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1 Experiments on FairALM: Linear Classifier

Data. We consider four standard datasets, Adult, COMPAS, German and Law

Schools [4, 1]. The Adult dataset is comprised of demographic characteristics
where the task is to predict if a person has an income higher (or lower) than
$50K per year. The protected attribute here is gender. In COMPAS dataset, the
task is to predict the recidivism of individuals based on features such as age,
gender, race, prior offenses and charge degree. The protected attribute here is
race, specifically, whether the individual is white or black. The German dataset
classifies people as good or bad credit risks with the person being a foreigner or
not as the protected attribute. The features available in this dataset are credit
history, saving accounts, bonds, etc. Finally, the Law Schools dataset, which
comprises of ∼ 20K examples, seeks to predict a person’s passage of the bar
exam. Here, a binary attribute race is considered as the protected attribute.

Setup. We use Alg. 1 in the paper for experiments in this section. Recall from
§ 3 of the paper that Alg. 1 requires the specification of H. We use the space
of logistic regression classifiers as H. At the start of the algorithm we have an
empty set of classifiers. In each iteration, we add a newly trained classifier h ∈ H
to the set of classifiers only if h has a smaller Lagrangian objective value among
all the classifiers already in the set.

Quantitative Results. For the Adult dataset, FairALM attains a smaller test
error and smaller DEO compared to the baselines considered in Table 1. We
see big improvements on the DEO measure in COMPAS dataset and test error
in German dataset using FairALM. While the performance of FairALM on Law

Schools is comparable to other methods, it obtains a better false-positive rate
than [1] which is a better metric as this dataset is skewed towards it’s target class.

Summary. We train Alg. 1 on standard datasets specified in [4, 1]. We observe
that FairALM is competitive with the popular methods in the fairness literature.

Adult COMPAS German Law Schools

ERR DEO ERR DEO ERR DEO ERR DEO

Zafar et al. [7] 22.0 5.0 31.0 10.0 38.0 13.0 − −
Hardt et al. [5] 18.0 11.0 29.0 8.0 29.0 11.0 4.5 0.0

Donini et al. [4] 19.0 1.0 27.0 5.0 27.0 5.0 − −
Agarwal et al. [1] 17.0 1.0 31.0 3.0 − − 4.5 1.0

FairALM
15.8
±1

0.7
±0.6

34.7
±1

0.1
±0.1

24.3
±2.7

10.8
±4.5

4.8
±0.1

0.4
±0.2

Table 1. Standard Datasets. We report test error (ERR) and DEO fairness measure
in %. FairALM attains minimal DEO measure among the baseline methods while
maintaining a similar test error.
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2 Proofs for theoretical claims in the paper

Prior to proving the convergence of primal and dual variables of our algorithm
with respect to the augmented lagrangian LT (q, λ), we prove a regret bound on
the function ft(λ) which is defined in the following lemma. As ft(λ) is a strongly
concave function (which we shall see shortly), we obtain a bound on the negative
regret.

Lemma 1. Let rt denote the reward at each round of the game. The reward
function ft(λ) is defined as ft(λ) = λrt− 1

2η (λ−λt)2. We choose λ in the round

T + 1 to maximize the cumulative reward, i.e., λT+1 = argmaxλ
∑T
t=1 ft(λ).

Define L = maxt | rt |. We obtain the following bound on the cumulative reward,
for any λ,

T∑
t=1

(
λrt −

1

2η
(λ− λt)2

)
≤

T∑
t=1

λtrt + ηL2O(log T ) (1)

Proof. As we are maximizing the cumulative reward function, in the (t + 1)th

iteration λt+1 is updated as λt+1 = argmaxλ
∑t
i=1 fi(λ). This learning rule is

also called the Follow-The-Leader (FTL) principle which is discussed in Section
2.2 of [6]. Emulating the proof of Lemma 2.1 in [6], a bound on the negative
regret of FTL, for any λ ∈ R, can be derived due to the concavity of ft(λ),

T∑
t=1

ft(λ)−
T∑
t=1

ft(λt) ≤
T∑
t=1

ft(λt+1)−
T∑
t=1

ft(λt) (2)

Our objective, now, is to obtain a bound on RHS of (2). Solving argmaxλ
∑t
i=1 fi(λ)

for λ will show us how λt and λt+1 are related,

λt+1 =
η

t

t∑
i=1

ri +
1

t

t∑
i=1

λi =⇒ λt+1 − λt =
η

t
rt (3)

Using (3), we obtain a bound on ft(λt+1)− ft(λt), we have,

ft(λt+1)− ft(λt) ≤
η

t
r2t

With L = maxt |rt| and using the fact that
∑T
i=1

1
i ≤ (log T + 1),

T∑
t=1

(
ft(λt+1)− ft(λt)

)
≤ ηL2(log T + 1) (4)

Let us denote ξT = ηL2(log T + 1), we bound (2) with (4),

∀λ ∈ R
T∑
t=1

(
λrt −

1

2η
(λ− λt)2

)
≤
( T∑
t=1

λtrt

)
+ ξT

Cumulative Reward Bound

(5)
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Next, using the Cumulative Reward Bound (5), we prove the theorem stated
in the paper. The theorem gives us the number of iterations required by Alg. 1
(in the paper) to reach a ν−approximate saddle point. Our bounds for η = 1

T
and λ ∈ R are strictly better than [1]. We re-state the theorem here,

Theorem 1. Recall that dh represents the difference of conditional means. As-
sume that ||dh||∞ ≤ L and consider T rounds of Alg 1 (in the paper). Let

q̄ := 1
T

∑T
t=1 qt and λ̄ := 1

T

∑T
t=1 λt be the average plays of the q-player and

the λ-player respectively. Then, we have LT (q̄, λ̄) ≤ LT (q, λ̄) +ν and LT (q̄, λ̄) ≥
LT (q̄, λ)− ν, under the following conditions,

– If η = O(
√

B2T
L2(log T+1) ), ν = O(

√
B2L2(log T+1)

T ); ∀|λ| ≤ B, ∀q ∈ ∆

– If η = 1
T , ν = O(L

2(log T+1)2

T ); ∀λ ∈ R, ∀q ∈ ∆

Proof. Recall the definition of LT (q, λ) from the paper,

LT (q, λ) =
(∑

i

qiehi

)
+ λ
(∑

i

qidhi

)
− 1

2η

(
λ− λT

)2
(6)

For the sake of this proof, let us define ζT in the following way,

ζT (λ) =
1

2η

T∑
t=1

(
(λ− λt)2 − (λ− λT )2 + (λt − λT )2

)
(7)

Recollect from (5) that ξT = ηL2(log T + 1). We outline the proof as follows,

1. First, we compute an upper bound on LT (q̄, λ̄),

LT (q̄, λ̄) ≤ LT (q, λ̄) +
ζT (λ̄)

T
+
ξT
T

∀q ∈ ∆

Also, LT (q̄, λ) ≤ LT (q, λ̄) +
ζT (λ)

T
+
ξT
T

∀λ ∈ R,∀q ∈ ∆

Average Play Upper Bound

(8)

(9)

2. Next, we determine an lower bound on LT (q̄, λ̄),

LT (q̄, λ̄) ≥ LT (q̄, λ)− ζT (λ)

T
− ξT
T

∀λ ∈ R

Average Play Lower Bound

(10)

3. We bound ζT (λ)
T + ξT

T for the case |λ| ≤ B and show that a ν−approximate
saddle point is attained.

4. We bound ζT (λ)
T + ξT

T for the case λ ∈ R and, again, show that ν−approximate
saddle point is attained.
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We write the proofs of the above fours parts one-by-one. Steps 1,2 in the above
outline are intermediary results used to prove our main results in Steps 3,4.
Reader can directly move to Steps 3,4 to see the main proof.

1. Proof for the result on Average play Upper Bound

LT (q, λ̄) =
∑
iqiehi

+
(∑

tλt
T

)(∑
iqidhi

)
− 1

2η

(∑
tλt
T
− λT

)2
(11)

Exploiting convexity of 1
2η

(∑
t
λt

T − λT
)2

via Jenson’s Inequality,

≥ 1

T

∑
t

(∑
iqiehi + λt

∑
iqidhi −

1

2η
(λt − λT )2

)
(12)

As ht = argminqLT (q, λt), we have LT (q, λt) ≥ LT (ht, λt), hence,

≥ 1

T

∑
t

(
eht

+ λtdht
− 1

2η
(λt − λT )2

)
(13)

Using the Cumulative Reward Bound (5),

≥
∑
teht

T
+
λ
∑
tdht

T
− 1

T

∑
t

( (λ− λt)2

2η
+

(λt − λT )2

2η

)
− ξT
T

(14)

Add and subtract 1
T

∑T
t=1

1
2η (λ− λT )2, use ζT from (7) and regroup the terms,

= (
∑
iq̄iehi) + (λ

∑
iq̄idhi)−

1

2η
(λ− λT )2 − ζT (λ)

T
− ξT
T

(15)

= LT (q̄, λ)− ζT (λ)

T
− ξT
T

(16)

2. Proof for the result on Average play Lower Bound Proof is similar
to Step 1 so we skip the details. The proof involves finding a lower bound for
LT (q̄, λ) using the Cumulative Reward Bound (5). With simple algebraic manip-
ulations and exploiting the convexity of LT (q̄, λ) via the Jenson’s inequality, we
obtain the bound that we state.
3. Proof for the case |λ| ≤ B
For the case |λ| ≤ B, we have ζT (λ) ≤ B2T

η , which gives,

ζT (λ)

T
+
ξT
T
≤ B2

η
+
ηL2(log T + 1)

T
(17)

Minimizing R.H.S in (17) over η gives us a ν− approximate saddle point,

LT (q̄, λ̄) ≤ LT (q, λ̄) + ν and LT (q̄, λ̄) ≥ LT (q̄, λ)− ν

where ν = 2

√
B2L2(log T + 1)

T
and η =

√
B2T

L2(log T + 1)

ν− approximate saddle point for |λ| ≤ B

(18)

(19)
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4. Proof for the case λ ∈ R
We begin the proof by bounding ζT (λ)

T + ξT
T . Let λ∗ = argmaxλLT (q̄, λ). We have

a closed form for λ∗ given by λ∗ = λT + η
∑
iq̄idhi

. Substituting λ∗ in ζT gives,

ζT (λ∗)

T
+
ξT
T

=
1

2η

1

T

∑
t

(
2(λt − λT )2 + 2η(λT − λt)(

∑
iq̄idhi

)
)

+
ξT
T

(20)

Recollect that λt+1 − λt = η
t dht (from (3)). Using telescopic sum on λt, we get

(λT − λt) ≤ ηL(log T + 1) and (λT − λt)2 ≤ η2L2(log T + 1)2. We substitute
these in the previous equation (20),

ζT (λ∗)

T
+
ξT
T
≤ ηL2(log T + 1)2 + ηL2(log T + 1) +

ηL2(log T + 1)

T
(21)

Setting η = 1
T , we get

ζT (λ∗)

T
+
ξT
T
≤ O(

L2(log T + 1)2

T
) := ν (22)

Using (22), we prove the convergence of λ in the following way,

LT (q̄, λ) ≤ LT (q̄, λ∗)
(

as λ∗ is the maximizer of LT (q̄, λ)
)

(23)

≤ LT (q̄, λ̄) +
ζT (λ∗)

T
+
ξT
T

(
Average Play Lower Bound

)
(24)

≤ LT (q̄, λ̄) + ν
(

from (22)
)

(25)

We prove the convergence of q in the following way. For any λ ∈ R,

LT (q, λ̄) ≥ LT (q̄, λ∗)−
ζT (λ∗)

T
− ξT
T

(
Average Play Upper Bound (16)

)
(26)

≥ LT (q̄, λ∗)− ν
(

from (22)
)

(27)

≥ LT (q̄, λ̄)− ν
(

as λ∗ is the maximizer of LT (q̄, λ)
)

(28)

Therefore,

LT (q̄, λ̄) ≤ LT (q, λ) + ν and LT (q̄, λ̄) ≥ LT (q̄, λ)− ν

where ν = O
(
L2(log T + 1)2

T

)
and η =

1

T

ν− approximate saddle point for λ ∈ R

(29)

(30)
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3 More details on FairALM: DeepNet Classifier

Recall that in § 5.2 in the paper, we identified a key difficulty when extending
our algorithm to deep networks. The main issue is that the set of classifiers |H|
is not a finite set. We argued that leveraging stochastic gradient descent (SGD)
on an over-parameterized network eliminates this issue. When using SGD, few
additional modifications of Alg 1 (in the paper) are helpful, such as replacing the
non-differentiable indicator function 1[·] with a smooth surrogate function and
computing the empirical estimates of the errors and conditional means denoted
by êh(z)/µ̂sh(z) respectively. These changes modify our objective to a form that
is not a zero-sum game,

max
λ

min
w

(
êhw

+ λ(µ̂s0hw
− µ̂s1hw

)− 1

2η
(λ− λt)2

)
(31)

We use DP constraint in (31), other fairness metrics discussed in the paper are
valid as well. A closed-form solution for λ can be achieved by solving an upper
bound to (31) obtained by exchanging the “max”/“min” operations.

max
λ

min
w

(
êhw

+ λ(µ̂s0hw
− µ̂s1hw

)− 1

2η
(λ− λt)2

)
(32)

≤ min
w

max
λ

(
êhw + λ(µ̂s0hw

− µ̂s1hw
)− 1

2η
(λ− λt)2

)
(33)

Substituting the closed form solution λ = λt + η(µ̂s0hw
− µ̂s1hw

) in (33),

≤ min
w

(
êhw

+ +λt(µ̂
s0
hw
− µ̂s1hw

) +
η

2
(µ̂s0hw

− µ̂s1hw
)2
)

(34)

Note that the surrogate function defined within µ̂shw
is convex and non-negative,

hence, we can exploit Jenson’s inequality to eliminate the power 2 in (34) to give
us a convenient upper bound,

≤ min
w

(
êhw + (λt + η)µ̂s0hw

− (λt − η)µ̂s1hw

)
(35)

In order to obtain a good minima in (35), it may be essential to run the SGD
on (35) a few times: for ImSitu experiments, SGD was run on (35) for 5 times.
We also gradually increase the parameter η with time as ηt = ηt−1(1 + ηβ) for
a small non-negative value for ηβ , e.g., ηβ ≈ 0.01. This is a common practice
in augmented Lagrangian methods, see [2] (page 104). The overall algorithm is
available in the paper as Alg. 2. The key primal and dual steps can be seen in
the following section.
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3.1 Algorithm for baselines

We provide the primal and dual steps used for the baseline algorithms for the
ImSitu experiments from the paper. The basic framework for all the baselines
remains the same as Alg. 2 in the paper. For Proxy-Lagrangian, only the key
ideas in [3] were adopted for implementation.

PRIMAL: vt ∈ ∂êhw

DUAL: None

Unconstrained

PRIMAL: vt ∈ ∂
(
êhw + η(µ̂s0hw

− µ̂s1hw
)2
)

DUAL: None

Parameters: Penalty Parameter η

`2 Penalty

PRIMAL: vt ∈ ∂
(
êhw + η0µ̂

s0
hw

+ η1µ̂
s1
hw

)
DUAL: None

Parameters: ηi ∝ 1/(# samples in si)

Reweight

PRIMAL: vt ∈ ∂
(
êhw

+ λ
0\1
t (µ̂s0hw

− µ̂s1hw
− ε) + λ

1\0
t (µ̂s1hw

− µ̂s0hw
− ε)

)
DUAL: λ

i\j
t+1 ← max

(
0, λ

i\j
t + ηi\j(µ̂

si
hw
− µ̂sjhw

− ε)
)

Parameters: Dual step sizes η0\1, η1\0 Tol. ε ≈ 0.05. i\j ∈ {0\1, 1\0}

Lagrangian [8]

PRIMAL: vt ∈ ∂
(
êhw + λ

0\1
t (µ̂s0hw

− µ̂s1hw
− ε) + λ

1\0
t (µ̂s1hw

− µ̂s0hw
− ε)

)
DUAL: θ

i\j
t+1 ← θ

i\j
t + ηi\j(µ̂

si
hw
− µ̂sjhw

− ε)

λ
i\j
t+1 ← B

exp θ
i\j
t+1

1 + exp θ
i\j
t+1 + exp θ

j\i
t+1

Parameters: Dual step sizes η0\1/η1\0. Tol. ε ≈ 0.05, Hyperparam. B

No surrogates in DUAL for µ̂s0hw
/µ̂s1hw

. i\j ∈ {0\1, 1\0}

Proxy-Lagrangian [3]

PRIMAL: vt ∈ ∂
(
êhw

(z) + (λt + η)µ̂s0hw
(z)− (λt − η)µ̂s1hw

(z)
)

DUAL: λt+1 ← λt + η
(
µ̂s0hw
− µ̂s1hw

)
Parameters: Dual Step Size η

FairALM



FairALM: Augmented Lagrangian Method for Training Fair Models 9

3.2 Supplementary Results on CelebA

Additional Results. The dual step size η is a key parameter in FairALM
training. Analogous to the dual step size η we have the penalty parameter in `2
penalty training, also denoted by η. It can be seen from Figure 1 and Figure 2
that FairALM is more robust to different choices of η than `2 penalty. The target
class in this section is attractiveness and protected attribute is gender.

(η = 20)

(η = 40)

(η = 60)

(η = 80)

Fig. 1. FairALM Ablation on CelebA. For a given η, the left image represents the
test error and the right image shows the DEO measure. We study the effect of varying
the dual step size η on FairALM. We observe that the performance of FairALM is
consistent over a wide range of η values.
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(η = 0.001)

(η = 0.01)

(η = 0.1)

(η = 1)

Fig. 2. `2 Penalty Ablation on CelebA For each η value, the left image represents
the test set errors and the right image shows the fairness measure (DEO). We investi-
gate a popular baseline to impose fairness constraint which is the `2 penalty. We study
the effect of varying the penalty parameter η in this figure. We observe that training
with `2 penalty is quite unstable. For η > 1, the algorithm doesn’t converge and raises
numerical errors.
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More Interpretability Results. We present the activation maps obtained
when running the FairALM algorithm, unconstrained algorithm and the gender
classification task. We show our results in Figure 3. The target class is attractive-
ness and protected attribute is gender. We threshold the maps to show only the
most significant colors. The maps from gender classification task look at gender-
revealing attributes such as presence of long-hair. The unconstrained model looks
mostly at the entire image. FairALM looks at only a specific region of the face
which is not gender revealing.

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Fig. 3. Interpretability in CelebA. We find that an unconstrained model picks
up a lot of gender revealing attributes however FairALM doesn’t. The image labelled
Gender denotes the map of a gender classification task. We observe overlap between the
maps of gender classification task and the unconstrained model. The activation maps
are regulated to show colors above a fixed threshold to highlight the most significant
regions used by a model.
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4 Supplementary Results on ImSitu

Detailed Setup. We use the standard ResNet-18 architecture for the base
model. We initialize the weights of the conv layers weights from ResNet-18
trained on ImageNet (ILSVRC). We train the model using SGD optimizer and
a batch size of 256. For first few epochs (≈ 20) only the linear layer is trained
with a learning rate of 0.01/0.005. Thereafter, the entire model is trained end
to end with a lower learning rate of 0.001/0.0005 till the accuracy plateaus.

Meaning of Target class (+). Target class (+) is something that a classifier
tries to predict from an image. Recall the basic notations § 2 from the paper,
µ
si,tj
h := µh|(s = si, t = tj) denotes the elementary conditional expectation of

some function µh with respect to two random variables s, t. When we say we are
imposing DEO for a target class tj we refer to imposing constraint on the dif-
ference in conditional expectation of the two groups of s for the class tj , that is,

dh = µ
s0,tj
h −µs1,tjh . For example, for Cooking (+) vs Driving (−) problem when

we say Cooking (+) is regarded as the target class we mean that tj = cooking

and hence the DEO constraint is of the form dh = µs0,cookingh − µs1,cookingh .

Supplementary Training Profiles. We plot the test set errors and the DEO
measure during the course of training for the verb pair classifications reported in
the paper. We compare against the baselines discussed in Table 1 of the paper.
The plots in Fig. 4 below supplement Fig. 5 in the paper.

Additional qualitative results We show the activation maps in Fig. 5 to il-
lustrate that the features used by FairALM model are more aligned with the
action/verb present in the image and are not gender leaking. The verb pairs
have been chosen randomly from the list provided in [8]. In all the cases Gender
is considered as the protected attribute. The activation maps are regulated to
show colors above a fixed threshold in order to highlight the most significant
regions used by a model to make a prediction.
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Cooking (+) Driving (−)

Shaving (+) Moisturizing (−)

Washing (+) Saluting (−)

Assembling (+) Hanging (−)

Fig. 4. Supplementary Training Profiles. FairALM consistently achieves minimum
DEO across different verb pair classifications.
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Fig. 5. Additional qualitative Results in ImSitu dataset. Models predict the tar-
get class (+). FairALM consistently avoids gender revealing features and uses features
that are more relevant to the target class. Due to the small dataset sizes, a limitation
of this experiment is shown in the last row where both FairALM and Unconstrained
model look at incorrect regions. The number of such cases in FairALM is far less than
those in the unconstrained model.
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