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Abstract. Most video super-resolution methods super-resolve a single
reference frame with the help of neighboring frames in a temporal sliding
window. They are less efficient compared to the recurrent-based methods.
In this work, we propose a novel recurrent video super-resolution method
which is both effective and efficient in exploiting previous frames to super-
resolve the current frame. It divides the input into structure and detail
components which are fed to a recurrent unit composed of several proposed
two-stream structure-detail blocks. In addition, a hidden state adaptation
module that allows the current frame to selectively use information from
hidden state is introduced to enhance its robustness to appearance change
and error accumulation. Extensive ablation study validate the effectiveness
of the proposed modules. Experiments on several benchmark datasets
demonstrate superior performance of the proposed method compared to
state-of-the-art methods on video super-resolution. Code is available at
https://github.com/junpan19/RSDN.

Keywords: Video Super-Resolution, Recurrent Neural Network, Two-
Stream Block

1 Introduction

Super-resolution is one of the fundamental problem in image processing, which
aims at reconstructing a high resolution (HR) image from a single low-resolution
(LR) image or a sequence of LR images. According to the number of input
frames, the field of SR can be divided into two categories, i.e., single image
super-resolution (SISR) and multi-frame super-resolution (MFSR). For SISR, the
key issue is to exploit natural image prior for compensating missing details; while
for MFSR, how to take full advantage from additional temporal information is of
pivotal importance. In this work, we focus on the video super-resolution (VSR)
task which belongs to MFSR. It draws much attention in both research and
? The work was done in Noah’s Ark Lab, Huawei Technologies.
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Fig. 1. VSR results on the City sequence in Vid4. Our method produces finer details
and stronger edges with better balance between speed and performance than both
temporal sliding window based [27,12,7,26,29] and recurrent based methods [23,4]. Blue
box represents recurrent-based and green box represents sliding window based methods.
Runtimes (ms) are calculated on an HR image of size 704×576.

industrial communities because of its great value on computational photography
and surveillance.

In the last several years, great attempts have been made to exploit multi-frame
information for VSR. One category of approaches utilize multi-frame information
by conducting explicit motion compensation. These approaches [1,13,27,25,21]
firstly compute optical flow between a reference frame and neighboring frames
and then employ the aligned observations to reconstruct the high-resolution
reference frame. However, estimating dense optical flow itself is a challenging and
time-consuming task. Inaccurate flow estimation often leads to unsatisfactory
artifacts in the SR results of these flow-based VSR approaches. In addition, the
heavy computational burden also impedes the application of these applications
in resource-constrained devices and time-sensitive scenarios. In order to avoid
explicit motion compensation, another category of methods propose to exploit the
motion information in an implicit manner. The dynamic upsampling filters [12]
and the progressive fusion residual blocks [29] are designed to explore flow-free
motion compensation. With these flexible compensation strategies, [12,29] not
only avoid heavy motion estimation step but also achieve highly competitive
VSR performance. However, they still suffer from the redundant computation for
several neighboring frames within a temporal window and need to cache several
frames in advance to conduct VSR. Recently, for the pursuit of efficiency, there
is an emerging trend of applying recurrent connection to address the VSR task.

These approaches [23,4] make use of recurrent connection to conduct video
super-resolution in a streaming way, that is, output or hidden state of previous
time steps is used to help super-resolve future frames. In addition, they are
able to exploit temporal information from many frames in the past. By simply
propagating output and hidden state of previous steps with a recurrent unit, they
achieve promising VSR performance with considerably less processing time.

In this paper, we propose a novel recurrent network for efficient and effective
video super-resolution. Instead of simply concatenating consecutive three frames
with previous hidden state as in [4], we propose to decompose each frame of a
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sequence into components of structure and detail and aggregate both current
and previous structure and detail information to super-resolve each frame. Such
a strategy not only allows our method to address different difficulties in the
structure and detail components, but also able to impose flexible supervision to
recover high-frequency details and strengthen edges in the reconstruction.

In addition, we observe that hidden state in a recurrent network captures
different typical appearances of a scene over time. To make full use of temporal
information in hidden state, we treat the hidden state as a historical dictionary
and compute correlation between the reference frame and each channel in hidden
state. This allows the current frame to highlight the potentially helpful information
and suppress outdated information such that information fusion would be more
robust to appearance change and accumulated errors. Extensive ablation study
demonstrates the effectiveness of the proposed method. It performs very favorably
against state-of-the-art methods on several benchmark datasets, in both super-
resolution performance and speed.

2 Related Work

2.1 Single Image Super-Resolution

Traditional SISR methods include interpolation-based methods and dictionary
learning-based methods. However, since the rise of deep learning, most tradi-
tional methods are outperformed by deep learning based methods. A simple
three-layer CNN is proposed by Dong [2], showing great potential of deep learn-
ing in super-resolution for the first time. Since then, plenty of new network
architectures [14,18,19,31,6,30] have been designed to explore power of deep
learning to further improve performance of SISR. In addition, researchers also
investigate the role of losses for better perceptual quality. More discussions can
be found in a recent survey [28]. A very relevant work is the DualCNN method
proposed by Pan et al. [22], where authors proposed a network with two parallel
branches to reconstruct structure and detail components of an image, respectively.
However, different from that work, our method aims at addressing the video
super-resolution task. It decomposes the input frames into structure and detail
components and propagates them with a recurrent unit that is composed of two
interleaved branches to reconstruct the high-resolution targets. It is motivated
by the assumption that structure and detail components not only suffer from
different difficulties in high-resolution reconstruction but also take benefit from
other frames in different ways.

2.2 Video Super-Resolution

Although SISR methods can also be used to address the video super-resolution
task, they are not very effective because they only learn to explore natural prior
and self-similarity within an image and ignore rich temporal information in a
sequence. The key to video super-resolution is to make full use of complemen-
tary information across frames. Most video super-resolution methods can be
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roughly divided into two categories according to whether they conduct motion
compensation in an explicit way or not.

Explicit motion compensation. Most methods with explicit motion compen-
sation follow a pipeline of motion estimation, motion compensation, information
fusion and upsampling. VESPCN [1] presents a joint motion compensation and
video super-resolution with a coarse-to-fine spatial transformer module. Tao et
al. [25] proposed an SPMC module for sub-pixel motion compensation and used a
ConvLSTM to fuse information across aligned frames. Xue et al. [27] proposed a
task-oriented flow module that is trained together with a video processing network
for video denoising, deblock or super-resolution. In [23], Sajjadi et al. proposed
to super-resolve a sequence of frames in a recurrent manner, where the result of
previous frame is warped to the current frame and two frames are concatenated
for video super-resolution. Haris et al. [7] proposed to use a recurrent encoder-
decoder module to exploit explicitly estimated inter-frame motion. Wang et
al. [26] proposed to align multiple frames to a reference frame in feature space
with a deformable convolution based module and fuse aligned frames with a
temporal and spatial attention module. However, the major drawback of such
methods is the heavy computational load introduced by motion estimation and
motion compensation.

Implicit motion compensation. As for methods with implicit motion com-
pensation [12,29,7,4], they do not estimate motion between frames and align
them to a reference frame, but focus on designing an advanced fusion module
such that it can make full use of complementary information across frames. Jo et
al. [12] proposed to use a 3D CNN to exploit spatial-temporal information and
predict a dynamic upsampling filter to reconstruct HR images. In [29], Yi et
al. proposed to fuse spatial-temporal information across frames in a progressive
way and use a non-local module to avoid explicit motion compensation. Video
super-resolution with implicit motion can also be done with recurrent connection.
Huang et al. [9] proposed a bidirectional recurrent convolutional network to model
temporal information across multiple frames for efficient video super-resolution.
In [4], Fuoli et al. proposed to conduct temporal information propagation with a
recurrent architecture in feature space. Our method also adopts the recurrent
way to conduct video super-resolution without explicit motion compensation.
However, different from the above methods, we proposed to decompose a frame
into two components of structure and detail and propagate them separately. In
addition, we also compute correlation between the current frame and the hidden
state to adaptively use the history information in the hidden state for better
performance and less risk of error accumulation.

2.3 Recurrent Networks for Video-based Tasks

Recurrent networks have been widely used in different video recognition tasks.
Donahue et al. [15] proposed a class of recurrent convolutional architectures
which combine convolutional layers and long-range temporal information for
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Fig. 2. (a) The overall pipeline of the proposed method; (b) architecture of the recurrent
structure-detail unit.

action recognition and image captioning. In [24], a bi-directional LSTM is applied
after a multi-stream CNN to fully explore temporal information in a sequence
for fine-grained action detection. Du et al. [3] proposed a recurrent network with
a pose attention mechanism which exploits spatial-temporal evolution of human
pose to assist action recognition. Recurrent networks are capable of processing
sequential information by integrating information from each frame in their hidden
states. They can not only be used for high-level video recognition tasks but are
also suitable for low-level video processing tasks.

3 Method

3.1 Overview

Given a low-resolution video clip {ILR1:N}, N ≥ 2, the goal of VSR is to produce
a high-resolution video sequence {ÎHR1:N } from the corresponding low-resolution
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one by filling in missing details for each frame. In order to process a sequence
efficiently, we conduct VSR in a recurrent way similar to [23,4]. However, instead
of feeding a whole frame to a recurrent network at each time step, we decompose
each input frame into two components, i.e., a structure component and a detail
component, to the following network. Two kinds of information interact with each
other in the proposed SD blocks over time, which is not only able to sharpen the
structure of each frame but also manages to recovers missing details. In addition,
to make full use of complementary information stored in hidden states, we treat
hidden state as a history dictionary and adapt this dictionary to the demand of
the current frame. This allow us to highlight the potential helpful information
and suppress outdated information. The overall pipeline is shown in Fig. 2(a).

3.2 Recurrent Structure-Detail Network

Recurrent unit. Each frame can be decomposed into a structure component and
a detail component. The structure component models low-frequency information
in an image and motion between frames. While the detail component captures
fine high-frequency information and slight change in appearance. These two
components suffer from different difficulty in high-resolution reconstruction and
take different benefit from other frames, hence should be processed separately.

In this work, we simply apply a pair of bicubic downsampling and upsampling
operations to extract structural information from a frame ILRt , which is denoted
as SLRt . The detail component DLR

t can be then computed as the difference
between the input frame ILRt and the structure component SLRt . In fact, we can
also use other ways such as low-pass filtering and high-pass filtering to get these
two components. For simplicity, we adopt a symmetric architecture for the two
components in the recurrent unit, as shown in Fig. 2 (b). Here we only take
D-branch at time step t as an example to explain its architecture design. Detail
components of the previous and current frames {DLR

t−1, D
LR
t } are concatenated

with the previously estimated detail map D̂t−1 and hidden state ĥSDt−1 along the
channel axis. Such information is further fused by one 3× 3 convolutional layer
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and several structure-detail (SD) blocks. In this way, this recurrent unit manages
to integrate together information from two consecutive input frames, output of
the previous time step and historical information stored in the hidden state. hDt
denotes the feature computed after several SD blocks. It goes through another
3× 3 convolutional layer and an upsampling layer to produce the high resolution
detail component D̂HR

t . The S-branch is designed in a similar way. hSt and hDt
are combined to produce the final high resolution image ÎHRt and new hidden
state hSDt . The D-branch focuses on extracting complementary details from past
frames for the current frame while the S-branch focuses on enhancing existed
edges and textures in the current frame.

Structure-Detail block. Residual block [18] and dense block [8] are widely
used in both high-level and low-level computer vision tasks because of their
effectiveness in mining and propagating information. In this section, we compare
several variants of blocks in propagating information in a recurrent structure-
detail unit. For comparison, we also include a modified residual block as shown
in Fig. 3(a), which only has one branch and takes the whole frames as input. To
adapt it to address two branches, the easiest way is to have two modified residual
blocks that process two branches separately, as shown in Fig. 3(b). However, in
this way each branch only sees the component-specific information and can not
makes full use of all information in the input frames. Therefore, we propose a
new module called structure-detail (SD) block, as shown in Fig. 3(c). The two
components are first fed to two individual branches and then combined with an
addition operation. In this way, it not only specializes on each component but
also promotes information exchange between structure and detail components.
Its advantage over the other two variants is validated in the experiment section.

3.3 Hidden State Adaptation

In a recurrent neural network, hidden state at time step t would summarize past
information in the previous frames. When applying a recurrent neural network to
the video super-resolution task, hidden state is expected to model how a scene’s
appearance evolves over time, including both structure and detail. The previous
recurrent-based VSR method [4] directly concatenates previous hidden state
and two input frames and feeds it to several convolutional layers. However, for
each LR frame to be super-resolved, it has distinct appearance and is expected
to borrow complementary information from previous frames in different ways.
Applying the same integration manner to all frames is not optimal and could
hurt the final performance. As shown in Fig. 4, different channels in hidden
state describe different scene appeared in the past. They should make different
contribution to different positions of different frames, especially when there are
occlusion and large deformation with some channels of the hidden state.

In this work, we proposed the Hidden State Adaptation (HSA) module to adapt
a hidden state to the appearance of the current frame. As for each unit in hidden
state, it should be highlighted if it has similar appearance as the current frame;
otherwise, it should be suppressed if it looks very different. With this module the
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proposed method carefully chooses only useful information in previous frames,
hence alleviate the influence of drastic appearance change and error accumulation.
Since response of a filter models correlation between the filter and a neighborhood
on an image, here we take similar way to compute correlation between an input
frame and hidden state. Inspired by [11], we generate spatially variant and
sample specific filters for each position in the current frame and use those filters
to compute their correlation with the corresponding positions in each channel
of hidden state. Specifically, these spatially variant filters F θt ∈ RH×W×(k×k)
are obtained by feeding the current frame ILRt ∈ RH×W×3 into a convolutional
layer with ReLU activation function [5], where H and W are respectively height
and width of the current frame, and k denotes the size of filters. Then, each
filter F θt (i, j) are applied to a k × k window of hSDt−1 centered at position (i, j) to
conduct spatially variant filtering. This process can be formulated as:

Mt(i, j, c) =

bk/2c∑
u=−dk/2c

bk/2c∑
v=−bk/2c

F θt (i, j, u, v)× hSDt−1(i+ u, j + v, c), (1)

where Mt(i, j, c) represents correlation between the current frame and the c-th
channel of hidden state at position (i, j). It is further fed to a sigmoid activation
function σ(·) that transforms it into a similarity value in range [0, 1]. Finally, the
adapted hidden state ĥSDt−1 is computed by:

ĥSDt−1 =Mt � hSDt−1, (2)

where ‘�’ denotes element-wise multiplication.

3.4 Loss functions
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Fig. 4. Four channels in hidden state at a
certain time step are selected for visualiza-
tion. Yellow arrow denotes the difference
in appearance among these four channels.
Zoom in for better visualization.

Since the proposed recurrent network
has two streams, the trade-off between
supervision on structure and detail
during training is very important. Im-
balanced supervision on structure and
detail might produce either sharpened
frames but with less details or frames
with many weak edges and details.
Therefore, we propose to train the pro-
posed network with three loss terms
as shown in eq. 3, one for structure
component, one for detail component,
and one for the whole frame. α, β and
γ are hyper-parameters to balance the
trade-off of these three terms. The loss
to train an N -frame sequence is formulated as:

L =
1

N

N∑
t=1

(αLSt + βLDt + γLIt ). (3)

Similar to [17], we use Charbonnier loss function to compute the difference
between reconstruction and high-resolution targets. Hence, we have LSt =√
‖SHRt − ŜHRt ‖2 + ε2 for structure component, LDt =

√
‖DHR

t − D̂HR
t ‖2 + ε2

for detail component, and LIt =

√
‖IHRt − ÎHRt ‖2 + ε2 for the whole frame. The

effectiveness of these loss functions is validated in the experiment section.

4 Experiments

In this section, we first explain the experiment datasets and implementation
details of the proposed method. Then extensive ablation study is conducted to
analyze the effectiveness of the proposed SD block and hidden state adaptation
module. Furthermore, the proposed method is compared with state-of-the-art
video super-resolution methods in terms of both effectiveness and efficiency.

4.1 Implementation Details

Datasets. Some works [23,29] collect private training data from youtube on
their own, which is not suitable for fair comparison with other methods. In this
work, we adopt a widely used video processing dataset Vimeo-90K to train video
super-resolution models. Vimeo-90K is a recent proposed large dataset for video
processing tasks, which contains about 90K 7-frame video clips with various
motions and diverse scenes. About 7K video clips select out of 90K as the test set,
termed as Vimeo-90K-T. To train our model, we crop patches of size 256× 256
from HR video sequences as the target. Similar to [12,23,4,29], the corresponding
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Method One Stream
7-256

Two Stream
7-128

SD Block
7-128

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
HSA? w/o w/ w/ w/o w/ w/ w/o w/
Input Image Image Image S & D S & D Image S & D S & D

PSNR/SSIM 27.58/0.8410 27.65/0.8444 27.70/0.8452 27.64/0.8404 27.68/0.8429 27.73/0.8460 27.76/0.8463 27.79/0.8474

Table 1. Ablation study on different network architecture.

low-resolution patches are obtained by applying Gaussian blur with σ = 1.6 to
the target patches followed by ×4 times downsampling.

To validate the effectiveness of the proposed method, we evaluate our models
on several popular benchmark datasets, including Vimeo-90K-T [27], Vid4 [20]
and UDM10 [29]. As mentioned above, Vimeo-90K-T contains a lot of video
clips, but each clip has only 7 frames. Vid4 and UDM10 are long sequences with
diverse scenes, which is suitable to evaluate the effectiveness of recurrent-based
method in information accumulation [23,4].

Training Details. The base model of our method consists of 5 SD blocks where
each convolutional layer has 128 channels, i.e., RSDN 5-128. By adding more
SD blocks, we can obtain RSDN 7-128 and RSDN 9-128. The performance can
be further boosted with only small increase on computational cost and runtime.
We adopt K = 3 for HSA module for efficiency. To fully utilize all given frames,
we pad each sequence by reflecting the second frame at the beginning of the
sequence. When dealing with the first frame of a sequence, the previous estimated
detail D̂t−1, structure Ŝt−1 and hidden state feature hSDt−1 are all initialized with
zeros. The model training is supervised with Charbonnier penalty loss function
and is optimized with Adam optimizer [16] with β1 = 0.9 and β2 = 0.999. Each
mini-batch consists of 16 samples. The learning rate is initially set to 1× 10−4

and is later down-scaled by a factor of 0.1 every 60 epoch till 70 epochs. The
training data is augmented by standard flipping and rotating. All experiments
are conducted on a server with Python 3.6.4, PyTorch 1.1 and Nvidia Tesla V100
GPU.

Recurrent Unit. We compare three kinds of blocks for information flow in the
recurrent unit, i.e., the three blocks shown in Fig. 3. For fair comparison among
these blocks, we keep these three networks with almost the same parameters by
setting the channel of convolutional layers in model 1 to 256, and setting the one
in model 4 and 7 to 128.

4.2 Ablation Study

In this section, we conduct several ablation studies to analyze the effectiveness
of the proposed SD block and the hidden state adaptation module. In addition,
we also investigate the influence of different supervision on structure and detail
components on the reconstruction performance. As shown in Tab. 1, model 1 and
model 4 achieves similar performance, with model 1 a little higher SSIM and
model 4 a little higher PSNR. This implies that simply dividing the input into
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(α, β, γ) (1, 0.5, 1) (0.5, 1, 1) (1, 1, 0) (1, 1, 1)

PSNR/SSIM 27.56/0.8440 27.77/0.8459 27.73/0.8453 27.79/0.8474
Table 2. Ablation study on influence of different loss items.

structure and detail components and processing each one individually does not
work well. Although it seems that having two branches to process each component
divides a difficult task into two easier ones, it makes each one blind to the other
and can not make full use of the information in the input to reconstruct either
component.

Fig. 6. Qualitative comparison between different
network structures. Zoom in to see better visualiza-
tion.

By introducing informa-
tion exchange between struc-
ture and detail components,
model 7 obtains better perfor-
mance than model 1 and 4 in
both PSNR and SSIM. Similar
result can also found in com-
parison among model 2, 5 and
8. In addition, we experiment
with taking the whole frames
as input of both branches, that
is, model 3 and model 6. By
comparing model 3 and model
5 (and also model 6 and model
8), we show that the improvement comes not only from architecture of the two-
stream block itself but also indeed from the decomposition into structure and
detail components. The network with the proposed SD block allows each branch
to explicitly focus on reconstructing a single component, which is easier than
reconstructing a mixture of multiple components. Each branch makes use of
the other one such that it can obtain enough information to reconstruct the
high-resolution version for that component. The advantage of the proposed SD
blocks can also be observed in the qualitative comparison as shown in Fig. 6.

In addition, we show in Tab. 1 that each model can gain further boost in
performance with the proposed HSA module, about 0.04 dB in PSNR and 0.002 in
SSIM on average. This module does not only work for the proposed network with
SD blocks but also helps improve the performance for the ones with one-stream
and two-stream residual blocks. The hidden state adaptation module allows the
model to selectively use the history information stored in hidden state, which
makes it robust to appearance change and error accumulation to some extent.

Influence of different components. The above experiment shows that decom-
posing the input into two components and processing them with the proposed
SD blocks brings much improvement. We also investigate the relative impor-
tance of these two components by imposing different levels of supervision on
the reconstruction of two components. It implies that the relative supervision
strength applied to different components also plays an important role in the



12 T. Isobe et al.

Vid4 #Frame FLOPs #Param. Calendar (Y) City (Y) Foliage (Y) Walk (Y) Average (Y) Average (RGB)
Bicubic 1 N/A N/A 18.83/0.4936 23.84/0.5234 21.52/0.4438 23.01/0.7096 21.80/0.5426 20.37/0.5106
SPMC † [25] 3 - - -/- -/- -/- -/- 25.52/0.76 -/-
Liu† [21] 5 - - 21.61/- 26.29/- 24.99/- 28.06/- 25.23/- -/-
TOFlow [27] 7 0.81T 1.41M 22.29/0.7273 26.79/0.7446 25.31/0.7118 29.02/0.8799 25.85/0.7659 24.39/0.7438
DUF-52L [12] 7 0.62T 5.82M 24.17/0.8161 28.05/0.8235 26.42/0.7758 30.91/0.9165 27.38/0.8329 25.91/0.8166
RBPN [7] 7 9.30T 12.2M 24.02/0.8088 27.83/0.8045 26.21/0.7579 30.62/0.9111 27.17/0.8205 25.65/0.7997
EDVR-L† [26] 7 0.93T 20.6M 24.05/0.8147 28.00/0.8122 26.34/0.7635 31.02/0.9152 27.35/0.8264 25.83/0.8077
PFNL† [29] 7 0.70T 3.00M 23.56/0.8232 28.11/0.8366 26.42/0.7761 30.55/0.9103 27.16/0.8365 25.67/0.8189
TGA [10] 7 0.23T 5.87M 24.50/0.8285 28.50/0.8442 26.59/0.7795 30.96/0.9171 27.63/0.8423 26.14/0.8258
FRVSR 10-128 [23] recurrent (2) 0.14T 5.05M 22.67/0.7844 27.70/0.8063 25.83/0.7541 29.72/0.8971 26.48/0.8104 25.01/0.7917
RLSP 7-256 [4] recurrent (3) 0.09T 4.21M 24.36/0.8235 28.22/0.8362 26.66/0.7821 30.71/0.9134 27.48/0.8388 25.69/0.8153
RSDN 5-128 recurrent (2) 0.08T 3.83M 24.34/0.8242 28.73/0.8374 26.66/0.7842 30.73/0.9149 27.61/0.8402 26.13/0.8238
RSDN 7-128 recurrent (2) 0.10T 5.01M 24.46/0.8305 29.01/0.8480 26.78/0.7921 30.92/0.9189 27.79/0.8474 26.30/0.8314
RSDN 9-128 recurrent (2) 0.13T 6.19M 24.60/0.8355 29.20/0.8527 26.84/0.7931 31.04/0.9210 27.92/0.8505 26.43/0.8349

Table 3. Quantitative comparison (PSNR (dB) and SSIM) on Vid4 for 4× video
super-resolution. Red text indicates the best and blue text indicates the second best
performance. Y and RGB indicate the luminance and RGB channels, respectively.
FLOPs (MAC) are calculated on an HR image of size 720×480. ‘†’ means the values
are either taken from paper or calculated using provided models.

UDM10 Bicubic TOFlow [27] DUF-52L [12] RBPN [7] PFNL† [29] FRVSR 10-128 [23] RLSP 7-256 [4] RSDN 7-128 RSDN 9-128
FLOPs [TMAC] N/A 2.17 1.65 24.81 1.88 0.36 0.24 0.28 0.35
Runtime [ms] N/A 1693 1413 3567 295 137 49 79 94
Average (Y) 28.47/0.8523 36.26/0.9438 38.48/0.9605 38.66/0.9596 38.74/0.9627 37.09/0.9522 38.48/0.9606 39.13/0.9645 39.35/0.9653
Average (RGB) 27.05/0.8267 34.46/0.9298 36.78/0.9514 36.53/0.9462 36.78/0.9514 35.39/0.9403 36.39/0.9465 37.26/0.9548 37.46/0.9557
Vimeo-90K-T Bicubic TOFlow [27] DUF-52L [12] RBPN [7] EDVR-L† [26] FRVSR 10-128 [23] RLSP 7-256 [4] RSDN 7-128 RSDN 9-128
FLOPs [TMAC] N/A 0.27 0.20 3.08 0.30 0.04 0.03 0.03 0.04
Runtime [ms] N/A 215 167 470 99 28 11 13 15
Average (Y) 31.30/0.8687 34.62/0.9212 36.87/0.9447 37.20/0.9458 37.61/0.9489 35.64/0.9319 36.49/0.9403 37.05/0.9454 37.23/0.9471
Average (RGB) 29.77/0.8490 32.78/0.9040 34.96/0.9313 35.39/0.9340 35.79/0.9374 33.96/0.9192 34.56/0.9274 35.14/0.9325 35.32/0.9344

Table 4. Quantitative comparison (PSNR(dB) and SSIM) on UDM10 and Vimeo-
90K-T for 4× video super-resolution, respectively. Flops and runtimes are calculated on
an HR image size of 1280×720 and 448×256 for UDM10 and Vimeo-90K-T, respectively.
Red text indicates the best and blue text indicates the second best performance. Y and
RGB indicate the luminance and RGB channels, respectively. ‘†’ means the values are
either taken from paper or calculated using provided models.

super-resolution performance. As shown in Tab. 2, when the weights for structure
component, detail component and the whole frame are set to (α, β, γ) = (1, 1, 1),
it achieves a good performance of 27.79/0.8474 in PSNR/SSIM. The performance
degrades when the weigh for structure component more than the weight for detail
component (i.e.(α, β, γ) = (1, 0.5, 1)), and verse vise (i.e.(α, β, γ) = (0.5, 1, 1)).
The result of (1, 1, 0) is 0.06dB lower than that of (1, 1, 1), which means applying
additional supervision on the combined image helps the training of the model.

4.3 Comparison with State-of-the-arts

In this section, we compare our methods with several state-of-the-art VSR
approaches, including SPMC [25], TOFlow [27], Liu [21], DUF [7], EDVR [26],
PFNL [29], TGA [10], FRVSR [23] and RLSP [4]. The first seven methods
super-resolve a single reference within a temporal sliding window. Among these
methods, SPMC, TOFlow, Liu, RBPN and EDVR need to explicitly estimate the
motion between the reference frame and other frames within the window, which
requires redundant computation for several frames. DUF, PFNL and TGA skip
the motion estimation process and partially ameliorate this issue. The last two
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Fig. 7. Qualitative comparison on Vid4, UDM10 and Vimeo-90K-T test set for 4×
SR. Zoom in for better visualization.

methods FRVSR and RLSP super-resolve each frame in a recurrent way and are
more efficient. We carefully implement most of these methods either on our own
or by running the publicly available code, and manage to reproduce the results
in their paper. The quantitative result of state-of-the-art methods on Vid4 is
shown in Tab. 3, where the number is either reported in the original papers or
computed with our implementation. In addition, we also include the number of
parameters and FLOPs for most methods when super-resolution is conducted on
an LR image of size 112× 64 in Tab. 3.

On Vid4, our model with only 5 SD block achieves 27.61dB PSNR in Y
channel and 26.13dB PSNR in RGB channels, which already outperforms most
of the previous methods by a large margin. By increasing the number of SD block
to 7 and 9, our methods respectively gain another 0.18dB and 0.31dB PSNR
in Y channel while with only a little increase in FLOPs. We also evaluate our
method on other three popular test sets. The quantitative results on UDM10 [29]
and Vimeo-90K-T [27] two datasets are reported in Tab. 4. Our method achieves
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Fig. 8. Visualization of temporal profile for the green line on the calendar sequence.

a very good balance between reconstruction performance and speed on these
datasets. On UDM10 test set, RSDN 9-128 achieves new state-of-the-art, and is
about 15 and 37 times faster than DUF and RBPN, respectively. RSDN 9-128
outperforms the recent proposed PFNL, where this dataset is proposed by 0.61dB
in PSNR in Y channel while being 3 times faster. The proposed method is also
evaluated on Vimeo-90K-T, which only contains 7-frame in each sequence. In
this case, although our method can not take full of its advantage because of the
short length of the sequence, it only lags behind the large model EDVR-L but is
6 times faster.

We also show the qualitative comparison with other state-of-the-art methods.
As shown in Fig. 7, our method produces higher quality high-resolution images on
all three datasets, including finer details and sharper edges. Other methods are
either prone to generate some artifacts (e.g., wrong stripes in an image) or can
not recover missing details (e.g., small windows of the building). We also examine
temporal consistency of the video super-resolution results in Fig. 8, which is
produced by extracting a horizontal row of pixels at the same position from
consecutive frames and stacking them vertically. The temporal profile produced
by our method is not only temporally smoother but also much sharper, satisfying
both requirements of the video super-resolution task.

5 Conclusion

In this work we have presented an effective and efficient recurrent network to
super-resolve a video in a streaming manner. The input is decomposed into
structure and detail components and fed to two interleaved branches to respec-
tively reconstruct the corresponding components of high-resolution frames. Such
a strategy allows our method to address different difficulties in the structure and
detail components and to enjoy flexible supervision applied to each components
for good performance. In addition we find that hidden state in a recurrent network
captures different typical appearance of a scene over time and selectively using
information from hidden state can enhance its robustness to appearance change
and error accumulation. Extensive experiments on several benchmark datasets
demonstrate its superiority in terms of both effectiveness and efficiency.
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