Learning Architectures for Binary Networks

https://github.com/gistvision/bnas

Dahyun Kim*!1[0000-0002-0820-4214] 'Kl Pratap
Singh*2[0000-0003-3113-950X] 4114 Jonghyun Choj! [0000—0002-7934—8434]

! GIST (Gwangju Institute of Science and Technology), South Korea
2 Indian Institute of Technology (IIT) Roorkee
killawhale@gm.gist.ac.kr ksingh@ee.iitr.ac.in jhc@gist.ac.kr

Abstract. Backbone architectures of most binary networks are well-
known floating point (FP) architectures such as the ResNet family. Ques-
tioning that the architectures designed for FP networks might not be the
best for binary networks, we propose to search architectures for binary
networks (BNAS) by defining a new search space for binary architectures
and a novel search objective. Specifically, based on the cell based search
method, we define the new search space of binary layer types, design a
new cell template, and rediscover the utility of and propose to use the Ze-
roise layer instead of using it as a placeholder. The novel search objective
diversifies early search to learn better performing binary architectures.
We show that our method searches architectures with stable training
curves despite the quantization error inherent in binary networks. Quan-
titative analyses demonstrate that our searched architectures outperform
the architectures used in state-of-the-art binary networks and outperform
or perform on par with state-of-the-art binary networks that employ var-
ious techniques other than architectural changes.

Keywords: Binary networks - Backbone architecture - Architecture search

1 Introduction

Increasing demand for deploying high performance visual recognition systems en-
courages research on efficient neural networks. Approaches include pruning [12],
efficient architecture design [14, 15, 42], low-rank decomposition [16], network
quantization [6,20,32] and knowledge distillation [13,37]. Particularly, network
quantization, especially binary or 1-bit CNNs, are known to provide extreme
computational and memory savings. The computationally expensive floating
point convolutions are replaced with computationally efficient XNOR. and bit-
count operations, which significantly speeds up inference [32]. Hence, binary net-
works are incomparable with efficient floating point networks due to the extreme
computational and memory savings.

Current binary networks, however, use architectures designed for floating
point weights and activations [25, 28,32, 34]. We hypothesize that the backbone

* indicates equal contribution. This work is done while KPS is at GIST for internship.

https://github.com/gistvision/bnas

2 D. Kim, K. P. Singh and J. Choi

96

BNAS-C
04 BNASB | de——-re-
BNAs-A | _
g\:: 92 /,/! A
8 ool m’ -l BNAS(Ours)
3 BNAS-Mini ® —A— WRN40+Binarized
< 88 - -@- ResNetl18+Binarized
E ResNet34+Binarized
= 86 SENet+Binarized
NiN+Binarized
84 DenseNet+Binarized

0.0 071 Oj2 013 014 0i5 076 Of7 018 0.9
FLOPs (x 108)

Fig. 1. Test accuracy (%) vs. FLOPs on CIFAR10 using the XNOR-Net bi-
narization scheme [32]. Our searched architectures outperform the binarized floating
point architectures. Note that our BNAS-Mini, which has much less FLOPs, outper-
forms all other binary networks except the one based on WideResNet40 (WRN40)

architectures used in current binary networks may not be optimal for binary
parameters as they were designed for floating point ones. Instead, we may learn
better binary network architectures by exploring the space of binary networks.

To discover better performing binary networks, we first apply one of the
widely used binarization schemes [32] to the searched architectures from float-
ing point NAS which use cell based search and gradient based search algo-
rithms [9,27,40]. We then train the resulting binary networks on CIFAR10. Dis-
appointingly, the binarized searched architectures do not perform well (Sec. 3).
We hypothesize two reasons for the failure of binarized searched floating point
architectures. First, the search space used in the floating point NAS is not nec-
essarily the best one for binary networks. For example, separable convolutions
will have large quantization error when binarized, since nested convolutions in-
crease quantization error (Sec. 4.1). Additionally, we discover that the Zeroise
layer, which was only used as a placeholder in floating point NAS, improves the
accuracy of binary networks when kept in the final architecture (Sec. 4.1). Sec-
ond, the cell template used for floating point cell based NAS methods is not well
suited for the binary domain because of unstable gradients due to quantization
error (Sec. 4.2).

Based on the above hypotheses and empirical observations, we formulate a
cell based search space explicitly defined for binary networks and further propose
a novel search objective with the diversity regularizer. The proposed regularizer
encourages exploration of diverse layer types in the early stages of search, which
is particularly useful for discovering better binary architectures. We call this
method as Binary Network Architecture Search or BNAS. We show that the
new search space and the diversity regularizer in BNAS helps in searching better
performing binary architectures (Sec. 5).

Learning Architectures for Binary Networks 3

Given the same binarization scheme, we compare our searched architectures
to several handcrafted architectures including the ones shown in the Fig. 1.
Our searched architectures clearly outperforms the architectures used in the
state-of-the-art binary networks, indicating the prowess of our search method in
discovering better architectures for binary networks.
We summarize our contributions as follows:

e We propose the first architecture search method for binary networks. The
searched architectures are adjustable to various computational budgets (in
FLOPs) and outperform backbone architectures used in state-of-the-art bi-
nary networks on both CIFAR10 and ImageNet dataset.

e We define a new search space for binary networks that is more robust to
quantization error; a new cell template and a new set of layers.

e We propose a new search objective aimed to diversify early stages of search
and demonstrate its contribution in discovering better performing binary net-
works.

2 Related Work

2.1 Binary Neural Networks

There have been numerous proposals to improve the accuracy of binary (1-bit)
precision CNNs whose weights and activations are all binary valued. We cate-
gorize them into binarization schemes, architectural modifications and training
methods.

Binarization Schemes. As a pioneering work, [6] proposed to use the sign func-
tion to binarize the weights and achieved compelling accuracy on CIFAR10. [7]
binarized the weights and the activations by the sign function and use the
straight through estimator (STE) to estimate the gradient. [32] proposed XNOR-
Net which uses the sign function with a scaling factor to binarize the weights and
the activations. They showed impressive performance on a large scale dataset
(ImageNet ILSVRC 2012) and that the computationally expensive floating point
convolution operations can be replaced by highly efficient XNOR and bit count-
ing operations. Many following works including recent ones [25, 28] use the bi-
narization scheme of XNOR-Net as do we. [22] approximated both weights and
activations as a weighted sum of multiple binary filters to improve performance.
Very recently, new binarization schemes have been proposed [3,10]. [L0] uses pro-
jection convolutional layers while [3] improves upon the analytically calculated
scaling factor in XNOR-Net.

These different binarization schemes do not modify the backbone architec-
ture while we focus on finding better backbone architectures given a binarization
scheme. A newer binarization scheme can be incorporated into our search frame-
work but that was not the focus of this work.

Architectural Advances. It has been shown that appropriate modifications
to the backbone architecture can result in great improvements in accuracy
[25, 28, 32]. [32] proposed XNOR-Net which shows that changing the order of

4 D. Kim, K. P. Singh and J. Choi

batch normalization (BN) and the sign function is crucial for the performance of
binary networks. [28] connected the input floating point activations of consecu-
tive blocks through identity connections before the sign function. They aimed to
improve the representational capacity for binary networks by adding the float-
ing point activation of the current block to the consequent block. They also
introduced a better approximation of the gradient of the sign function for back-
propagation. [25] used circulant binary convolutions to enhance the representa-
tional capabilities of binary networks. [31] proposed a modified version of separa-
ble convolutions to binarize the MobileNetV1 architecture. However, we observe
that the modified separable convolution modules do not generalize to architec-
tures other than MobileNet. These methods do not alter the connectivity or the
topology of the network while we search for entirely new network architectures.
Training Methods. There have been a number of methods proposed for train-
ing binary networks. [14] showed that quantized networks, when trained progres-
sively from higher to lower bit-width, do not get trapped in a local minimum. [11]
proposed a training method for binary networks using two new losses; Bayesian
kernel loss and Bayesian feature loss. Recently, [18] proposed to pretrain the
network with ternary activation which are later decoupled to binary activations
for fine-tuning. The training methods can be used in our searched networks as
well, but we focus on the architectural advances.

Recent Works on Binary Architecture Search. Recently, [34] performed a
hyper-parameter search (e.g., number of channels) using an evolutionary algo-
rithm to efficiently increase the FLOPs of a binarized ResNet backbone. How-
ever, they trade more computation cost for better performance, reducing their in-
ference speed up (~ 2.7x) to be far smaller than other binary networks (~ 10x).
Concurrently in this conference, [2] propose to search for binary networks but
using a different search space and search strategy than ours. However, the re-
ported accuracy was difficult to reproduce with the given configuration details.
We expect further progress in this field with reproducible public codes.

2.2 Efficient Neural Architecture Search

We search architectures for binary networks by adopting ideas from neural ar-
chitecture search (NAS) methods for floating point networks [27, 30,40, 45, 46].
To reduce the severe computation cost of NAS methods, there are numerous
proposals focused on accelerating the NAS algorithms [1,4,5,8,9,21,23, 24,26,
, 29,30, 38—41, 43]. We categorize these attempts into cell based search and
gradient based search algorithms.
Cell Based Search. Pioneered by [16], many NAS methods [1,5,8,9,21, 23,
, —11,43] have used the cell based search, where the objective of
the NAS algorlthm is to search for a cell, which will then be stacked to form
the final network. The cell based search reduces the search space drastically
from the entire network to a cell, significantly reducing the computational cost.
Additionally, the searched cell can be stacked any number of times given the
computational budget. Although the scalability of the searched cells to higher

Learning Architectures for Binary Networks 5

computational cost is a non-trivial problem [36], it is not crucial to our work
because binary networks focus more on smaller computational budgets.

Gradient Based Search Algorithms. In order to accelerate the search, meth-
ods including [5, 9,27, 38, 10] relax the discrete sampling of child architectures
to be differentiable so that the gradient descent algorithm can be used. The re-
laxation involves taking a weighted sum of several layer types during the search

to approximate a single layer type in the final architecture. [27] uses softmax
of learnable parameters as the weights, while other methods [9, 38, 40] use the
Gumbel-softmax [17] instead, both of which allow seamless back-propagation by

gradient descent. Coupled with the use of the cell based search, certain work has
been able to drastically reduce the search complexity [9].

We make use of both the cell based search and gradient based search algo-
rithms but propose a novel search space along with a modified cell template and
a new regularized search objective to search binary networks.

3 Binarizing Searched Architectures by NAS

It is well known that architecture search results in better performing architecture
than the hand-crafted ones. To obtain better binary networks, we first binarize
the searched architectures by cell based gradient search methods. Specifically, we
apply the binarization scheme of XNOR-Net along with their architectural modi-
fications [32] to architectures searched by DARTS [27], SNAS [40] and GDAS [9].
We show the learning curves of the binarized searched floating point architec-
tures on CIFAR10 dataset in Fig. 2.

Disappointingly, GDAS and SNAS
reach around 40% test accuracy and
quickly plummet while DARTS did
not train at all. This implies that
floating point NAS methods are not g =5 o]
trivially extended to search binary Zao e
networks. We investigate the failure =20
modes in training and find two issues; 0 100 200 300 0 100 200 300
1) the search space is not well suited
for binary networks, e.g., using sep-
arable convolutions accumulates the Fig. 2. Train (left) and test (right) ac-
quantization error repetitively and 2) curacy of binarized searched architec-
the cell template does not propagate tures on CIFAR10. The XNOR-Net’s bi-
the gradients properly, due to quan- narization scheme and architectural modifi-
tization error. To search binary net- cations are applied in all cases. Contrasting
works, the search space and the cell to our BN.AS7 the binarized searched archi-
template should be redesigned to be fectures fail to train well

robust to quantization error.

0

o ®
o
5
3

—— DARTS+Binarized
—— GDAS+Binarized
= BNAS (Ours)

Test Acc. (%)

6 D. Kim, K. P. Singh and J. Choi

4 Approach

To search binary networks, we first write the problem of cell-based architecture
search in general as:

o = argmin Lg(D;6,), (1)

acA(S,T)

where A is the feasible set of final architectures, S is the search space (a set
of layer types to be searched), T is the cell template which is used to create
valid networks from the chosen layer types, Lg is the search objective, D is
the dataset, 6, is the parameters of the searched architecture o which contain

both architecture parameters (used in the continuous relaxation [27], Eq. 6) and
the network weights (the learnable parameters of the layer types, Eq. 6), and
«* is the searched final architecture. Following [27], we solve the minimization

problem using SGD.

Based on the observation in Sec. 3, we propose a new search space (Sp), cell
template (Tg) and a new search objective ENS for binary networks which have
binary weights and activations. The new search space and the cell template are
more robust to quantization error and the new search objective Lg promotes
diverse search which is important when searching binary networks (Sec. 4.3).
The problem of architecture search for binary network aj can be rewritten as:

ap = argmin ES(D;GQB), (2)
ap€AB(SB,TR)

where Ap is the feasible set of binary network architectures and 6, , is parame-
ters of the binary networks. We detail each proposal in the following subsections.

4.1 Search Space for Binary Networks (Sp)

Unlike the search space used in floating point NAS, the search space used for
binary networks should be robust to quantization error. Starting from the search
space popularly used in floating point NAS [9,27,40,46], we investigate the ro-
bustness of various convolutional layers to quantization error and selectively de-
fine the space for the binary networks. Note that the quantization error depends
on the binarization scheme and we use the scheme proposed in [32].

Convolutions and Dilated Convolutions. To investigate the convolutional
layers’ resilience to quantization error, we review the binarization scheme we
use [32]. Let W be the weights of a floating point convolution layer with dimen-
sion ¢ - w - h (number of channels, width and height of an input) and A be an
input activation. The floating point convolution can be approximated by binary
parameters, B, and the binary input activation, I as:

WixA~pBKO (BxI), (3)

where * denotes the convolution operation, ® is the Hadamard product (element
wise multiplication), B = sign(W), I = sign(A), 8 = 1||W||; withn =c-w-h,

T n

Learning Architectures for Binary Networks 7

Table 1. Test Accuracy (%) of a small CNN composed of each layer type
only, in floating point (FP Acc.) and in binary domain (Bin. Acc) on CI-
FAR10. Conv, Dil. Conv and Sep. Conv refer to the convolutions, dilated convolutions
and separable convolutions, respectively. Separable convolutions show a drastically low
performance on the binary domain

Layer Type Conv Dil. Conv Sep. Conv
Kernel Size 3x3 Hx5 3Ix3 5HxbH 3Ix3 5x5H

FP Acc. (%) 61.78 60.14 56.97 55.17 56.38 57.00
Bin. Acc. (%) 46.15 4253 41.02 37.68 10.00 10.00

K=Dxk, D= % and k;; = - Vij. Dilated convolutions are identical
to convolutions in terms of quantization error.

Since both convolutions and dilated convolutions show tolerable quantization
error in binary networks [32] (and our empirical study in Table 1), we include
the standard convolutions and dilated convolutions in our search space.

Separable Convolutions. Separable convolutions [35] have been widely used
to construct efficient network architectures for floating point networks [14] in
both hand-crafted and NAS methods. Unlike floating point networks, we argue
that the separable convolution is not suitable for binary networks due to large
quantization error. It uses nested convolutions to approximate a single convolu-
tion for computational efficiency. The nested convolution are approximated to
binary convolutions as:

Sep(W * A) ~ ﬂQ(BQ * Ag) ~ Blﬂg(Bg * (Kl ® (B1 * Il)))7 (4)

where Sep(W x A) denotes the separable convolution, B; and By are the bi-
nary weights for the first and second convolution operation in the separable
convolution layer, I; = sign(A), Az = 51K; ® (By x 1) and 1, 82, K are the
scaling factors for their respective binary weights and activations. Since every
scaling factor induces quantization error, the nested convolutions in separable
convolutions will result in more quantization error.

To empirically investigate how the quantization error affects training for dif-
ferent convolutional layer types, we construct small networks formed by repeat-
ing each kind of convolutional layers three times, followed by three fully con-
nected layers. We train these networks on CIFAR10 in floating point and binary
domain and summarize the results in Table 1.

When binarized, both convolution and dilated convolution layers show only
a reasonable drop in accuracy, while the separable convolution layers show per-
formance equivalent to random guessing (10% for CIFAR10). The observations
in Table 1 imply that the accumulated quantization error by the nested con-
volutions fails binary networks in training. This also partly explains why the
binarized architecture searched by DARTS in Fig. 2 does not train as it selects
a large number of separable convolutions.

8 D. Kim, K. P. Singh and J. Choi

Table 2. DARTS and BNAS w/ and w/o the Zeroise layers in the final
architecture on CIFARI10. Zeroise Layer indicates whether the Zeroise layers were
kept (v) or not (X). The test accuracy of DARTS drops by 3.02% when you include
the Zeroise layers and the train accuracy drops by 63.54% and the training stagnates.
In constrast, the Zeroise layers improves BNAS in both train and test accuracy

Precision Floating Point (DARTS) Binary (BNAS)
Zeroise Layer X v Gain X v Gain

Train Acc. (%) 99.18 35.64 -63.54% 93.41 9746 +4.05%
Test Acc. (%) 9745 94.43 -3.02% 89.47 92.70 +3.23%

Zeroise. The Zeroise layer outputs

all zeros irrespective of the input [27]. £ 5[2s0[s10 o |270]120] 170
It was originally proposed to model % o75|270|430| % [-080|7e0|ar0| =0.24
the lack of connections. Further, in 8§, T, 2701320 |1.80
the authors’ implementation of [27]%,
. ling fact ling fact
the final architecture excludes the Ze- Sca;%:c " Binarize m‘znﬂ gc ”
roise layers and replaces it with the P I P P
second best layer type, even if the & conv
yer type, Sl || 4|11 | =28.19

. . £ *

search picks the Zeroise layers. Thus, © ST P

the Zeroise layers are not being used
as they were originally proposed but

simply used as a placeholder for a Fig.3. An example when the Zeroise

different and sub-optimal layer type. layer is beneficial for binary networks.
Such replacement of layer types effec- gipce the floating point convolution is close
tively removes all architectures that to zero but the binarized convolution is far
have Zeroise layers from the feasible greater than 0, if the search selects the Ze-
set of final architectures. roise layer instead of the convolution layer,

In contrast, we use the Zeroise the quantization error reduces significantly
layer for reducing the quantization er-
ror and are the first to keep it in the
final architectures instead of using it as a placeholder for other layer types. As a
result, our feasible set is different from that of [27] not only in terms of precision
(binary), but also in terms of the network topology it contains.

As the exclusion of the Zeroise layers is not discussed in [27], we compare the
accuracy with and without the Zeroise layer for DARTS in the DARTS column
of Table 2 and empirically verify that the Zeroise layer is not particularly useful
for floating point networks. However, we observe that the Zeroise layer improve
the accuracy by a meaningful margin in binary networks as shown in the table.
We argue that the Zeroise layer can reduce quantization error in binary networks
as an example in Fig.3. Including the Zeroise layer in the final architecture is
particularly beneficial when the situation similar to Fig. 3 happens frequently
as the quantization error reduction is significant. But the degree of benefit may

3https://github.com/quark0/darts

https://github.com/quark0/darts

Learning Architectures for Binary Networks 9

Table 3. Proposed search space for BNAS. Bin Conv, Bin Dil. Conv, MaxPool
and AwvgPool refer to the binary convolution, binary dilated convolution, max pooling
and average pooling layers, respectively

Layer Type Bin Conv. Bin Dil. Conv. MaxPool AvgPool Zeroise
Kernel Size 3x3 5x5 3x3 5x5 3x3 3x3 N/A

differ from dataset to dataset. As the dataset used for search may differ from
the dataset used to train and evaluate the searched architecture, we propose
to tune the probability of including the Zeroise layer. Specifically, we propose
a generalized layer selection criterion to adjust the probability of including the
Zeroise layer by a transferability hyper-parameter v as:

" p
P = max [;,popl, ...,popn] 5 (5)

where p, is the architecture parameter corresponding to the Zeroise layer and
Dop, are the architecture parameters corresponding to the i*" layer other than
Zeroise. Larger v encourages to pick the Zeroise layer only if it is substantially
better than the other layers.

With the separable convolutions and the Zeroise layer type considered, we
summarize the defined search space for BNAS (Sg) in Table 3.

4.2 Cell Template for Binary Networks (Ts)

With the defined search space, we now learn a network architecture with the
convolutional cell template proposed in [46]. However, the learned architecture
still suffers from unstable gradients in the binary domain as shown in Fig. 4-
(a) and (b). Investigating the reasons for the unstable gradients, we observe
that the skip-connections in the cell template proposed in [46] are confined to
be inside a single convolutional cell, i.e., intra-cell skip-connections. The intra-
cell skip-connections do not propagate the gradients outside the cell, forcing
the cell to aggregate outputs that always have quantization error created inside
the cell. To help convey information without the cumulative quantization error
through multiple cells, we propose to add skip-connections between multiple cells
as illustrated in Fig.5.

The proposed cell template with inter-cell skip-connections help propagate
gradients with less quantization error throughout the network, stabilizing the
training curve. We empirically validate the usefulness of the inter-cell skip con-
nections in Sec. 5.4.

4.3 Search Objective with Diversity Regularizer (ES)

10 D. Kim, K. P. Singh and J. Choi

100

80 .80 —— Sum of Abs. Gradients .200 —— Sum of Abs. Gradients
- = w/ SC: Train Acc. g o
= 60 —— W/ SC: Test Acc. = 60 2150
[v] 4 —— wj/o SC: Train Acc. © 40 5
& 40 w/o SC: Test Acc. S 20 g0
20 | G s0
0 0
0 100 200 300 400 500 600 0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80
Epochs Conv Layers Conv Layers
(a) Learning curve (b) Gradients w/o SC (c) Gradients w/ SC

Fig. 4. Unstable gradients in the binary domain. ‘w/o SC’ indicates the cell
template of [16] (Fig. 5-(a)). ‘w/ SC’ indicates the proposed cell template (Fig. 5-(b)).
The gradient magnitudes are taken at epoch 100. With the proposed cell template (‘w/
SC’), the searched network trains well (a). The proposed cell template shows far less
spiky gradients along with generally larger gradient magnitudes ((b) vs. (c¢)), indicating
that our template helps to propagate gradients more effectively in the binary domain

With the feasible set of binary archi- [T a1 [c&wn] &2]
tectures (Ap) defined by Sp and T},

we solve the optimization problem ConvCell

similar to [27]. However, the layers

with learnable parameters (e.g., con- S
volutional layers) are not selected as Ce®]

often early on as the layers requiring (a) CT in DARTS (b) CT in BNAS
no learning, because the parameter-

free layers are more favorable than Fig.5. Cell templates (CT) of (a)
the under-trained layers. The prob- DARTS and (b) BNAS. Red lines in

lem is more prominent in the binary BNAS indicate inter-cell skip connections.
domain because binary layers train ConvCell indicates the convolutional cell.

slower than the floating point coun- c_(k) indicates the output of the k' cell

terparts [7]. To alleviate this, we pro-
pose to use an exponentially annealed
entropy based regularizer in the search objective to promote selecting diverse
layers and call it the diversity reqularizer. Specifically, we subtract the entropy

of the architecture parameter distribution from the search objective as:
L5(D;:0a,) = Ls(D:0,p) = \H (p)e' =7, (6)

where Lg(+) is the search objective of [27], which is a cross-entropy, 6, is the
parameters of the sampled binary architecture, which is split into the architecture
parameters p and the network weights 6, H(-) is the entropy, A is a balancing
hyper-parameter, ¢ is the epoch, and 7 is an annealing hyper-parameter. This
will encourage the architecture parameter distribution to be closer to uniform
in the early stages, allowing the search to explore diverse layer types.

Using the proposed diversity regularizer, we observed a 16% relative increase
in the average number of learnable layer types selected in the first 20 epochs of
the search. More importantly, we empirically validate the benefit of the diver-
sity regularizer with the test accuracy on the CIFAR10 dataset in Table 4 and
in Sec. 5.4. While the accuracy improvement from the diversity regularizer in

Learning Architectures for Binary Networks 11

Table 4. Effect of searching diversity on CIFAR10. Diversity refers to whether
diversity regularization was applied (v') or not (X) during the search. DARTS only
gains 0.20% test accuracy while BNAS gains 1.75% test accuracy

Precision Floating Point (DARTS) Binary (BNAS)
Diversity X v Gain X v Gain

Test Acc. (%) 96.53 96.73 +0.20 90.95 92.70 +1.75

the floating point NAS methods such as DARTS [27] is marginal (+0.2%), the
improvement in our binary network is more meaningful (+1.75%).

5 Experiments

5.1 Experimental Setup

Datasets. We use CIFAR10 [19] and TmageNet (ILSVRC 2012) [33] datasets to
evaluate the image classification accuracy. We follow [27] in splitting the datasets
for search and training. Please refer to the supplementary material for additional
details regarding the search and final evaluation settings.

Details on Comparison with Other Binary Networks. For XNOR-Net
with different backbone architectures, we use the floating point architectures
from torchvision or a public source* and apply the binarization scheme of
XNOR-Net. Following previous work [10, 28] on comparing ABC-Net with a
single base [22], we compare PCNN with a single projection kernel for both
CIFAR10 and ImageNet. Please refer to the supplementary material for a qual-
itative comparison between our searched cells and other non-searched networks.
The code and learned models will be available in our repository.

5.2 Comparisons on Backbone Architectures for Binary Networks

We quantitatively compare our searched architectures to various backbone ar-
chitectures that have been used in the state-of-the-art binary networks with the
binarization scheme of XNOR-Net [32] in Table 5. The comparisons differ only
in the backbone architecture, allowing us to isolate the effect of our searched
architectures on the final accuracy, i.e., the comparison with XNOR-Net with
different backbone architectures for various FLOPs and newer binary networks
with the architectural contributions only. To single out the architectural con-
tributions of Bi-Real Net, we used Table 1 in [28] to excerpt the ImageNet
classification accuracy with using only the Bi-Real Net architecture. Note that
CBCN is based on the Bi-Real Net architecture with the convolutions being
changed to circulant convolutions®. Additionally, as mentioned in Sec. 2, we do

“https://github.com/kuangliu/pytorch-cifar
5They mention that center loss and gaussian gradient update is also used but they
are not elaborated and not the main focus of CBCN’s method.

https://github.com/kuangliu/pytorch-cifar

12 D. Kim, K. P. Singh and J. Choi

Table 5. Comparison of different backbone architectures for binary networks
with XNOR-Net binarization scheme [32] in various FLOPs budgets. Bi-
Real* indicates Bi-Real Net’s method with only the architectural modifications. We
refer to [18] for the FLOPs of CBCN. CBCN* indicates the highest accuracy for CBCN
with the ResNet18 backbone as [25] report multiple different accuracy for the same
network configuration. Additionally, [25] does not report the exact FLOPs of their
model, hence we categorized them conservatively into the ‘~ 0.27” bracket

Dataset FLOPs (x10%) Model (Backbone Arch.) Top-1 Acc. (%) Top-5 Acc. (%)

XNOR-Net (ResNet18) 88.82 -
XNOR-Net (DenseNet) 85.16 -
~0.16 XNOR-Net (NiN) 86.28 -
- XNOR-Net (SENet) 88.12 -
=z BNAS-A 92.70 -
= XNOR-Net (ResNet34) 88.54 -
) 0.27 XNOR-Net, (WRN40) 91.58 -
: CBCN* (ResNet18) [27] 91.91 -
BNAS-B 93.76 -
0.90 XNOR-Net (ResNext29-64) 84.27 -
' BNAS-C 94.43 -
1.48 XNOR-Net (ResNet18) 51.20 73.20
‘ BNAS-D 57.69 79.89
63 Bi-Real* (Bi-Real Net18) [28] 32.90 56.70
2 ' BNAS-E 58.76 80.61
Z,
g ~ 178 XNOR-Net (ResNet34) 56.49 79.13
E ' BNAS-F 58.99 80.85
1.93 Bi-Real* (Bi-Real Net34) [28] 53.10 76.90
: BNAS-G 59.81 81.61
6.56 CBCN (Bi-Real Net18) [25] 61.40 82.80
: BNAS-H 63.51 83.91
not compare with [34] as the inference speed-up is significantly worse than other

binary networks (~ 2.7x compared to ~ 10x), which makes the comparison less
meaningful.

As shown in Table 5, our searched architectures outperform other architec-
tures used in binary networks in all FLOPs brackets and on both CIFAR10 and
ImageNet. Notably, comparing XNOR-Net with the ResNet18 and ResNet34
backbone to BNAS-D and BNAS-F, we gain +6.49% or +2.50% top-1 accuracy
and +6.69% or +1.72% top-5 accuracy on ImageNet.

Furthermore, BNAS retains the accuracy much better at lower FLOPs, show-
ing that our searched architectures are better suited for efficient binary networks.
Additionally, comparing CBCN to BNAS-H, we gain +2.11% top-1 accuracy and
+1.11% top-5 accuracy, showing that our architecture can scale to higher FLOPs
budgets better than CBCN. In sum, replacing the architectures used in current
binary networks to our searched architectures can greatly improve the perfor-
mance of binary networks.

Learning Architectures for Binary Networks 13

Table 6. Comparison of other binary networks in various FLOPs budgets.
The binarization schemes are: ‘Sign + Scale’: using fixed scaling factor and the sign
function [32], ‘Sign’: using the sign function [7], ‘Clip + Scale’: using clip function
with shift parameter [22], , ‘Sign + Scale*’: using learned scaling factor and the sign
function [3], ‘ Projection’: using projection convolutions [10], ‘ Bayesian’: using a learned
scaling factor from the Bayesian losses [11] and the sign function, and ‘Decoupled’:
decoupling ternary activations to binary activations [18]

Dataset FLOPs (x10%) Method (Backbone Arch.) Binarization Scheme Pretraining Top-1 Acc. (%) Top-5 Acc. (%)

~0.04 PCNN(i = 16) (ResNet18) [10] Projection X 89.16
- : BNAS-Mini Sign + Scale X 90.12
= ~0.16 BinaryNet (ResNet18) [7] Sign X 89.95
= i BNAS-A Sign + Scale X 92.70
© o7 PONN(i = 64) (ResNet18) [10] Projection v 94.31
) BNAS-B Sign + Scale X 93.76

BinaryNet (ResNet18) [7] Sign X 42.20 67.10

~ 1.48 ABC-Net (ResNet18) [22] Clip + Sign X 42.70 67.60

BNAS-D Sign + Scale X 57.69 79.89

Bi-Real (Bi-Real Net18) [25] Sign + Scale v 56.40 79.50

~ XNOR-Net++ (ResNet18) [3] Sign + Scale* X 57.10 79.90

= 1.63 PCNN (ResNet18) [10] Projection v 57.30 80.00

& o BONN (Bi-Real Net18) [11] Bayesian X 59.30 81.60

E BinaryDuo (ResNet18) [15] Decoupled v 60.40 82.30

- BNAS-E Sign + Scale X 58.76 80.61

o178 ABC-Net (ResNet34) [22] Clip + Scale X 52.40 76.50

: BNAS-F Sign+Scale X 58.99 80.85

~1.93 Bi-Real (Bi-Real Net34) [2¢] Sign + Scale v 62.20 83.90

o BNAS-G Sign + Scale X 59.81 81.61

5.3 Comparison with Other Binary Networks

As we focus on improving binary networks by architectural benefits only, com-
parison to other binary network methods is not of our interest. However, it is
still intriguing to compare gains from a pure architectural upgrade to gains from
new binarization schemes or new training methods. As shown in Table 6, our
searched architectures outperform other methods in more than half the FLOPs
brackets spread across CIFAR10 and ImageNet. Moreover, the state-of-the-art
methods that focus on discovering better training schemes are complementary
to our searched architectures, as these training methods were not designed ex-
clusively for a fixed network topology.

Note that, with the same backbone of ResNet18 or ResNet34, Bi-Real, PCNN,
XNOR-Net++ and BONN have higher FLOPs than ABC-Net, XNOR-Net and
BinaryNet. The higher FLOPs are from unbinarizing the downsampling convo-
lutions in the ResNet architecture.%

5.4 Ablation Studies

We perform ablation studies on the proposed components of our method. We
use the CIFAR10 dataset for the experiments with various FLOPs budgets and
summarize the results in Table 7.

5We have confirmed with the authors of [32] that their results were reported without
unbinarizing the downsampling convolutions.

14 D. Kim, K. P. Singh and J. Choi

Table 7. Classification acc. (%) of ablated models on CIFAR10. Full refers
to the proposed method with all components. No Skip, No Zeroise, and No Div refers
to our method without the inter-cell skip connections, with explicitly discarding the
Zeroise layers, or without the diversity regularizer respectively.

Model Full No Skip No Zeroise No Div

BNAS-A 92.70 61.23 89.47 90.95
BNAS-B 93.76 67.15 91.69 91.55
BNAS-C 94.43 70.58 88.74 92.66

All components have decent contributions to the accuracy, with the inter-
cell skip connection in the new cell template contributing the most; without
it, the models eventually collapsed to very low training and test accuracy and
exhibited unstable gradient issues as discussed in Sec. 4.2. Comparing No Div
with Full, the searched cell with the diversity regularizer has a clear gain over the
searched cell without it in all the model variants. Interestingly, the largest model
(BNAS-C) without Zeroise layers performs worse than BNAS-A and BNAS-B,
due to excess complexity. Please refer to the supplementary material for more
discussion.

6 Conclusion

To design better performing binary network architectures, we propose a method
to search the space of binary networks, called BNAS. BNAS searches for a cell
that can be stacked to generate networks for various computational budgets.
To configure the feasible set of binary architectures, we define a new search
space of binary layer types and a new cell template. Specifically, we propose to
exclude separable convolution layer and include Zeroise layer type in the search
space for less quantization error. Further, we propose a new search objective
with the diversity regularizer and show that it helps in obtaining better binary
architectures. The learned architectures outperform the architectures used in the
state-of-the-art binary networks on both CIFAR-10 and ImageNet.

Acknowledgement. This work was partly supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2019R1
C1C1009283), Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-01842,
Artificial Intelligence Graduate School Program (GIST) and No.2019-0-01351, Devel-
opment of Ultra Low-Power Mobile Deep Learning Semiconductor With Compres-
sion/Decompression of Activation/Kernel Data), “GIST Research Institute(GRI) GIST-
CNUH research Collaboration” grant funded by the GIST in 2020, and a study on the
“HPC Support” Project, supported by the ‘Ministry of Science and ICT’ and NIPA.

The authors would like to thank Dr. Mohammad Rastegari for valuable comments
and training details of XNOR-Net and Dr. Chunlei Liu and other authors of [25] for
sharing their code.

Learning Architectures for Binary Networks 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding
and simplifying one-shot architecture search. In: ICML (2018) 4

. Bulat, A., Martinez, B., Tzimiropoulos, G.: Bats: Binary architecture search. ArXiv

preprint arXiv:2003.01711 abs/2003.01711 (2020) 4

. Bulat, A., Tzimiropoulos, G.: Xnor-net+-+: Improved binary neural networks. In:

BMVC (2019) 3, 13

Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on
target task and hardware. In: ICLR (2019), https://openreview.net/forum?id=
HylVB3AqYm 4

Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In: ICCV. pp. 1294-1303
(2019) 4, 5

Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural
networks with binary weights during propagations. In: NIPS (2015) 1, 3
Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016) 3, 10, 13

Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures. In: ECCV (2018) 4
Dong, X., Yang, Y.: Searching for a robust neural architecture in four gpu hours.
In: CVPR (2019) 2,4, 5, 6

Gu, J., Li, C., Zhang, B., Han, J., Cao, X., Liu, J., Doermann, D.: Projection
convolutional neural networks for 1-bit cnns via discrete back propagation. In:
AAAT (2019) 3, 11, 13

Gu, J., Zhao, J., Jiang, X., Zhang, B., Liu, J., Guo, G., Ji, R.: Bayesian optimized
1-bit cnns. In: CVPR (2019) 4, 13

Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NIPS (2015) 1

Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015) 1

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017) 1, 7

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model
size. arXiv:1602.07360 (2016) 1

Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint arXiv:1405.3866 (2014) 1

Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: ICLR (2017), https://arxiv.org/abs/1611.01144 5

Kim, H., Kim, K., Kim, J., Kim, J.J.: Binaryduo: Reducing gradient mismatch in
binary activation network by coupling binary activations. In: ICLR (2020), https:
//openreview.net/forum?id=r1x0lxrFPS 4, 12, 13

Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Tech. rep.
(2009) 11

Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint
arXiv:1605.04711 (2016) 1

https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://arxiv.org/abs/1611.01144
https://openreview.net/forum?id=r1x0lxrFPS
https://openreview.net/forum?id=r1x0lxrFPS

16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

D. Kim, K. P. Singh and J. Choi

Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. arXiv preprint arXiv:1902.07638 (2019) 4

Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
In: NIPS (2017) 3, 11, 13

Liu, C., Chen, L.C., Schroff, F., Adam, H., Hua, W., Yuille, A.L., Fei-Fei, L.: Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation.
In: CVPR (2019) 4

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A.,
Huang, J., Murphy, K.: Progressive neural architecture search. In: ECCV (2018) 4
Liu, C., Qi, Y., Xia, X., Zhang, B., Gu, J., Liu, J., Ji, R., Doermann, D.S.: Circulant
binary convolutional networks: Enhancing the performance of 1-bit dcnns with
circulant back propagation. In: CVPR (2019) 2, 3, 4, 12, 14

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierar-
chical representations for efficient architecture search. In: ICLR (2018), https:
//openreview.net/forum?id=BJQRKzbA- 4

Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. In:
ICLR (2019), https://openreview.net /forum?id=S1eYHoC5FX 2, 4, 5, 6, 8, 10, 11
Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: Enhanc-
ing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In: ECCV (2018) 2, 3, 4, 11, 12, 13

Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization.
In: NIPS (2018) 4

Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search
via parameters sharing. In: ICML (2018) 4

Phan, H., Huynh, D., He, Y., Savvides, M., Shen, Z.: Mobinet: A mobile binary
network for image classification. arXiv preprint arXiv:1907.12629 (2019) 4
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In: ECCV (2016) 1, 2, 3, 4, 5,
6,7, 11, 12, 13

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. IJCV 115(3), 211-252 (2015) 11

Shen, M., Han, K., Xu, C., Wang, Y.: Searching for accurate binary neural archi-
tectures. In: ICCV Workshop (2019) 2, 4, 12

Sifre, L., Mallat, S.: Rigid-motion scattering for image classification 7

Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML (2019) 5

Tan, S., Caruana, R., Hooker, G., Koch, P., Gordo, A.: Learning global additive ex-
planations for neural nets using model distillation. arXiv preprint arXiv:1801.08640
(2018) 1

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: CVPR (2019) 4, 5

Xie, S., Kirillov, A., Girshick, R., He, K.: Exploring randomly wired neural net-
works for image recognition. arXiv preprint arXiv:1904.01569 (2019) 4

Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search.
In: ICLR (2019), https://openreview.net/forum?id=rylqooRqK7 2, 4, 5, 6
Zhang, C., Ren, M., Urtasun, R.: Graph hypernetworks for neural architecture
search. In: ICLR (2019), https://openreview.net/forum?id=rkgW00A9FX 4
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: CVPR (2018) 1

https://openreview.net/forum?id=BJQRKzbA-
https://openreview.net/forum?id=BJQRKzbA-
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rkgW0oA9FX

43.

44.

45.

46.

Learning Architectures for Binary Networks 17

Zhou, Y., Ebrahimi, S., Arik, S.0., Yu, H., Liu, H., Diamos, G.: Resource-efficient
neural architect. arXiv preprint arXiv:1806.07912 (2018) 4

Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Towards effective low-bitwidth
convolutional neural networks. In: CVPR (2018) 4

Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR (2017), https://openreview.net /forum?id=r1Ue8Hcxg 4

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: CVPR (2018) 4, 6, 9, 10

https://openreview.net/forum?id=r1Ue8Hcxg

