalize the resulting backward
map B by the Ly loss as was done in [6], and additionally using our angle loss
from Equation . We append these penalty terms to the one in Equation ,
resulting in the following combined end-to-end loss:

Lcombined = L3D + ||B - BHl + Langle- (4)

4 Experiments

We evaluate CREASE on a new evaluation set comprised of 50 high resolution
synthetic images, as well as on real images from the evaluation set proposed
by [13]. The synthetic dataset is generated with both warp and text annotations,
useful for OCR based evaluations and for evaluating the individual stages of
our model. We provide geometric, visual, and OCR, based metrics, as well as
qualitative evaluations. We compare our results to Dewarpnet [6] trained on our
training set, using the code and parameters that were published by the authors.
As the method of Li et al. [16] isn’t directly applicable to the task at hand, it is
not evaluated in this section. Discussion and comparison to [16] are provided in
the supplementary material.

All models were trained on 15,000 high resolution images rendered using an
extension of the rendering pipeline provided by [6]. Our extensions include the
generation of our supervision signals: text, curvature and angles in addition to
the 3D coordinates provided by the original rendering pipeline. These added
signals come at negligible cost and have no affect in test time. Further details
regarding dataset generation are provided in the supplementary material.

4.1 Evaluation metrics

OCR Based Metric. To correctly evaluate any word related metric, we must
first obtain a set of aligned word location pairs, i.e., a matching polygon for
each ground-truth bounding box in the predicted rectified image domain. Given
the density and small scale of words in documents, a naive coordinate matching
scheme is likely to fail, as a small global shift is to be expected even in the best
case scenario.

During evaluation, we rectify an input image twice: using the network’s pre-
dicted backward map, and using the ground-truth map. We then use an OCR
engine for extracting words and bounding boxes from the rectified images.
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Fig.4: OCR Polygon matching. Frames overlayed with OCR bounding
boxes. Left: Input image overlayed with the warped polygons from images rec-
tified using a predicted transformation (center) and the ground-truth transfor-
mation (right). Purple areas denote a correct match, blue and red areas were
detected only in the ground-truth and prediction rectified images, respectively.

To properly match bounding boxes, we perform the matching stage in the
input image domain, visualized in Figure [} Each bounding box extracted from
a rectified image is warped back and becomes a polygon in the input (warped)
image domain.

We define polygon intersection as our distance metric and match pairs using
the Hungarian algorithm [I4]. With the paired prediction and ground-truth word
boxes we can evaluate the Levenshtein distance [15], or edit distance, denoted
by F;. We first calculate the edit distance for each word in each document, then
calculate the average edit distance over all the words in the dataset.

Following [0], we use an off-the-shelf OCR engine (Tesseract 4.0 [22]). This
engine is quite basic, and does not reflect the advances and robustness of more
modern OCR models. However, the vast majority of recent OCR methods are
targeted at scene-text, with the number of proposed text instance detections
often limited to 100-200. Thus, they are not suited to handle dense document
text. As an alternative, there are a few commercial products designed to handle
dense text recognition [I2JTT] that are far more advanced than Tesseract. We
choose one of them, [I1], for an additional evaluation. Results are presented in
Tables [l and 2

Geometric and Visual Metrics. In addition to an OCR-based evaluation, we
use two metrics for evaluating the geometric correctness and visual similarity of
our results, End Point Error (EPE) and Multi-Scale Structural Similarity (MS-
SSIM). The EPE metric is used to evaluate the calculated rectification warps
and compare them to ground truth. Following [16], we include evaluation for this
metric in our benchmark.

The MS-SSIM [24] metric quantifies how visually similar are the output im-
ages to the ground truth. Given that a small amount of shift is expected and
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Table 1: Benchmark Comparison Using Tesseract OCR [22]. For E; and EPE,
lower is better, while or SSIM, higher is better.

1 Eq J EPE T SSIM
DewarpNet [6] 0.223 £ 0.014 0.051 + 0.001  0.403 £ 0.004
Ours 0.178 £ 0.003  0.043 £ 0.002 0.411 £ 0.002
Improvement +20.2% +14.1% +1.4%

Table 2: Benchmark Comparison Using A Commercial OCR Model [I1]

1 Eq
DewarpNet [6] 0.109 + 0.005
Ours 0.103 £ 0.001
Improvement +5.1%

is not considered an error, a naive evaluation using L; or L, metrics is not
suited for our evaluation. Therefore, following [6] we use the MS-SSIM met-
ric which focuses on statistical measures rather than per-pixel color accuracy.
Evaluating statistics rather than per-pixel accuracy also has its limitations, as
character level rectification is a fine-grained task and improvements on this scale
are not always manifested in this metric. In fact, SSIM is much more sensitive
to small visual deformations in documents containing large amounts of text or
sharp edges. Thus, we only use it to complement our finer-grained, OCR based
metrics. For further discussion regarding the SSIM metric, see supplementary.

4.2 Implementation Details

Models are trained by first optimizing the 3D estimation network using 3D co-
ordinates, text masks, curvature masks and local angle supervision signals to
convergence. Starting from the converged 3D estimation models, we fine-tune
our model in an end-to-end manner by using a fixed, pre-trained, differentiable
backward mapper. We calculate the L; and angle losses over the output back-
ward maps and back-propagate the losses to the 3D estimation network. Training
is conducted using 15,000 high-resolution images rendered in Blender [5] using
over 8,000 texture images. Further details regarding data generation are provided
in the supplementary material.

4.3 Comparison to DewarpNet [6]

The first result we present is a comparison to the prior state-of-the-art trained
on our training set, using the Tesseract [22] engine.

We show mean and standard deviation values over 5 experiments in Table
Our method improves the edit distance metric over the previous method by
4.5% absolute and 20.2% relative. We also see improvements in EPE and SSIM
metrics, and a reduction in standard deviation for all three. The use of both
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Table 3: Angle Loss Evaluation for the 3D Estimation Model.

al.

Model + Ea } EPE 1 SSIM

Vanilla  0.324 £ 0.169 0.066 + 0.029 0.390 + 0.024

Angles 0.246 £ 0.017 0.049 £ 0.002 0.403 £ 0.005

+ Mask  0.244 + 0.014 0.052 4+ 0.001  0.398 + 0.005

+ Conf. 0.216 + 0.017 0.049 £ 0.001  0.400 £ 0.005

Table 4: Ablation Study.
} E4 J EPE T SSIM

Vanilla 0.324 + 0.169  0.066 £+ 0.029 0.390 + 0.024
Angles 0.216 £ 0.017 0.049 £+ 0.001 0.400 + 0.005
Angles 4+ Curvature 0.187 £ 0.005 0.043 £ 0.001  0.409 £ 0.007
E2E 0.223 £ 0.014 0.051 £ 0.001  0.403 £ 0.004
E2E + Angles 0.204 £ 0.015 0.051 4+ 0.002  0.402 £ 0.005
E2E + Angles + Curvature 0.178 £ 0.003 0.043 4+ 0.002 0.411 + 0.002

angle regression and curvature estimation improves performance and stabilizes
the optimization process, reducing the sensitivity to model initialization.

Next, we evaluate our method using the public online API of [I1]. Results
are presented in Table 2l In this case, our model still provides a 5.1% relative
improvement. The commercial model [I1] is superior to [22], reducing the mean
edit distance from 0.178 to 0.103, yet CREASE still maintains a significant gap
over DewarpNet of 0.6% absolute and 5.1% relative.

4.4 Evaluation using Real World Images

Figure [5| depicts a qualitative comparison between our rectification method and
[6] on the real images provided by [I3]. Notice how the text lines rectified using
CREASE are better aligned and easier to read than the other method’s outputs,
especially for text near document edges. Additional examples are included in the
supplementary material.

4.5 Angle Loss Evaluation

We show the contribution of the different elements of our angle-based loss pre-
sented in Section for our metrics and for the OCR metric in particular in
Table[3] ‘Angles’ refers to models trained with the angle loss applied to all image
pixels, instead of only to those that contain text. ‘+ Mask’ refers to applying
the text mask over the loss, i.e., taking the loss only in text-containing pixels,
using the mask denoted by D in Equation . ‘+ Conf.” represents the use of
the angle confidence values (denoted p in Equation ) When not used, we set
p to 1 for all pixels. We report results averaged over 5 experiments each, as well
as the standard deviation. For this experiment, the curvature estimation term



Content Aware Rectification using Angle Supervision 13

Fig.5: Visual Examples. Results from the real image dataset of [I3]. Left
to right: input images, rectification of the input image according to output of [6]
trained using our data, rectification of the input image according to our model’s
output transformation.
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was omitted. Our contributions show a consistent improvement over the vanilla
3D estimation network and, in addition, a much more stable training framework
with consistent results over multiple initializations.

4.6 Ablation Study

Table [ shows the effect of each component of our method. Models trained using
angle and curvature estimation are compared to vanilla models. We compare
both models trained end-to-end (denoted EF2F) and models trained separately.
As seen before, the improvement in results is also accompanied by a decrease in
standard deviation, especially for models trained using curvature estimation.

We evaluate the contribution of end-to-end training of our model using a
fixed, differentiable backward mapper and losses derived from its results, i.e., the
backward map and angle prediction errors (shown in Table. The top three rows
refer to models that were not trained in an end-to-end fashion, while the three
rows below (starting with 'E2E’) refer to models trained end-to-end. ’Angles’
and ’Curvature’ denote the use of each of our two added auxiliary predictions.

The dual usage of the angle loss, in both the 3D estimation model and the
end-to-end training, as well as the curvature estimation, result in much more
readable rectification and a more stable training scheme than the previous state-
of-the-art.

5 Conclusion

We presented CREASE, a content aware document rectification method which
optimizes a per-pixel angle regression loss, a curvature estimation loss and a 3D
coordinate estimation loss for providing image rectification maps.

Our method rectifies folded and creased documents using hints found in both
local and global scale properties of the document, and provides a significant im-
provement in OCR performance, geometry and visual similarity based metrics.
In our proposed two stage model, the first stage is used for predicting 3D struc-
ture, angles and curvature, while the second stage predicts the backward map.
We utilize a pixel-level angle regression loss that is shown to be a beneficial
side-task in both the 3D estimation and the end-to-end training. Furthermore,
our 3D estimation model learns the angle side-task specifically on the words in
the document, thus optimizing for readability in the rectified image, while the
curvature estimation side-task complements the angle regression by mapping its
discontinuities.

Extensive testing and comparisons show our method’s superior performance
over diverse inputs, using both real and synthetic evaluation data. We show an
increase in OCR performance, geometry and similarity metrics that is consistent
over all experiments and on a variety of documents.
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