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Abstract. We propose a new approach for combining deep-learned non-
metric monocular depth with affine correspondences (ACs) to estimate
the relative pose of two calibrated cameras from a single correspondence.
Considering the depth information and affine features, two new con-
straints on the camera pose are derived. The proposed solver is usable
within 1-point RANSAC approaches. Thus, the processing time of the
robust estimation is linear in the number of correspondences and, there-
fore, orders of magnitude faster than by using traditional approaches.
The proposed 1AC+D4 solver is tested both on synthetic data and on
110 395 publicly available real image pairs where we used an off-the-shelf
monocular depth network to provide up-to-scale depth per pixel. The
proposed 1AC+D leads to similar accuracy as traditional approaches
while being significantly faster. When solving large-scale problems, e.g.
pose-graph initialization for Structure-from-Motion (SfM) pipelines, the
overhead of obtaining ACs and monocular depth is negligible compared
to the speed-up gained in the pairwise geometric verification, i.e., rel-
ative pose estimation. This is demonstrated on scenes from the 1DSfM
dataset using a state-of-the-art global SfM algorithm.

Keywords: pose estimation, minimal solver, depth prediction, affine
correspondences, global structure from motion, pose graph initialization

1 Introduction

This paper investigates the challenges and viability of combining deep-learned
monocular depth with affine correspondences (ACs) to create minimal pose
solvers. Estimating pose is a fundamental problem in computer vision [37, 49,
48, 8, 17, 22, 21, 55, 42, 36, 1, 25–29, 43], enabling reconstruction algorithms such
as simultaneous localization and mapping [34, 35] (SLAM) as well as structure-
from-motion [57, 45, 51, 44] (SfM). Also, there are several other applications, e.g.,
in 6D object pose estimation [23, 31] or in robust model fitting [15, 52, 12, 40, 2,
7], where the accuracy and runtime highly depends on the minimal solver ap-
plied. The proposed approach uses monocular depth predictions together with
ACs to estimate the relative camera pose from a single correspondence.
4 Source code: https://github.com/eivan/one-ac-pose
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(a) Vienna Cathedral

(b) Madrid Metropolis

Fig. 1. Scenes from the 1DSfM dataset [56]. From left to right: color image from the
dataset, predicted monocular depth [30], and 3D reconstruction using global SfM [50].
Pose graphs were initialized by the proposed solver, 1AC+D, as written in Section 4.3.

Exploiting ACs for geometric model estimation is a nowadays popular ap-
proach with a number of solvers proposed in the recent years. For instance, for
estimating the epipolar geometry of two views, Bentolila and Francos [10] pro-
posed a method using three correspondences interpreting the problem via conic
constraints. Perdoch et al. [38] proposed two techniques for approximating the
pose using two and three correspondences by converting each affine feature to
three points and applying the standard point-based estimation techniques. Ra-
poso et al. [41] proposed a solution for essential matrix estimation from two
correspondences. Baráth et al. [3, 6] showed that the relationship of ACs and
epipolar geometry is linear and geometrically interpretable. Eichhardt et al. [14]
proposed a method that uses two ACs for relative pose estimation based on gen-
eral central-projective views. Recently, Hajder et al. [19] and Guan et al. [18]
proposed minimal solutions for relative pose from a single AC when the camera
is mounted on a moving vehicle. Homographies can also be estimated from two
ACs as it was first shown by Köser [24]. In the case of known epipolar geometry,
a single correspondence [5] is enough to recover the parameters of the homogra-
phy, or the underlying surface normal [4, 24]. Pritts et al. [39] used affine features
for the simultaneous estimation of affine image rectification and lens distortion.

In this paper, we propose to use affine correspondences together with deep-
learned priors derived directly into minimal pose solvers – exploring new ways of
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utilizing these priors for pose estimation. We use an off-the-shelf deep monocular
depth estimator [30] to provide a ‘relative’ (non-metric) depth for each pixel
(examples are in Fig. 1) and use the depth together with affine correspondences
for estimating the relative pose from a single correspondence. Aside from the fact
that predicted depth values are far from being perfect, they provide a sufficiently
strong prior about the underlying scene geometry. This helps in reducing the
degrees-of-freedom of the relative pose estimation problem. Consequently, fewer
correspondences are needed to determine the pose which is highly favorable in
robust estimation, i.e., robustly determining the camera motion when the data
is contaminated by outliers and noise.

We propose a new minimal solver which estimates the general relative cam-
era pose, i.e., 3D rotation and translation, and the scale of the depth map from
a single AC. We show that it is possible to use the predicted imperfect depth
signal to robustly estimate the pose parameters. The depth and the AC together
constrain the camera geometry so that the relative motion and scale can be de-
termined as the closed-form solution of the implied least-squares optimization
problem. The proposed new constraints are derived from general central projec-
tion and, therefore, they are valid for arbitrary pairs of central-projective views.
It is shown that the proposed solver has significantly lower computational cost,
compared to state-of-the-art pose solvers. The imperfections of the depth sig-
nal and the AC are alleviated through using the solver with a modern robust
estimator [2], providing state-of-the-art accuracy at exceptionally low run-time.

The reduced number of data points required for the model estimation leads to
linear time complexity when combined with robust estimators, e.g. RANSAC [15].
The resulting 1-point RANSAC has to check only n model hypotheses (where n
is the point number) instead of, e.g.,

(
n
5

)
which the five-point solver implies. This

improvement in efficiency has a significant positive impact on solving large-scale
problems, e.g., on view-graph construction (i.e., a number of 2-view matching
and geometric verification) [45, 46, 51] which operates over thousands of image
pairs. We provide an evaluation of the proposed solver both on synthetic and
real-world data. It is demonstrated, on 110 395 image pairs from the 1DSFM
dataset [56], that the proposed methods are similarly robust to image noise
while being up to 2 orders of magnitude faster, when applied within Graph-Cut
RANSAC [2], than the traditional five-point algorithm. Also, it is demonstrated
that when using the resulting pose-graph in the global SfM pipeline [11, 56] as
implemented in the Theia library [50], the accuracy of the obtained reconstruc-
tion is similar to when the five-point algorithm is used.

2 Constraints from Relative Depths and Affine Frames

Let us denote a local affine frame (LAF) as (x,M), where x ∈ R2 is an image
point and M ∈ R2×2 is a linear transformation describing the local coordinate
system of the associated image region. The following expression maps points y
from a local coordinate system onto the image plane, in the vicinity of x.

x (y) ≈ x + My. (1)
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LAFs typically are acquired from images by affine-covariant feature extrac-
tors [33]. In practice, they can easily be obtained by, e.g., the VLFeat library [54].

Two LAFs (x1,M1) and (x2,M2) form an affine correspondence, namely,
x1 and x2 are corresponding points and M2M−1

1 is the linear transformation
mapping points between the infinitesimal vicinities of x1 and x2 [13].

2.1 Local Affine Frames and Depth through Central Projection

Let q : R2 → R3 be a function that maps image coordinates to bearing vectors.
R ∈ SO(3) and t ∈ R3 are the relative rotation and translation of the camera
coordinate system, such that x ∈ R2 is the projection of X ∈ R3, as follows:

∃!λ : X = λRq (x) + t. (2)

That is, a unique depth λ corresponds to X, along the bearing vector q (x).
When image coordinates x are locally perturbed, the corresponding X and λ

are also expected to change as per Eq. (2). The first order approximation of the
projection expresses the connection between local changes of x and X, i.e., it is
an approximate linear description how local perturbations would relate the two.
Differentiating Eq. (2) along image coordinates k = u, v results in an expression
for the first order approximation of projection, as follows:

∃!λ, ∂kλ : ∂kX = R (∂kλq (x) + λ∂kq (x) ∂kx) . (3)

Observe that t is eliminated from the expression above. Note that, considering
the k-th image coordinate, ∂kX is the the Jacobian of the 3D point X, and ∂kλ
is the Jacobian of the depth λ. Using the differential operator ∇ =

[
∂u, ∂v

]
it

is more convenient to use a single compact expression, that includes the local
affine frame M, as ∇x =

[
∂ux, ∂vx

]
= M.

∃!λ, ∂uλ, ∂vλ : ∇X = R (q (x)∇λ+ λ∇q (x)M) . (4)

All in all, Eqs. (2) and (4) together describe all constraints on the 3D point
X and on its vicinity ∇X, imposed by a LAF (x,M).

2.2 Affine Correspondence and Depth Constraining Camera Pose

Assume two views observing X under corresponding LAFs (x1,M1) and (x2,M2).
Without the loss of generality, we define the coordinate system of the first view
as the identity – thus putting it in the origin – while that of the second one is
described by the relative rotation and translation, R and t, respectively. In this
two-view system, Eqs. (2) and (4) lead to two new constraints on the camera
pose, depth and local affine frames, as follows:

λ1q1 (x1)︸ ︷︷ ︸
a

= Rλ2q2 (x2)︸ ︷︷ ︸
b

+t,

q1 (x1)∇λ1 + λ1∇q1 (x1)M1︸ ︷︷ ︸
A

= R (q2 (x2)∇λ2 + λ2∇q2 (x2)M2)︸ ︷︷ ︸
B

,
(5)
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where the projection functions q1 (x1) and q2 (x2) assign bearing vectors to image
points x1 and x2 of the first and second view, respectively. The first equation
comes from Eq. (2) through the point correspondence, and the second one from
Eq. (4) through the AC, by equating X and ∇X, respectively. Note that depths
λ1, λ2 and their Jacobians ∇λ1, ∇λ2 are intrinsic to each view. Also observe that
3D point X and its Jacobian ∇X are now eliminated from these constraints.

In the rest of the paper, we are resorting to the more compact notations
using a,b,A and B, as highlighted above, i.e., the two lines of Eq. (5) take the
simplified forms of a = Rb + t and A = RB, respectively.

Relative depth. In this paper, as monocular views are used to provide relative
depth predictions, λ1 and λ2 are only known up to a common scale Λ, so that
Eq. (5), with the simplified notation, is modified as follows:

a = ΛRb + t, A = ΛRB. (6)

These constraints describe the relationship of relative camera pose and ACs in
the case of known relative depth.

3 Relative Pose and Scale from a Single Correspondence

Given a single affine correspondence, the optimal estimate for the relative pose
and scale is given as the solution of the following optimization problem.

min
R,t,Λ

1

2
∥a− (ΛRb + t)∥22 +

1

2
∥A− ΛRB∥2F︸ ︷︷ ︸

f(Λ,R,t)

(7)

To solve the problem, the first order optimality conditions have to be investi-
gated. At optimality, differentiating f (Λ,R, t) by t gives:

∇tf (Λ,R, t) = a− ΛRb− t !
= 0, (8)

that is, t can only be determined once the rest of the unknowns, R and Λ, are
determined. This also means that above optimization problem can be set free of
the translation, by performing the following substitution t← ΛRb− a.

The optimization problem, where the translation is replaced as previously
described, only contains the rotation and scale as unknowns, as follows:

min
R,Λ

1

2
∥A− ΛRB∥2F︸ ︷︷ ︸

g(R,Λ)

. (9)

Below, different approaches for determining the unknown scale and rotation are
described, solving Eq. (9) exactly or, in some manner, approximately.



6 I. Eichhardt, and D. Baráth

1AC+D (Umeyama): An SVD solution. In the least-squares sense, the
optimal rotation and scale satisfying Eq. (9) can be acquired by the singular
value decomposition of the covariance matrix of A and B, as follows:

USVT = ABT. (10)

Using these matrices, the optimal rotation and scale are expressed as

R = UDVT, Λ =
tr (SD)

tr (BTB)
, (11)

where D is a diagonal matrix with its diagonal being
[
1, 1,det(UVT)

]
, to con-

strain det R = 1. Given R and Λ, the translation is expressed as t = a− ΛRb.
This approach was greatly motivated by Umeyama’s method [53], where a

similar principle is used for solving point cloud alignment.

1AC+D (Proposed): Approximate relative orientation solution. Ma-
trices A and B, together with their 1D left-nullspaces, define two non-orthogonal
coordinate systems. By orthogonalizing the respective basis vectors, one can con-
struct matrices RA and RB, corresponding to A and B. The relative rotation
between these two coordinate systems can be written as follows:

R = RT
ARB. (12)

RA and RB can be determined, e.g., using Gram-Schmidt orthonormaliza-
tion [47]. For our special case, a faster approach is shown in Alg. 1.

Using this approach, the solution is biased towards the first columns of A
and B, providing perfect alignment of those two axes. In our experiments, this
was rather a favorable property than an issue. The first axis of a LAF represents
the orientation of the feature while the second one specifies the affine shape, as
long as the magnitude of ∇λi is negligible compared to λi, which is usually the
case. The orientation of a LAF is usually more reliable than its shape.

As R is now known and t has been ruled out, Λ is to be determined. Differ-
entiating g (R,Λ) by Λ gives:

∇Λg (R,Λ) = tr
(
ATRB

)
+ Λtr

(
BTB

)
, (13)

that is, once R is known, Λ can be determined as follows:

Λ = −
tr
(
ATRB

)
tr (BTB)

. (14)

Finally, the translation parameters are expressed as t = a− ΛRb.
The complete algorithm is shown in Alg. 1. Note that, although, we have

tested various approaches to computing the relative rotation between the frames
A and B, such as the above described SVD approach or the Gram-Schmidt
process [47], the one introduced in Alg. 1 proved to be the fastest with no
noticeable deterioration in accuracy.
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Table 1. The theoretical computational complexity of the solvers used in RANSAC.
The reported properties are: the number of operations of each solver (steps; 1st row);
the computational complexity of one estimation (1 iter; 2nd); the number of correspon-
dences required for the estimation (m; 3rd); possible outlier ratios (1 − µ; 4th); the
number of iterations needed for RANSAC with the required confidence set to 0.99 (#
iters; 5th); and computational complexity of the full procedure (# comps; 6th). The
major operations are: singular value decomposition (SVD), eigenvalue decomposition
(EIG), LU factorization (LU), and QR decomposition (QR).

point-based AC-based AC+depth
5PT [48] 2AC [6] 1AC+D (Umeyama) 1AC+D (Proposed)

steps 5×9 SVD + 10×20 LU
+ 10×10 EIG 6×9 SVD + 10×9 QR 3×3 SVD

+ cov. + trans.
4× (cross + norm)

+ trans. + etc.

1 iter 52 ∗ 9 + 102 ∗ 20 + 102

= 2325
62 ∗ 9 + 103 + 102

= 1424
11 ∗ 33 + 27 + 21

= 345
72 + 21 + 40

= 133

m 5 2 1 1
1-µ

# iters
# comps

0.50 0.75 0.90
145 4713 ∼ 106

∼ 105 ∼ 107 ∼ 109

0.50 0.75 0.90
16 71 458
∼ 104 ∼ 105 ∼ 105

0.50 0.75 0.90
7 16 44

∼ 103 ∼ 103 ∼ 104

0.50 0.75 0.90
7 16 44

∼ 102 ∼ 103 ∼ 103

Algorithm 1 The 1AC+D (Proposed) algorithm for relative pose computation.
1: procedure 1AC+D (Proposed)(a,b,A,B) ▷ Computes the relative camera

pose.
2: RA ← orthonorm(A)
3: RB ← orthonorm(B)
4: R← RT

ARB ▷ Applying Eq. (12).
5: Λ← −tr

(
ATRB

)
/tr

(
BTB

)
▷ Applying Eq. (14).

6: t← a− ΛRb
7: return R, t,Λ
8: function orthonorm(Y) ▷ Quick orthonormalization of Y.
9: rx ← normalize

(
Y(:,1) ×Y(:,2)

)
▷ rx is a normal to the underlying plane.

10: rz ← normalize
(
Y(:,2)

)
11: return

[
rx, rz × rx, rz

]
▷ Return a 3× 3 rotation matrix.

4 Experimental results

In this section, experiments and complexity analyses compare the performance
of the two versions of the proposed 1AC+D solver, i.e., 1AC+D (Umeyama) and
1AC+D (Proposed), 2AC [6] and 5PT [48] methods for relative pose estimation.

4.1 Processing time

In Table 1, we compare the computational complexity of state-of-the-art pose
solvers used in our evaluation. The first row consists of the major steps of each
solver. For instance, 5×9 SVD + 10×20 EIG means that the major steps are: the
SVD decomposition of a 5×9 matrix and eigendecomposition of a 10×20 matrix.
In the second row, the implied computational complexities are summed. In the
third one, the number of correspondences required for the solvers are written.
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1AC-D (Umeyama) 1AC-D (Proposed) 2AC 5PT
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Fig. 2. Left: the theoretical number of RANSAC iterations – calculated as in [20]. Right:
the number of floating point operations (horizontal axes) plotted as the function of the
outlier ratio (vertical), displayed on logarithmic scales.

The fourth row lists example outlier ratios. In the fifth one, the theoretical
numbers of iterations of RANSAC [20] are written with confidence set to 0.99.
The last row reports the total complexity, i.e., the complexity of one iteration
multiplied by the number of RANSAC iterations.

The proposed methods have significantly smaller computational requirements
than the five-point solver, 5PT, or the affine correspondence-based 2AC method
[6] when included in RANSAC. Note that while the reported values for the
1AC+D methods are the actual FLOPs, for 5PT and 2AC, it is in practice
about an order of magnitude higher due to the iterative manner of various linear
algebra operations, e.g., SVD. In Fig. 2, the theoretical number of RANSAC
iterations – calculated as in [20] – and the number of floating point operations
are plotted as the function of the outlier ratio (horizontal axes), displayed on
logarithmic scales (vertical axes). The proposed solvers lead to fewer iterations
compared to the solvers solely based on point or affine correspondences.

In summary of the above analysis of the computational complexity, the pro-
posed approach speeds up the robust estimation procedure in three ways. First,
it requires at least an order of magnitude fewer operations to complete a single
iteration of RANSAC than by using the five-point algorithm. Second, it leads
to significantly fewer iterations due to the fact that 1AC+D takes only a single
correspondence to propose a solution to pose estimation. Third, 1AC+D returns
a single solution from a minimal sample, in contrast to the five-point algorithm.
Therefore, each RANSAC iteration requires the validation of a single model.

4.2 Synthetic evaluation

The synthetic evaluation was carried out in a setup consisting of two cameras
with randomized poses represented by rotation Ri ∈ SO (3) and translation ti ∈
R3 (i = 1, 2). The cameras were placed around the origin at a distance sampled
from [1.0, 2.0], oriented towards a random point sampled from [−0.5, 0.5]3. Both
cameras had a common intrinsic camera matrix K with focal length f = 600
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and principal point [300, 300], representing pinhole projection π : R3 → R2. For
generating LAFs (xi,Mi), depths λi and their derivatives ∇λi, randomized 3D
points X ∼ N (0, I3×3) with corresponding normals n ∈ R3, ∥n∥2 = 1 were
projected into the two image planes using Eqs. (15) and (16), for i = 1, 2.

xi = π (RiX + ti) , Mi = ∇π (RiX + ti)Ri∇X, (15)
λi = Ri|(3,:) X + ti|(3) , ∇λi = Ri|(3,:)∇X, (16)

where Ri|(3,:) is the 3rd row of Ri, ∇X = nulls (n) simulates the local frame
of the surface as the nullspace of the surface normal n. Note that [14] proposed
the approach for computing local frames Mi, i.e., Eq. (15). Their synthetic
experiment are also similar in concept, but contrast to them, we also had to
account for the depth in Eq. (16), and we used the nullspace of n to express the
Jacobian ∇X. The 2nd part of Eq. (16), the expression for the Jacobian of the
depth, ∇λi, was derived from the 1st part by differentiation. In this setup λi

is the projective depth, a key element of perspective projection. Note that the
depth and its derivatives are different for various other camera models. Finally,
zero-mean Gaussian-noise was added to the coordinates/components of xi, Mi,
λi and ∇λi, with σ, σM, σλ and σ∇λ standard deviation (STD), respectively.

The reported errors for rotation and translation both were measured in
degrees (°) in this evaluation. The rotation error was calculated as follows:
ϵR = cos−1

(
1
2

(
tr(R̂RT)− 1

))
, where R̂ is the measured and R is the ground

truth rotation matrix. Translation error ϵt is the angular difference between the
estimated and ground truth translations. For some of the tests, we also show the
avg. Sampson error [20] of the implied essential matrix.
Solver stability. We randomly generated 30 000 instances of the above de-
scribed synthetic setup, except for adding any noise to the LAFs and depths,
in order to evaluate the stability of the various solver in a noise-free environ-
ment. Figs. 3(a), 3(b) and 3(c) show the distribution of the Sampson, rotation
and translation errors on logarithmic scales. The figures show that the proposed
method is one of the best performers given that its distribution of errors is
shifted lower compared to the other methods. However, all methods are quite
stable having no peaks on the right side of the figures.
Noise study. We added noise to the 30 000 instances of the synthetic setup.
The estimated poses were evaluated to determine how sensitive the solvers are to
the noise in the data, i.e., image coordinates, depth, and LAFs. As expected, the
noise in the depth or parameters of LAFs has no effect on the 5PT [48] solver.
This can be seen in Fig. 5(b), where 5PT [48] is only affected by image noise. In-
creasing noise on either axes has a negative effect on the output of the proposed
method as seen on Fig. 5(a). The effect of noise on rotation and translation es-
timated by 1AC+D and 5PT [48] are visualized on diagrams Fig. 4(a)-(f). The
curves show that the effect of image noise – on useful scales, such as 2.5 px – in
itself has a less significant effect on the degradation of rotation and translation
estimates of the proposed method, compared to 5PT [48]. However, adding re-
alistic scales of depth or affine noise, e.g. Fig. 4(a), has an observable negative
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1AC-D (Umeyama) 1AC-D (Proposed) 2AC 5PT
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Fig. 3. Stability study of four different relative pose solvers: two versions of the pro-
posed 1AC+D method, 1AC+D (Umeyama) and 1AC+D (Proposed), 2AC [6] solver
using two affine correspondences and the five point solver 5PT [48]. The three plots
show the distribution of various errors on logarithmic scales as histograms, namely
(a) Sampson error, (b) rotation and (c) translation errors in degrees.

effect on the accuracy of the proposed ones. Although 2AC [6] is unaffected by
the noise on depth, it is moderately affected by noise on the affinities of LAFs. Its
rotation estimates are worse than that of any other methods in the comparison.
The provided translation vectors are of acceptable quality.

Summarizing the synthetic evaluation, we can state that, on realistic scales
of noise, the accuracy of the rotation and translation estimates of 5PT [48] and
both versions of 1AC+D are comparable. 2AC is the worst performer among all.

4.3 Real-world evaluation

We tested the proposed solver on the 1DSfM dataset [56]5. It consists of 13
scenes of landmarks with photos of varying sizes collected from the internet.
1DSfM provides 2-view matches with epipolar geometries and a reference recon-
struction from incremental SfM (computed with Bundler [45, 46]) for measur-
ing error. We iterated through the provided 2-view matches, detected ACs [32]
using the VLFeat library [54], applying the Difference-of-Gaussians algorithm
combined with the affine shape adaptation procedure as proposed in [9]. In our
experiments, affine shape adaptation only had a small ∼10 % extra time demand,
i.e., (0.31± 0.25) s per view, over regular feature extraction. This extra overhead
is negligible, compared to the more time-consuming feature matching. Matches
were filtered by the standard ratio test [32]. We did not consider image pairs in
the evaluation with fewer than 20 corresponding features between them. For the
evaluation, we chose scenes Piccadilly, NYC Library, Vienna Cathedral, Madrid
Metropolis, and Ellis Island. To get monocular depth for each image, we applied
the detector of Li et al. [30]. In total, the compared relative pose estimators were
tested on a total of 110 395 image pairs.

5 http://www.cs.cornell.edu/projects/1dsfm/
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Fig. 4. Synthetic evaluation – the effect of different levels of noise on various rela-
tive pose solvers. Plots (a–f) compare the two proposed 1AC+D solvers, 2AC [6] and
5PT [48]. In the 1st row (a–c), the rotation error is shown. In the 2nd one (d–f) transla-
tion errors are plotted. All errors are angular errors in degrees. In each column, different
setups are shown, where we fixed two of the three sources of noise – image, affine or
depth noise – to analyse the negative effect of the third as its level increases.

As a robust estimator, we chose the Graph-Cut RANSAC [2] algorithm (GC-
RANSAC) since it is state-of-the-art and has publicly available implementation6.
In GC-RANSAC, and other locally optimized RANSACs, two different solvers
are applied: (i) one for fitting to a minimal sample and (ii) one for fitting to
a larger-than-minimal sample when improving the model parameters by fitting
to all found inliers or in the local optimization step. For (i), the main objective
is to solve the problem using as few points as possible since the overall wall-
clock time is a function of the point number required for the estimation. For (ii),
the goal is to estimate an accurate model from the provided set of points. In
practice, step (ii) is applied rarely and, therefore, its processing time is not so
crucial for achieving efficient robust estimation. We used the normalized eight-
point algorithm followed by a rank-2 projection to estimate the essential matrix
from a larger-than-minimal sample. We applied GC-RANSAC with a confidence
set to 0.99 and inlier-outlier threshold set to be the 0.05 % of the image diagonal
size. For the other parameters, the default values were used.

Fig. 6 reports the cumulative distribution functions – being accurate or fast
is interpreted as a curve closer to the top-left corner – calculated on all image
6 https://github.com/danini/graph-cut-ransac
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(a) 1AC+D (b) 5PT

Fig. 5. Synthetic evaluation – the effect of image, affine and depth noise on the proposed
1AC+D and the point-based 5PT [48] – rotation errors, in degrees, displayed as heat-
maps. As expected, 1AC+D is affected by all three noise types, as seen on (a). Being
a point-based relative pose solver, 5PT [48] is affected only by the image noise (b).

pairs from each scene which was connected by an edge in the provided pose graph
made by incremental SfM. The left plot shows the processing time, in seconds,
required for the full robust estimation. The pose estimation is more than an order
of magnitude faster when using the 1AC-D solver than the 5PT algorithm. The
right two plots show the rotation and translation errors calculated using the
reference reconstructions of the 1DSfM dataset [56]. 1AC-D leads to accuracy
similar to that of the 5PT algorithm, both in terms of rotation and translation.

Note that, in practice, multiple solvers are used for creating the initial pose
graph, considering homography, fundamental and essential matrix estimation
simultaneously, e.g., by QDEGSAC [16], to improve the accuracy and avoid
degenerate configurations. It is nevertheless out of the scope of this paper, to
include 1AC+D in state-of-the-art SfM pipelines. However, in the next section
we show as a proof-of-concept that the proposed solver can be used within global
SfM pipelines and leads to similar accuracy as the widely-used 5PT method [48].

Applying global SfM algorithm. Once relative poses are estimated for cam-
era pairs of a given dataset, along with the inlier correspondences, they are fed
to the Theia library [50] that performs global SfM [11, 56] using its internal
implementation. That is, feature extraction, image matching and relative pose
estimation were performed by our implementation either using the 1AC+D or
the 5PT [48] solvers, as described above. The key steps of global SfM are robust
orientation estimation, proposed by Chatterjee et al. [11], followed by robust
nonlinear position optimization by Wilson et al. [56]. The estimation of global
rotations and positions enables triangulating 3D points, and the reconstruction
is finalized by the bundle adjustment of camera parameters and points.

Table 2 reports the results of Theia initialized by different solvers. There is
no clear winner in terms of accuracy or run-time (of the reconstruction). Both
solvers perform similarly when used for initializing global structure-from-motion.
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Table 2. The results of a global SfM [50] algorithm, on scenes from the 1DSfM
dataset [56], initialized with pose-graphs generated by the 5PT [48] and 1AC+D solvers.
The reported properties are: the scene from the 1DSfM dataset [56] (1st column), rel-
ative pose solver (2nd), total runtime of the global SfM procedure given an initial
pose-graph (3rd), rotation error of the reconstructed global poses in degrees (4th),
position error in meters (5th) and focal length errors (6th).

orientation (°) position (m) focal len. (×10−2)
scene solver runtime (s) AVG MED STD AVG MED STD AVG MED STD

Piccadilly 1AC+D 51.2 6.1 4.3 8.0 6.5 3.4 7.7 2.3 1.6 3.2
5PT 48.4 6.8 2.5 10.1 4.8 3.5 7.8 2.4 1.7 3.3

NYC Library 1AC+D 10.4 6.0 2.0 6.3 3.4 3.6 3.3 2.7 1.5 4.1
5PT 5.9 5.9 1.9 6.7 4.2 3.7 5.5 2.9 1.5 4.6

Vienna Cathedral 1AC+D 56.5 4.5 1.7 11.6 6.1 1.4 10.3 2.3 1.3 3.7
5PT 81.4 4.6 2.4 12.1 8.4 1.6 12.5 2.3 1.3 4.0

Madrid Metropolis 1AC-D 14.6 5.2 2.4 6.1 13.6 1.3 15.5 1.2 0.5 2.4
5PT 20.5 6.9 4.7 7.2 18.3 3.6 21.1 1.2 0.5 2.3

Ellis Island 1AC-D 9.0 4.4 5.6 7.2 11.2 2.6 11.2 1.6 1.1 1.7
5PT 5.7 3.1 6.0 3.9 11.8 1.9 12.0 1.6 1.0 1.7

5 Conclusions

In this paper, we propose a new approach for combining deep-learned non-metric
monocular depth with affine correspondences (ACs) to estimate the relative pose
of two calibrated cameras from a single correspondence. To the best of our knowl-
edge, this is the first solution to the general relative camera pose estimation
problem, from a single correspondence. Two new general constraints are derived
interpreting the relationship of camera pose, affine correspondences and relative
depth. Since the proposed solver requires a single correspondence, robust esti-
mation becomes significantly faster, compared to traditional techniques, with
speed depending linearly on the number of correspondences.

The proposed 1AC+D solver is tested both on synthetic data and on 110 395
publicly available real image pairs from the 1DSfM dataset. It leads to an ac-
curacy similar to traditional approaches while being significantly faster. When
solving large-scale problems, e.g., pose-graph initialization for Structure-from-
Motion (SfM) pipelines, the overhead of obtaining affine correspondences and
monocular depth is negligible compared to the speed-up gain in the pairwise
geometric verification. As a proof-of-concept, it is demonstrated on scenes from
the 1DSfM dataset, via using a state-of-the-art global SfM algorithm, that ac-
quiring the initial pose-graph by the proposed method leads to reconstruction
of similar accuracy to the commonly used five-point solver.
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Fig. 6. Relative pose estimation on a total of 110 395 image pairs from the 1DSfM
dataset. The cumulative distribution functions are shown for the processing time (in
seconds), angular error of the estimated rotations and translations (in degrees). Being
accurate or fast is interpreted as a curve close to the top-left corner.
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