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Abstract Despite recent advances in deep learning-based face frontal-
ization methods, photo-realistic and illumination preserving frontal face
synthesis is still challenging due to large pose and illumination discrep-
ancy during training. We propose a novel Flow-based Feature Warping
Model (FFWM) which can learn to synthesize photo-realistic and illumi-
nation preserving frontal images with illumination inconsistent supervi-
sion. Specifically, an Illumination Preserving Module (IPM) is proposed
to learn illumination preserving image synthesis from illumination in-
consistent image pairs. IPM includes two pathways which collaborate to
ensure the synthesized frontal images are illumination preserving and
with fine details. Moreover, a Warp Attention Module (WAM) is intro-
duced to reduce the pose discrepancy in the feature level, and hence to
synthesize frontal images more effectively and preserve more details of
profile images. The attention mechanism in WAM helps reduce the ar-
tifacts caused by the displacements between the profile and the frontal
images. Quantitative and qualitative experimental results show that our
FFWM can synthesize photo-realistic and illumination preserving frontal
images and performs favorably against the state-of-the-art results. Our
code is available at https://github.com/csyxwei/FFWM.

Keywords: Face Frontalization, Illumination Preserving, Optical Flow,
Guided Filter, Attention Mechanism

1 Introduction

Face frontalization aims to synthesize the frontal view face from a given pro-
file. Frontalized faces can be directly used for general face recognition methods
without elaborating additional complex modules. Apart from face recognition,
generating photo-realistic frontal face is beneficial for a series of face-related
tasks, including face reconstruction, face attribute analysis, facial animation,
etc.

https://github.com/csyxwei/FFWM
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Figure 1: ±45◦, ±60◦, ±75◦ and ±90◦ images of the two persons in the Multi-
PIE. Each row images have the same flash in the recording environment.

Traditional methods address this problem through 2D/3D local texture warp-
ing [6,36] or statistical modeling [22]. Recently, GAN-based methods have been
proposed to recover a frontal face in a data-driven manner [1, 8, 10, 28, 31, 32,
34, 35]. For instance, Yin et al. [32] propose DA-GAN to capture the long-
displacement contextual information from illumination discrepancy images un-
der large poses. However, it recovers inconsistent illumination on the synthesized
image. Flow-based method [33] predicts a dense pixel correspondence between
the profile and frontal image and uses it to deform the profile face to the frontal
view. However, deforming the profile face in the image space directly leads to
obvious artifacts and missing pixels should be addressed under large poses.

The existing methods do not consider the illumination inconsistency between
the profile and ground-truth frontal image. Taking the widely used benchmark
Multi-PIE [4] as an example, the visual illumination conditions on several poses
are significantly different from the ground-truth frontal images as shown in Fig.
1. Except ±90◦, the other face images are produced by the same camera type.
The variation in camera types causes obvious illumination inconsistency between
the ±90◦ images and the ground-truth frontal image. Although efforts have been
made to manually color-balance those same type cameras, the illumination of
resulting images within ±75◦ (except 0◦) still look visually distinguishable with
the ground-truth frontal image. Since the existing methods minimize pixel-wise
loss between the synthesized image and the illumination inconsistent ground-
truth, they tend to change both the pose and the illumination of the profile face
image, while the latter actually is not acceptable in face editing and synthesis.

To address the above issue, this paper proposes a novel Flow-based Feature
Warping Model (FFWM) which can synthesize photo-realistic and illumination
preserving frontal image from illumination inconsistent image pairs. In partic-
ular, FFWM incorporates the flow estimation with two modules: Illumination
Preserving Module (IPM) and Warp Attention Module (WAM). Specifically, we
estimate the optical flow fields from the given profile: the reverse and forward
flow fields are predicted to warp the front face to the profile view and vice versa,
respectively. The estimated flow fields are fed to IPM and WAM to conduct face
frontalization.

The IPM is proposed to synthesize illumination preserving images with fine
facial details from illumination inconsistent image pairs. Specifically, IPM con-
tains two pathways: (1) Illumination Preserving Pathway and (2) Illumination
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Adaption Pathway. For (1), an illumination preserving loss equipped with the
reverse flow field is introduced to constrain the illumination consistency between
synthesized images and the profiles. For (2), guided filter [7] is introduced to fur-
ther eliminate the illumination discrepancy and learns frontal view facial details
from illumination inconsistent ground-truth image. The WAM is introduced to
reduce the pose discrepancy in the feature level. It uses the forward flow field to
align the profile features to the frontal view. This flow provides an explicit and
accurate supervision signal to guide the frontalization. The attention mechanism
in WAM helps to reduce the artifacts caused by the displacements between the
profile and frontal images.

Quantitative and qualitative experimental results demonstrate the effective-
ness of our FFWM on synthesizing photo-realistic and illumination preserving
faces with large poses and the superiority over the state-of-the-art results on the
testing benchmarks. Our contributions can be summarized as:

– A Flow-based Feature Warping Model (FFWM) is proposed to address the
challenging problem in face frontalization, i.e. photo-realistic and illumina-
tion preserving image synthesis.

– Illumination Preserving Module (IPM) equipped with guided filter and flow
field is proposed to achieve illumination preserving image synthesis. Warp
Attention Module (WAM) uses the attention mechanism to effectively reduce
the pose discrepancy in the feature level under the explicit and effective
guidance from flow estimation.

– Quantitative and qualitative results demonstrate that the proposed FFWM
outperforms the state-of-the-art methods.

2 Related Work

2.1 Face Frontalization

Face frontalization aims to synthesize the frontal face from a given profile. Tradi-
tional methods address this problem through 2D/3D local texture warping [6,36]
or statistical modeling [22]. Hassner et al. [6] employ a mean 3D model for face
normalization. A statistical model [22] is used for frontalization and landmark
detection by solving a constrained low-rank minimization problem.

Benefiting from deep learning, many GAN-based methods [8,10,27,28,32,33]
are proposed for face frontalization. Huang et al. [10] use a two-pathway GAN
architecture for perceiving global structures and local details simultaneously.
Domain knowledge such as symmetry and identity information of face is used
to make the synthesized faces photo-realistic. Zhao et al. [34] propose PIM with
introducing a domain adaptation strategy for pose invariant face recognition. 3D-
based methods [1,2,31,35] attempt to combine prior knowledge of 3D face with
face frontalization. Yin et al. [31] incorporate 3D face model into GAN to solve
the problem of large pose face frontalization in the wild. HF-PIM [1] combines
the advantages of 3D and GAN-based methods and frontalizes profile images via
a novel texture warping procedure. In addition to supervised learning, Qian et
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Figure 2: The architecture of our FFWM. Illumination Preserve Module is incor-
porated to facilitate synthesized frontal image Î to be illumination preserving
and facial details preserving in two independent pathways. Based on the skip con-
nection, the Warp Attention Module helps synthesize frontal image effectively.
Losses are shown in red color, which Îw is the synthesized image Î warped by
Φ′ and the ÎG is the guided filter output.

al. [17] propose a novel Face Normalization Model (FNM) for unsupervised face
generation with unpaired face images in the wild. Note that FNM focuses on
face normalization, without considering preserving illumination.

Instead of learning function to represent the frontalization procedure, our
method gets frontal warped feature by flow field and reconstructs illumination
preserving and identity preserving frontal view face.

2.2 Optical Flow

Optical flow estimation has many applications, e.g., action recognition, au-
tonomous driving and video editing. With the progress in deep learning, FlowNet
[3], FlowNet2 [13] and others achieve good results by end-to-end supervised
learning. While SpyNet [18], PWC-Net [26] and LiteFlowNet [11] also use coarse-
to-fine strategery to refine the initial flow. It is worth mentioning that PWC-Net
and LiteFlowNet have smaller size and are easier to train. Based on weight shar-
ing and residual subnetworks, Hur and Roth [12] learn bi-directional optical
flow and occlusion estimation jointly. Bilateral refinement of flow and occlusion
address blurry estimation, particularly near motion boundaries. By the global
and local correlation layers, GLU-Net [29] can resolve the challenges of large
displacements, pixel-accuracy, and appearance changes.

In this work, we estimate bi-directional flow fields to represent dense pixel
correspondence between the profile and frontal faces, which are then exploited
to obtain frontal view features and preserve illumination condition, respectively.
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3 Proposed Method
Let {I, Igt} be a pair of profile and frontal face image of the same person. Given
a profile image I, our goal is to train a model R to synthesize the corresponding
frontal face image Î = R(I), which is expected to be photo-realistic and illumi-
nation preserving. To achieve this, we propose the Flow-based Feature Warping
Model (FFWM). As shown in Fig. 2, FFWM takes U-net [20] as the backbone
and incorporates with the Illumination Preserving Module (IPM) and the Warp
Attention Module (WAM) to synthesize Î. In addition, FFWM uses optical flow
fields which are fed to IPM and WAM to conduct frontalization. Specifically, we
compute the forward and reverse flow fields to warp the profile to the frontal
view and vice versa, respectively.

In this section, we first introduce the bi-direcrional flow fields estimation in
Sec 3.1. IPM and WAM are introduced in Sec 3.2 and Sec 3.3. Finally, the loss
functions are detailed in Sec 3.4.

3.1 Bi-directional Flow Fields Estimation
Face frontalization can be viewed as the face rotation transformation, and the
flow field can model this rotation by establishing the pixel-level correspondence
between the profile and frontal faces. Traditional optical flow methods [3,13] take
two frames as the input. However, we only use one profile image as the input.
In this work, we adopt the FlowNetSD in FlowNet2 [13] as our flow estimation
network, and change the input channel from 6 (two frames) to 3 (one image).
For preserving illumination and frontalization, we estimate the reverse flow field
Φ′ and the forward flow field Φ from the profile image, respectively.

Reverse Flow Field. Given the profile image I, reverse flow estimation net-
work F ′ predicts the reverse flow field Φ′ which can warp the ground-truth frontal
image Igt to the profile view as I.

Φ′ = F ′(I;ΘF ′), (1)
Iw′ = W(Igt, Φ′), (2)

where ΘF ′ denotes the parameters of F ′, and W(·) [14] is the bilinear sampling
operation. To learn an accurate reverse flow field, F ′ is pretrained with the
landmark loss [15], sampling correctness loss [19] and the regularization term [19].

Forward Flow Field. Given the profile image I, forward flow estimation net-
work F predicts the forward flow field Φ which can warp I to the frontal view.

Φ = F(I;ΘF ), (3)
Iw = W(I, Φ), (4)

where ΘF denotes the parameters of F . To learn an accurate forward flow field,
F is pretrained with the same losses as F ′.

Then two flow fields Φ′ and Φ are used for the IPM and WAM to generate
illumination preserving and photo-realistic frontal images.
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3.2 Illumination Preserving Module
Without considering inconsistent illumination in the face datasets, the existing
frontalization methods potentially overfit to the wrong illumination. To effec-
tively decouple the illumination and the facial details, hence to synthesize illumi-
nation preserving faces with fine details, we propose the Illumination Preserving
Module (IPM). As shown in Fig. 2, IPM consists of two pathways. Illumination
preserving pathway ensures that the illumination condition of the synthesized
image Î is consistent with the profile I. Illumination adaption pathway ensures
that the facial details of the synthesized image Î are consistent with the ground-
truth Igt.

Illumination Preserving Pathway. Because the illumination condition is
diverse and cannot be quantified as a label, it is hard to learn reliable and in-
dependent illumination representation from face images. Instead of constraining
the illumination consistency between the profile and the synthesized image in
the feature space, we directly constrain it in the image space. As shown in Fig.
2, in the illumination preserving pathway, we firstly use the reverse flow field Φ′

to warp the synthesized image Î to the profile view,

Îw = W(Î , Φ′). (5)

Then an illumination preserving loss is defined on the warped synthesized image
Îw to constrain the illumination consistency between the synthesized image Î and
the profile I. By minimizing it, FFWM can synthesize illumination preserving
frontal images.

Illumination Adaption Pathway. Illumination preserving pathway cannot
ensure the consistency of facial details between the synthesized image Î and the
ground-truth Igt, so we constrain it in the illumination adaption pathway. Since
the illumination of profile I is inconsistent with the ground-truth Igt under large
poses, adding constraints directly between Î and Igt eliminates the illumination
consistency between Î and I. So a guided filter layer [7] is firstly used to transfer
the illumination of images. Specifically, the guided filter takes Igt as the input
image and Î as the guidance image,

ÎG = G(Î , Igt), (6)

where G(·) denotes the guided filter, and we set the radius of filter as the quarter
of the image resolution. After filtering, the guided filter result ÎG has the same
illumination with Igt while keeping the same facial details with Î. Then the
illumination-related losses (e.g., pixel-wise loss, perceptual loss) are defined on
ÎG to facilitate our model synthesize Î with much finer details. By this means,
Î can become much more similar to Igt in facial details without changing the
illumination consistency between Î and I.

Note that the guided filter has no trainable parameters and potentially cause
our model trap into local minima during training. So we apply the guided filter
after several iterations, providing stable and robust initialization to our model.
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Figure 3: The architecture of Warp Attention Module. Considering the symmetry
prior of human face, WAM also contains flipped warped feature.

3.3 Warp Attention Module
The large pose discrepancy makes it difficult to synthesize correct facial details in
the synthesized images. To reduce the pose discrepancy between the profile and
frontal face, Warp Attention Module (WAM) is proposed to align the profile
face to the frontal one in the feature space. We achieve this by warping the
profile features guided by the forward flow field Φ. The architecture of our WAM
is illustrated in Fig. 3. It contains two steps: flow-guided feature warping and
feature attention.

Flow-Guided Feature Warping. Because the profile and frontal face have
different visible areas, the forward flow field Φ cannot establish a complete pixel-
level correspondence between them. Hence, warping profile face directly leads to
artifacts. Here we incorporate Φ with bilinear sampling operation W(·) to warp
the profile face to the frontal one in the feature space. Additionally, we use the
symmetry prior of human face, and take both warped features and its horizontal
flip to guide the frontal image synthesis.

fw = W(f, Φ), (7)

where f denotes the encoder feature of the profile. Let fw′ denotes the horizontal
flip of fw, and (fw ⊕ fw

′) denotes the concatenation of fw and fw
′.

Feature Attention. After warping, the warped feature encodes the back-
grounds and self-occlusion artifacts, which leads to degraded frontalization per-
formance. To eliminate above issue and extract reliable frontal feature, an atten-
tion mechanism is then used to adaptively focus on the critical parts of (fw⊕fw′).
The warped feature (fw⊕fw′) is firstly fed into a Conv-BN-ReLU-ResidualBlock
Layer to generate an attention map A, which has the same height, width and
channel size with (fw ⊕ fw

′). Then the reliable frontalized feature f̂ is obtained
by,

f̂ = A⊗ (fw ⊕ fw
′), (8)
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where ⊗ denotes element-wise multiplication. f̂ is then skip connected to the
decoder to help generate photo-realistic frontal face image Î.

3.4 Loss Functions

In this section, we formulate the loss functions used in our work. The background
of images is masked to make the loss functions focus on the facial area.

Pixel-wise Loss. Following [8, 10], we employ a multi-scale pixel-wise loss on
the guided filter result ÎG to constrain the content consistency,

Lpixel =

S∑
s=1

∥∥∥ÎGs − Igts

∥∥∥
1
, (9)

where S denotes the number of scales. In our experiments, we set S = 3, and
the scales are 32 × 32, 64 × 64 and 128 × 128.

Perceptual Loss. Pixel-wise loss tends to generate over-smoothing results. To
alleviate this, we introduce the perceptual loss defined on the VGG-19 network
[25] pre-trained on ImageNet [21],

Lp =
∑
i

wi

∥∥∥ϕi(ÎG)− ϕi(I
gt)

∥∥∥
1
, (10)

where ϕi(·) denotes the output of the i-th VGG-19 layer. In our implementation,
we use Conv1-1, Conv2-1, Conv3-1, Conv4-1 and Conv5-1 layer, and set w =
{1, 1/2, 1/4, 1/4, 1/8}. To improve synthesized imagery in the particular facial
regions, we also use the perceptual loss on the facial regions like eyes, nose and
mouth.

Adversarial Loss. Following [24], we adpot a multi-scale discriminator and
adversarial learning to help synthesize photo-realistic images.

Ladv = min
R

max
D

EIgt [logD(Igt)]− EÎG [log(1−D(ÎG))]. (11)

Illumination Preserving Loss. To preserve the illumination of profile I on
synthesized image Î, we define the illumination preserving loss on the warped
synthesized image Îw at different scales,

Lip =

S∑
s=1

∥∥∥Îws − Is

∥∥∥
1
, (12)

where S denotes the number of scales, and the scale setting is same as Eqn. (9).
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Figure 4: Synthesis results of the Multi-PIE dataset by our model under large
poses and illumination inconsistent conditions. Each pair presents profile (left),
synthesized frontal face (middile) and ground-truth frontal face (right).

Identity Preserving Loss. Following [8,10], we present an identity preserving
loss to preserve the identity information of the synthesized image Î,

Lid =
∥∥∥ψfc2(Î)− ψfc2(I

gt)
∥∥∥
1
+
∥∥∥ψpool(Î)− ψpool(I

gt)
∥∥∥
1
, (13)

where ψ(·) denotes the pretrained LightCNN-29 [30]. ψfc2(·) and ψpool(·) denote
the outputs of the last pooling layer and the fully connected layer respectively.
To preserve the identity information, we add the identity loss on both Î and ÎG.

Overall Losses. Finally, we combine all the above losses to give the overall
model objective,

L = λ0Lpixel + λ1Lp + λ2Ladv + λ3Lip + λ4Lid, (14)

where λ∗ denotes the different losses tradeoff parameters.

4 Experiments

To illustrate our model can synthesize photo-realistic and illumination preserv-
ing images while preserving identity, we evaluate our model qualitatively and
quantitatively under both controlled and in the wild settings. In the following
subsections, we begin with an introduction of datasets and implementation de-
tails. Then we demonstrate the merits of our model on qualitative synthesis
results and quantitative recognition results over the state-of-the-art methods.
Lastly, we conduct an ablation study to demonstrate the benefits from each
part of our model.

4.1 Experimental Settings

Datasets. We adopt the Multi-PIE dataset [4] as our training and testing set.
Multi-PIE is widely used for evaluating face synthesis and recognition in the
controlled setting. It contains 754,204 images of 337 identities from 15 poses and
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20 illumination conditions. In this paper, the face images with neutral expression
under 20 illuminations and 13 poses within ±90◦ are used. For a fair comparison,
we follow the test protocols in [8] and utilize two settings to evaluate our model.
The first setting (Setting 1) only contains images from Session 1. The training
set is composed of all the first 150 identities images. For testing, one gallery
image with frontal view and normal illumination is used for the remaining 99
identities. For the second setting (Setting 2), we use neutral expression images
from all four sessions. The first 200 identities and the remaining 137 identities are
used for training and testing, respectively. Each testing identity has one gallery
image with frontal view and normal illumination from the first appearance.

LFW [9] contains 13,233 face images collected in unconstrained environment.
It will be used to evaluate the frontalization performance in uncontrolled settings.

Implementation Details. All images in our experiments are cropped and
resized to 128 × 128 according to facial landmarks, and image intensities are
linearly scaled to the range of [0, 1]. The LightCNN-29 [30] is pretrained on
MS-Celeb-1M [5] and fine-tuned on the training set of Multi-PIE.

In all our experiments, we empirically set λ0 = 5, λ1 = 1, λ2 = 0.1, λ3 =
15, λ4 = 1. The learning rate is initialized by 0.0004 and the batch size is 8. The
flow estimation networks F and F ′ are pre-trained and then all networks are
end-to-end trained by minimizing the objective L with setting lr=0.00005 for F
and F ′.

4.2 Qualitative evaluation
In this subsection, we qualitatively compare the synthesized results of our model
against state-of-the-art face frontalization methods. We train our model on the
training set of the Multi-PIE Setting 2, and evaluate it on the testing set of the
Multi-PIE Setting 2 and the LFW [9].

Fig. 4 shows the face synthesized results under large poses, and it is obvious
that our model can synthesize photo-realistic images. To demonstrate the illu-
mination preserving strength of our model, we choose the profiles with obvious
inconsistent illumination. As shown in Fig. 4, the illumination of profile faces
can be well preserved in the synthesized images. More synthesized results are
provided in the supplementary material.

Fig. 5 illustrates the comparison with the state-of-the-art face frontalization
methods [8,10,17,31] on the Multi-PIE dataset. In the large pose cases, existing
methods are disable to preserve the illumination of profiles on the synthesized
results. Face shape and other face components (e.g., eyebrows, mustache and
nose) also occur deformation. The reason is those methods are less able to pre-
serve reliable details from the profiles. Compared with the existing methods,
our method produces more identity preserving results while keeping the facial
details of the profiles as much as possible. In particular, under large poses, our
model can recover photo-realistic illumination conditions of the profiles, which
is important when frontalized images are used for some other face-related tasks,
such as face editing, face pose transfer and face-to-face synthesis.



Flow-based Feature Warping Model 11

(a) Profile (b) Ours (c) [8] (d) [10] (e) [31] (f) [17] (g) Frontal

Figure 5: Face frontalization comparison on the Multi-PIE dataset under the
pose of 90◦ (first two rows) and 75◦ (last two rows).

We further qualitatively compare face frontalization results of our model
on the LFW dataset with [6, 10, 17, 28, 34]. As shown in Fig. 6, the existing
methods fail to recover clear global structures and fine facial details. Also they
cannot preserve the illumination of the profiles. Though FNM [17] generates high
qualitative images, it is still disable to preserve identity. It is worth noting that
our method produces more photo-realistic faces with identity and illumination
well-preserved, which also demonstrates the generalizability of our model in the
uncontrolled environment. More results under large poses are provided in the
supplementary material.

4.3 Quantitative evaluation

In this subsection, we quantitatively compare the proposed method with other
methods in terms of recognition accuracy on Multi-PIE and LFW. The recogni-
tion accuracy is calculated by firstly extracting deep features with LightCNN-
29 [30] and then measuring similarity between features with a cosine-distance
metric.

Tab. 1 shows the Rank-1 recognition rates of different methods under Setting
2 of Multi-PIE. Our method has advantages over competitors, especially at large
poses (e.g., 75◦, 90◦), which demonstrates that our model can synthesize frontal
images while preserving the identity information. The recognition rates under
Setting 1 is provided in the supplementary material.

Tab. 2 compares the face verification performance (ACC and AUC) of our
method with other state-of-the-arts [8, 16, 23, 31, 32] on the LFW. Our method
achieves 99.65 on accuracy and 99.92 on AUC, which is also comparable with
other state-of-the-art methods. The above quantitative results prove that our
method is able to preserve the identity information effectively.
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(a) Profile (b) Ours (c) [34] (d) [10] (e) [28] (f) [6] (g) [17]

Figure 6: Face frontalization comparison on the LFW dataset. Our method is
trained on Mulit-PIE and tested on LFW.

Table 1: Rank-1 recognition rates (%) across poses under Setting 2 of the Multi-
PIE. The best two results are highlighted by bold and underline respectively.

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ Avg
Light CNN [30] 98.59 97.38 92.13 62.09 24.18 5.51 63.31
DR-GAN [28] 94.90 91.10 87.20 84.60 - - 89.45
FF-GAN [31] 94.60 92.50 89.70 85.20 77.20 61.20 83.40
TP-GAN [10] 98.68 98.06 95.38 87.72 77.43 64.64 86.99
CAPG-GAN [8] 99.82 99.56 97.33 90.63 83.05 66.05 89.41
PIM [34] 99.30 99.00 98.50 98.10 95.00 86.50 96.07
3D-PIM [35] 99.64 99.48 98.81 98.37 95.21 86.73 96.37
DA-GAN [32] 99.98 99.88 99.15 97.27 93.24 81.56 95.18
HF-PIM [1] 99.99 99.98 99.98 99.14 96.40 92.32 97.97
Ours 99.86 99.80 99.37 98.85 97.20 93.17 98.04

4.4 Ablation Study

In this subsection, we analyze the respective roles of the different modules and
loss functions in frontal view synthesis. Both qualitative perceptual performance
(Fig. 7) and face recognition rates (Tab. 3) are reported for comprehensive com-
parison under the Multi-PIE Setting 2. We can see that our FFWM exceeds all
its variants in both quantitative and qualitative evaluations.

Effects of the Illumination Preserving Module (IPM). Although without
IPM the recognition rates drop slightly (as shown in Tab. 3), the synthesized
results cannot preserve illumination and are approximate to the inconsistent
ground-truth illumination (as shown in Fig. 7). We also explore the contribu-
tions of illumination adaption pathway (IAP) and illumination preserving path-
way (IPP) in the IPM. As shown in Fig. 7, without IPP, the illumination of
synthesized images tend to be inconsistent with the profiles and ground-truth
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Table 2: Face verification accuracy (ACC) and area-under-curve (AUC) results
on LFW.
Method FaceNet [23] VGG Face [16] FF-GAN [31] CAPG-GAN [8] DA-GAN [32] Ours
ACC(%) 99.63 98.95 96.42 99.37 99.56 99.65
AUC(%) - - 99.45 99.90 99.91 99.92

w/o IAP w/o WAM w/o flip w/o warp w/o attw/o IPPw/o IPM Ours FrontalProfile

Figure 7: Model Comparsion: synthesis results of our model and its variants on
Multi-PIE

images. And without IAP, the illumination of synthesized images tends to be a
tradeoff between the profiles and the illumination inconsistent ground-truth im-
ages. Only integrating IPP and IAP together, our model can achieve illumination
preserving image synthesis. Furthermore, our model archives a lower recognition
rate when removing the IPP, which demonstrates that the IPP prompts the
synthesized results to keep reliable information of the profiles.

Effects of the Warp Attention Module (WAM). We can see that with-
out WAM, the synthesized results tend to be smooth and distorted in the self-
occlusion parts (as shown in Fig. 7). As shown in Tab. 3, without WAM, the
recognition rates drop significantly, which proves that WAM dominates in pre-
serving identity information. Moreover, we explore the contributions of three
components in the WAM, including taking flipped warped feature as additional
input (w/o flip), feature warping (w/o warp) and feature attention (w/o att).
As shown in Fig. 7, taking flip feature as additional input has benefits on re-
covering the self-occlusion parts on the synthesized images. Without the feature
attention mechanism, there are artifacts on the synthesized images. Without
feature warping, the synthesized results get worse visual performance. These re-
sults above suggest that each component in WAM is essential for synthesizing
identity preserving and photo-realistic frontal images.

Effects of the losses. As shown in Tab. 3, the recognition rates decrease if one
loss function is removed. Particularly, the rates drop significantly for all poses if
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Table 3: Incomplete variants analysis: Rank-1 recognition rates (%) across poses
under Setting 2 of the Multi-PIE dataset. IAP and IPP denote the illumina-
tion adaption pathway and illumination preserving pathway in the Illumination
Preserving Module (IPM). Warp, flip and att denote the three variants in Warp
Attention Module (WAM).

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ Avg
w/o IPM 99.83 99.77 99.35 98.74 97.18 93.15 98.00
IPM w/o IPP 99.84 99.74 99.36 98.47 96.73 91.56 97.62
IPM w/o IAP 99.83 99.76 99.30 98.70 97.11 92.83 97.92
w/o WAM 99.84 99.46 98.91 97.27 93.18 86.23 95.81
WAM w/o flip 99.84 99.69 99.27 98.10 96.57 92.65 97.69
WAM w/o warp 99.83 99.64 99.16 97.83 94.60 88.16 96.54
WAM w/o att 99.85 99.79 99.36 98.71 96.81 93.09 97.94
w/o Ladv 99.83 99.72 99.28 98.57 97.09 93.11 97.93
w/o Lid 99.85 99.62 99.12 97.42 93.93 86.05 96.00
w/o Lpixel 99.83 99.77 99.35 98.79 97.05 92.85 97.94
w/o Lp 99.81 99.75 99.33 98.62 97.13 93.10 97.96
Ours 99.86 99.80 99.37 98.85 97.20 93.17 98.04

the Lid loss is not adapted. We also report the qualitative visualization results in
Fig. 7. Without Ladv loss, the synthesized images tend to be blurry, suggesting
the usage of adversarial learning. Without Lid and Lpixel, our model cannot
promise the visual performance on the local textures (e.g., eyes). Without Lp,
the synthesized faces present artifacts at the edges (e.g., face and hair).

5 Conclusion

In this paper, we propose a novel Flow-based Feature Warping Model (FFWM)
to effectively address the challenging problem in face frontalization, photo-realistic
and illumination preserving image synthesis with illumination inconsistent su-
pervision. Specifically, an Illumination Preserve Module is proposed to address
the illumination inconsistent issue. It helps FFWM to synthesize photo-realistic
frontal images while preserving the illumination of profile images. Furthermore,
the proposed Warp Attention Module reduces the pose discrepancy in the feature
space and helps to synthesize frontal images effectively. Experimental results
demonstrate that our method not only synthesizes photo-realistic and illumi-
nation preserving results but also outperforms state-of-the-art methods on face
recognition across large poses.
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