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Abstract. We address the problem of domain adaptation in videos for
the task of human action recognition. Inspired by image-based domain
adaptation, we can perform video adaptation by aligning the features of
frames or clips of source and target videos. However, equally aligning all
clips is sub-optimal as not all clips are informative for the task. As the
first novelty, we propose an attention mechanism which focuses on more
discriminative clips and directly optimizes for video-level (cf. clip-level)
alignment. As the backgrounds are often very different between source
and target, the source background-corrupted model adapts poorly to
target domain videos. To alleviate this, as a second novelty, we propose
to use the clip order prediction as an auxiliary task. The clip order pre-
diction loss, when combined with domain adversarial loss, encourages
learning of representations which focus on the humans and objects in-
volved in the actions, rather than the uninformative and widely differing
(between source and target) backgrounds. We empirically show that both
components contribute positively towards adaptation performance. We
report state-of-the-art performances on two out of three challenging public
benchmarks, two based on the UCF and HMDB datasets, and one on
Kinetics to NEC-Drone datasets. We also support the intuitions and the
results with qualitative results.

1 Introduction

Recent computer vision-based methods have reached very high performances in
supervised tasks [2, 17, 18, 22, 51] and many real-world applications have been
made possible such as image search, face recognition, automatic video tagging
etc. The two main ingredients for success are (i) high capacity network design
with an associated practical learning method, and (ii) large amounts of annotated
data. While the first aspect is scalable, in terms of deployment to multiple novel
scenarios, the second aspect becomes the limiting factor. The annotation issue is
even more complicated in video-related tasks, as we need temporal annotation,
i.e., we need to specify the start and end of actions in long videos. Domain
adaptation has emerged as an important and popular problem in the community
to address this issue. The applications of domain adaptation have ranged from
simple classification [13, 33, 40, 47, 48, 56] to more complex tasks like semantic
segmentation [5, 7, 20, 46, 49, 57] and object detection [1, 6, 19, 21, 26, 60]. However,
the application on video tasks e.g., action recognition is still limited [3, 10,23].
? Part of this work was done when Jinwoo Choi was an intern at NEC Labs America.
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Fig. 1: Motivation. We do video domain adaptation and introduce the following
two key components: (Left): Clip attention. The top video and the lower video have
the same action punching. However, the lower video has only one relevant punching
clip, while the top video has three relevant punching clips. Our proposed attention
suppresses features from irrelevant clips, improving the feature alignment across
domains. (Right): Clip order prediction. The top and bottom videos are from
different domains, but all capture the action fencing. However, the backgrounds
are different: the top domain has a gym as a background, and the lower domain
has a dining room or a living room or a stair as a background. Predicting the order
of clip encourages the model to focus more on the humans, not the background,
as the background is uninformative for predicting temporal order. Best viewed
with zoom and color.

We address this less studied but challenging and practically important task of
video domain adaptation for human action recognition. We work in an unsuper-
vised domain adaptation setting. That is, we have annotated data for the source
domain and only unannotated data for the target domain. Examples domains
that we use in experiments include (human) actions from movies, unconstrained
actions from sports videos, YouTube videos, and even videos taken from drones.

We exploit two insights related to the problem and propose two novel adap-
tation components inspired by them. First, we note that the existing domain
adaptation methods, when applied directly to the video adaptation task, sample
frames or clips [3, 23], depending on whether the video encoding is based on a
2D network, e.g., temporal relation network [58] or a 3D network, e.g., C3D [44].
We sample clips (or frames) and then average the final outputs from multiple
clips at test time, following the video classification networks they are built upon.
Performing domain adaptation by aligning features for all sampled clips is sub-
optimal, as a lot of network capacity is wasted on aligning clips that are not
crucial for the task. In the worst case, it can even be detrimental if a large
number of unimportant clips dominate the learning loss and adversely affect the
alignment of important clips. For example, in Figure 1 left, both the top video
from one domain and the bottom video from another domain have the same
action, punching. However, the bottom video contains a lot of clips irrelevant to
punching. Aligning features from those irrelevant clips would not improve the
target performance much.
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the same action punching. However, the lower video has only one relevant punching
clip, while the top video has three relevant punching clips. Our proposed attention
suppresses features from irrelevant clips, improving the feature alignment across
domains. (Right): Clip order prediction. The top and bottom videos are from
different domains, but all capture the action fencing. However, the backgrounds
are different: the top domain has a gym as a background, and the lower domain
has a dining room or a living room or a stair as a background. Predicting the order
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We address this less studied but challenging and practically important task of
video domain adaptation for human action recognition. We work in an unsuper-
vised domain adaptation setting. That is, we have annotated data for the source
domain and only unannotated data for the target domain. Examples domains
that we use in experiments include (human) actions from movies, unconstrained
actions from sports videos, YouTube videos, and even videos taken from drones.

We exploit two insights related to the problem and propose two novel adap-
tation components inspired by them. First, we note that the existing domain
adaptation methods, when applied directly to the video adaptation task, sample
frames or clips [3, 23], depending on whether the video encoding is based on a
2D network, e.g., temporal relation network [58] or a 3D network, e.g., C3D [44].
We sample clips (or frames) and then average the final outputs from multiple
clips at test time, following the video classification networks they are built upon.
Performing domain adaptation by aligning features for all sampled clips is sub-
optimal, as a lot of network capacity is wasted on aligning clips that are not
crucial for the task. In the worst case, it can even be detrimental if a large
number of unimportant clips dominate the learning loss and adversely affect the
alignment of important clips. For example, in Figure 1 left, both the top video
from one domain and the bottom video from another domain have the same
action, punching. However, the bottom video contains a lot of clips irrelevant to
punching. Aligning features from those irrelevant clips would not improve the
target performance much.
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Second, this clip-wise training method is likely to exploit correlations in the
scene context for discriminating the action classes [9, 31, 32], e.g., in a formal
sports-oriented dataset fencing might happen in a gym only as shown in the
top right three videos of Figure 1. However, in the domain adaptation setting,
the target domain might have vastly different scene contexts, e.g., the same
fencing might happen in a living room or dining room, as shown in the bottom
right three videos of Figure 1. When the source model uses the correlated gym
information to predict a fencing action, it may perform poorly on the same class
in the target domain, which does not have a gym scene. Similar scene context
corruption issues have been identified for transfer learning, and few works have
addressed the problem of debiasing the representations explicitly [9, 52].

Based on the above insights, we propose Shuffle and Attend: Video do-
main Adaptation (SAVA) with two novel components. First, we propose to
identify and align important (which we define as discriminative) clips in source
and target videos via an attention mechanism. The attention mechanism leads to
the suppression of temporal background clips, which helps us focus on aligning
only the important clips. Such attention is learned jointly for video-level adap-
tation and classification. We estimate the clip’s importance by employing an
auxiliary network and derive the video feature as the weighted combination of
the identified important clip features.

Second, we propose to learn spatial-background invariant human action rep-
resentations by employing a self-supervised clip order prediction task. While
there could be some correlation between the scene context/background and the
action class, e.g., soccer field for ‘kicking the ball’ action, the scene context
is not sufficient for predicting the temporal clip order. In contrast, the actual
human actions are indicative of the temporal order, e.g., for ‘kicking the ball’
action the clip order follows roughly the semantics of ‘approaching the ball’,
‘swinging the leg’ and ‘kicking’; if we shuffle the clips, the actual human action
representation would be able to recover the correct order, but the scene context
based representation would be likely to fail.

Thus using the clip order prediction based loss helps us counter the scene
context corruption in the action representations and improves adaptation per-
formance. We employ the self-supervised clip order prediction task for both
source and target. As this auxiliary task is self-supervised, it does not require
any annotation (which we do not have for target videos).

We provide extensive empirical evaluations to demonstrate the benefits of
the proposed method on three challenging video domain adaptation benchmark
settings. We also give qualitative results to highlight the benefits of our system.

In summary, our contributions are as follows.

– We propose to learn to align important (discriminative) clips to achieve
improved representation for the target domain.

– We propose to employ a self-supervised task which encourages a model to
focus more on actual action and suppresses the scene context information, to
learn representations more robust to domain shifts. The self-supervised task
does not require extra annotations.

– We obtain state-of-the-art results on the HMDB to UCF adaptation bench-
mark, and Kinetics to NEC-Drone benchmarks.
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2 Related Work

Action recognition. Action recognition using deep neural networks has shown
quick progress recently, starting from two-stream networks [42] to 3D [2,44,51] or
2D and 1D separable CNNs [45,53] have performed very well on the task. More
recent advances in action recognition model long-term temporal contexts [11, 51].
However, most models still rely on target supervised data when finetuning on
target datasets. In contrast, we are interested in unsupervised domain adaptation,
where we do not have access to target labels during training.
Unsupervised domain adaptation for images. Based on adversarial learn-
ing, domain adaptation methods have been proposed for image classification [13,
33,40,47,48,56], object detection [1,6, 19,21,26,60], semantic segmentation [5,
7,20,46,49,57], and low-level vision tasks [39]. We also build upon adversarial
learning. However, we work with videos and not still images.
Unsupervised domain adaptation for videos. Unlike image-related tasks,
there are only a few works on video domain adaptation [3,10,23]. We also use
the basic adversarial learning framework but improve upon it by adding auxiliary
tasks that depend on the temporal order in videos, (i) to encourage suppression
of spatial-background, and (ii) to focus on important clips in the videos to align.
Self-supervision. Image based self-supervised methods work with spatial
context, e.g., by solving jigsaw puzzle [36], image inpainting [38], image coloriza-
tion [29], and image rotation [15] to learn more generalizable image representation.
In contrast, video based self-supervised methods exploit temporal context, e.g., by
order verification [34], frame sorting [30], and clip sorting [54]. Recent video do-
main adaptation methods employ self-supervised domain sequence prediction [4],
or self-supervised RGB/flow modality correspondence prediction [35].

We make a connection between the self-supervised task of clip order prediction
[54] and learning a robust spatial-background decoupled representation for action
recognition. We hypothesize (see Section 1) that, in combination with adversarial
domain adaptation loss, this leads to suppression of domain correlated background,
and simultaneous enhancement of the task correlated human part in the final
representation leading to better domain adaptation performance.
Attention. There are numerous methods employing attention model for image
[14,24] and video tasks [12,16,25,27,37,41,50,55]. The most closely related work is
the that by Chen et al. [3]. While both the proposed method and Chen et al. [3]
are based on attention, the main difference is in what they attend to. Chen et al.
[3] attends to temporal relation features (proposed by Zhou et al. [58]) with larger
domain gaps. In contrast, our proposed method attends to discriminative clip
features. The clips in the same video may have different discriminative content,
e.g., leg swinging (more discriminative) vs. background clips (less so) in a video
of ‘kicking a ball’ class. The proposed method attends to more discriminative
clips and focuses on aligning them. Chen et al. [3] samples 2 ∼ 5 frames relation
features and attends to the ones with a larger domain gap measured by the
entropy of the domain classifiers. However, the relation feature with a larger
domain gap might come from frames irrelevant to the action, aligning them would
be suboptimal. The proposed method addresses this problem. In another closely
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(a) overall training (b) process video block

Fig. 2: Overview of SAVA. We employ standard domain adversarial loss along
with two novel components. The first component is the self-supervised clip order
prediction loss. The second is a clip attention based feature alignment mechanism.
We predict attention weights for the uniformly sampled clips from the videos and
construct the video feature as a weighted average of the clip features. Then we
align the source and target video features. Best viewed with zoom and color.

related work Pan et al. [37] temporally align the source and target features using
temporal co-attention and match their distributions. In contrast, the proposed
method argues that human-focused representation is more robust to domain
shifts, and captures it via self-supervised clip order prediction.

3 Method

We work in an unsupervised domain adaptation setting, where (i) we have
annotated source data (xs,ys) 2 Xs⇥Ys, where Xs is the set of videos containing
human-centered videos and Ys is the actions label set, and (ii) unannotated target
data xt 2 Xt. The task is to train a model using all the data, which performs
well on the target data. Since the source data distribution, e.g., actions in movies,
is expected to be very different from the target data distribution, e.g., actions in
sports videos, the model trained on the source data only does not work well on
target videos. The challenge is to design methods that can adapt a model to work
on the target data, using both annotated source data and unannotated target
data. The method proposed here has, at a high level, three main components for
adaptation: domain adversarial loss, clip order prediction losses, and an attention
module for generating video features.

Figure 2 gives an overview of the proposed method, which we call Shuffle and
Attend Video domain Adaptation (SAVA). We start with uniformly sampling
N clips, with L frames, from an arbitrary length input video, as shown in the
‘process video block’ in the figure. We encode source and target clips into clip
features by an encoder network  (·); which can be either the same for both
or different. Here we assume it is the same for the brevity of notation. Then
we use the clip features for (i) the clip order prediction network ⌦(·), and (ii)
constructing the video-level features using the attention network �(·). The video-
level features obtained after the attention network, are then used with (i) linear
action classifier, for source videos only, and (ii) domain classifier, for both source
and target videos, as shown in the left of the figure.

Fig. 2: Overview of SAVA. We employ standard domain adversarial loss along
with two novel components. The first component is the self-supervised clip order
prediction loss. The second is a clip attention based feature alignment mechanism.
We predict attention weights for the uniformly sampled clips from the videos and
construct the video feature as a weighted average of the clip features. Then we
align the source and target video features. Best viewed with zoom and color.

related work Pan et al. [37] temporally align the source and target features using
temporal co-attention and match their distributions. In contrast, the proposed
method argues that human-focused representation is more robust to domain
shifts, and captures it via self-supervised clip order prediction.

3 Method

We work in an unsupervised domain adaptation setting. We have (i) annotated
source data (xs,ys) ∈ Xs ×Ys, where Xs is the set of videos containing human-
centered videos and Ys is the actions label set, and (ii) unannotated target data
xt ∈ Xt. The task is to train a model, which performs well on the target data.
Since the source data distribution, e.g., actions in movies, is expected to be very
different from the target data distribution, e.g., actions in sports videos, the
model trained on the source data only does not work well on target videos. The
challenge is to design methods that can adapt a model to work on the target data,
using both annotated source data and unannotated target data. The proposed
method has three main components for adaptation: domain adversarial loss, clip
order prediction losses, and an attention module for generating video features.

Figure 2 gives an overview of the proposed method, which we call Shuffle and
Attend Video domain Adaptation (SAVA). We start with uniformly sampling N
clips, with L frames, from an arbitrary length input video, as shown in Figure 2
(b). We encode source and target clips into clip features by an encoder network
Ψ(·); which can be either the same for both or different. Here we assume it is the
same for the brevity of notation. Then we use the clip features for (i) the clip
order prediction network Ω(·), and (ii) constructing the video-level features using
the attention network Φ(·). The video-level features obtained after the attention
network, are then used with (i) a linear classifier, for source videos only, and (ii)
a domain classifier, for both source and target videos, as shown in Figure 2 (a).

In total, there are three types of losses that we optimize, (i) domain adversarial
loss, (ii) clip order prediction loss for both source and target, and (iii) classification
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loss for source only. The clip order prediction loss works with clip level features,
while the other two work on video-level features. As discussed in Section 1, the
clip order prediction loss helps a model to learn a representation that is less
reliant on correlated source data background. The attention network gives us the
final video feature by focusing on important clips. The domain adversarial loss
helps a model to align video-level features between source and target videos. All
these are jointly learned and hence lead to a trained system that gives aligned
representations and achieves higher action classification performance than the
baselines. We now describe each of our proposed components individually in
detail in the following subsections.

3.1 Clip order prediction

As shown on Figure 1 (right), the source videos of the same class may have
correlations with similar background context [32], and the target videos of the
same class might have a background which is vastly different from the source
background. While the source model might benefit from learning representation,
which is partially dependent on the correlated background, this would lead to
poor target classification. To address this problem, we propose to employ clip
order prediction (COP) to enable better generalization of the representation.
COP would not be very accurate if a model focuses on the background as the
background might not change significantly over time. However, the temporal
evolution of the clip depends more on the humans performing actions, and
possibly the objects. Thus, if we employ the COP, the representation would focus
more on the relevant humans and objects, while relying less on the background.
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Fig. 3: Clip order prediction network Ω
(the layers after Ψ).

We build our COP mod-
ule upon the work by Xu et al.
[54]. We show the illustration
of the COP network Ω in Fig-
ure 3. We incorporate an aux-
iliary network, taking clip fea-
tures as input, to predict the
correct order of shuffled clips
of an input video. We sample
M clips, with L frames each,
from an input video and shuf-
fle them. The task of the mod-
ule is to predict the order of
the shuffled clips. We formu-
late the COP task as a classi-
fication task with M ! classes, corresponding to all permutation tuples of the clips,
and consider the correct order tuple as the ground truth class. We concatenate clip
features pairwise and pass them to a fully connected layer with ReLU activation
followed by a dropout layer. Then we concatenate all of the output features and
use a final linear classifier to predict the order of the input clips. Since this is a
self-supervised task and requires no extra annotation, we can use the task for the
videos from source, target, or both; we evaluate this empirically in Section 4.3.
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3.2 Clip-attention based video-level features

As shown in the left side of Figure 1, all clips are not equally important (discrim-
inative or relevant) for predicting the action. Aligning the irrelevant clip features
is suboptimal, and it might even degrade performance if they dominate the loss
cf. the important clips. Focusing on and aligning the important clips would lead
to better adaptation and classification performance. To achieve such focus on
important clips, we propose a clip attention module. The attention module takes
N number of clip features as inputs, and outputs N softmax scores indicating
the importance of each of them. The final video-level feature is obtained by the
weighted average of the clip features. Formally, given x1, . . . ,xN as the N clips
from an input video x, we obtain the video-level feature xv as

w = Φ(Ψ(x1), . . . , Ψ(xN )), xv = ξ(w, Ψ(x1), . . . , Ψ(xN )) =

N∑
i=1

wiΨ(xi), (1)

where, ξ(·) is the weighted average function.
The attention module Φ(·) is a network that takes N clip features with D

dimension as an input. It outputs the importance vector w ∈ RN , which is used
for weighted averaging to obtain the video-level feature. Thus, we can train the
model end-to-end with the full domain adaptation system.

There can be multiple valid choices for the architecture of the attention
module, e.g., a standard feed-forward network which takes concatenation of the
clip features as input, or a recurrent network that consumes the clip features one
by one. We explore two specific choices in an ablation experiment in Section 4.3,
(i) Multi Layer Perceptron (MLP) similar to Kar et al. [25], and (ii) Gated
Recurrent Units (GRU).

3.3 Training

We pre-train the attention module with standard binary cross-entropy loss, where
we get the ground truth attention vector as follows. The ground truth label is 1
if the clip is correctly classified by the baseline clip-based classification network,
and has confidence higher than a threshold cth, and 0 otherwise. The pre-training
makes the attention module to start from good local optima, mimicking the
baseline classifier. Once pre-trained, the attention module can then either be
fixed or can be trained end-to-end with the rest of the network. Please note that
we train the attention module only on the source dataset as the training requires
the ground truth action labels.

For the feature distribution alignment, we follow the well-known adversarial
domain adaptation framework of ADDA [48]. We define our losses as,

LCE = −E(xs,ys)∼(Xs,Ys)

K∑
k=1

[ys,k log fC(x
v
s)],

LADVfD
= −Exs∼Xs [log fD(x

v
s)]− Ext∼Xt [log(1− fD(xvt )],

LADVψt
= −Ext∼Xt [log fD(x

v
t )], (2)
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where fC is the linear source classifier and fD is the domain classifier. The video
feature xv = ξ(w, Ψ(x1) . . . , Ψ(xN )) is the weighted average of clip level features,
with weights w = Φ(Ψ(x1), . . . , Ψ(xN )) obtained from the attention module.
Then our optimization objective is as follows,

θ∗s , θ
∗
fC , θ

∗
Φ = argmin

θs,θfC

LCE,θΦ , θ
∗
fD = argmin

θfD

LADVfD
, θ∗t = argmin

θt

LADVψt
, (3)

where θs is the parameter of the source encoder Ψs(·), θfC is the parameter of
the source classifier fC(·), θt is the parameter of the target encoder Ψt(·), and
θfD is the parameter of the domain classifier fD(·).

We optimize this objective function in a stage-wise fashion [48]. We first
optimize the source cross-entropy loss LCE over the source parameters θs and
θfC with the annotated source data. Then we freeze source model parameters θs
and θfC , and optimize the domain classification loss LADVfD

over the domain
classifier parameter θfD , and the inverted GAN loss LADVψt

over the target
encoder parameter θt with both the labeled source and the unlabeled target data.
Clip order prediction. We define the COP loss as follows.

LCOP = −E(x,y)∼(X,Y)

M !∑
k=1

[yk log fO(φ)]. (4)

Here, fO is the linear classification function for the COP, φ = Ω(Φ(x1), ..., Φ(xM ))
is the ReLU activation of the MLP which takes M clip features as input. We
can employ the LCOP for both source and target. We optimize the loss LCOP

over the source encoder parameter θs, target encoder parameter θt, COP MLP
parameter θΩ , and clip order cliassifier parameter θfO .

3.4 Inference

At inference time, we remove the domain discriminator and clip order prediction
network. We divide the input video into N clips and extract clip features. These
features are then weight averaged with weights obtained using the attention
network. The action classifier predicts the action using the video-level feature.

4 Experimental Results

4.1 Datasets

We show results on the publicly available benchmark based on the UCF [43] and
HMDB [28] datasets. We further show the result in a more challenging setting
where the source dataset is part of the Kinetics dataset [2], and the target dataset
is drone-captured action dataset [10]. In the following, the direction of the arrow
indicates the source (arrow start) to target (arrowhead).
UCF↔HMDB. Chen et al. [3] released the UCF-HMDB dataset for studying
video domain adaptation. This dataset has 3, 209 videos with 12 action classes.
All the videos come from the original UCF [43] and HMDB [28] datasets. They
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subsampled overlapping 12 classes out of 101/51 classes from the UCF/HMDB,
respectively. There are two settings of interest, UCF → HMDB, and the other
is HMDB → UCF. We show the performance of our method in both of the two
settings. We use the official split provided by the authors [3].

Kinetics→NEC-Drone. We also test our method on a more challenging target
dataset captured by drones [10]. The dataset contains 5K videos with 16 classes
in total, while the domain adaptation subset used contains 994 videos from 7
classes, which overlap with Kinetics dataset. We use the official train/val/test
split provided by Choi et al. [10]. We conduct domain adaptation experiments
with Kinetics→NEC-Drone setting, which is more challenging than UCF↔HMDB
as there is a more significant domain gap between source and target domains.

In all three settings, we report top-1 accuracy on the target dataset and
compare it to other methods.

4.2 Implementation details

We implement our method with the PyTorch library. We use the I3D [2] network
as our clip feature encoder architecture for both source and target. The source
and target encoders are different from each other and do not share parameters.
Both are initialized with the Kinetics pre-trained model weights and then trained
further as appropriate. Such pre-training on a large dataset is common in domain
adaptation, e.g. for images (ImageNet) [6, 13, 46, 48] and videos (Sports-1M [23],
Kinetics [4,35]). The input to the clip feature encoder is a 3 channels × 16 frames
× 224 × 224 pixels clip. We set the number of clips per video to N = 4 via
validation. During testing, we sample the same N = 4 number of clips. COP
module is a 2-layer MLP with 512 hidden units. We sample M = 3 clips per
video for the COP task by following Xu [54].

By using attention, we compute the weighted average of the clip-level softmax
score as our final video-level softmax score. We evaluate two types of networks
for the attention module. One is 4-layer MLP with 1024 hidden units in each
layer, and the other is a GRU [8] with 1024 hidden units. We found GRU to be
better in two out of the three cases (Section 4.3), so we report all results with
GRU. We set the attention module’s confidence threshold cth as 0.96 for the
UCF and HMDB and 0.8 for Kinetics by validation on the source dataset. We
use 4-layer MLP with 4096 hidden units in each layer as our domain classifier.

We set the batch size to 72. The learning rate starts from 0.01, and we divide
the learning rate by 10 after two epochs and ten epochs. We train models for
40 epochs. We set the weight decay to 10−7. We use stochastic gradient descent
with momentum 0.9 as our optimizer.

We follow the ‘pre-train then adapt’ training procedure similar to previous
work [48]. (i) We train the feature extractor Ψ(·) with the COP loss (4). We
train our feature extractor Ψ(·) on both source and target datasets as we do not
require any labels. (ii) Given the trained feature extractor Ψ(·), we further train
it on the labeled source and unlabeled target datasets with a domain classifier
fD(·) attached. We also train the attention module Φ(·) on the labeled source
dataset, given the trained feature extractor Ψ(·) from step 1. (iii) Given the
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Table 1: Ablation experiments on the COP loss, on Kinetics→NEC-Drone.
COP on

Method Source Target Top-1 acc (%) ∆

Clip DA + COP X X 28.5 + 11.3
Clip DA + COP X × 25.9 + 8.7
Clip DA + COP × X 22.4 + 5.2
Clip DA only × × 23.7 + 6.5
Supervised source only × × 17.2 reference

Table 2: Ablation experiments on the clip attention on Kinetics→NEC-Drone.
Method Align Clip attention Top-1 acc (%)

SAVA (ours) video-level X 31.6
SAVA (ours) w/o. clip attention video-level × 30.3
Clip-level align clip-level × 28.5

feature extractor Ψ(·) and the attention module Φ(·), we train our full model
with the labeled source dataset and unlabeled target dataset.

4.3 Ablation study

We perform several ablation experiments to analyze the proposed domain adap-
tation method. We conduct the experiments on more challenging Kinetics→NEC-
Drones setting except the attention module design choice experiment in Table 3,
which we performed on the UCF, HMDB, and Kinetics datasets.

Table 3: Effect of using different atten-
tion implementation. We show the atten-
tion module accuracy (%) on the Kinet-
ics, UCF, and HMDB datasets.

Method No. params Kinetics UCF HMDB

MLP 6.3M 72.2 86.1 75.4
GRU 6.3M 78.0 78.9 76.6

Effect of clip order prediction.
Table 1 gives the results showing the
effect of COP. Here, the source only is
the I3D network trained on the source
dataset, which we directly test on the
target dataset without any adaptation.
Clip-level domain adaptation (Clip
DA) is the baseline where we randomly
sample clips and align features of the
clips without any attention. On top of
the clip DA, we can optionally use the
COP losses for either source or target
or both.

The clip DA only (without COP) improves performance over the supervised
source only baseline by 6.5%p. More interestingly, the results show that using
both source and target COP improves performance significantly compared to
the clip DA only baseline by 4.8%p. We also observe that the source COP is
more crucial compared to the target COP. This is because the target NEC-Drone
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dataset (i) contains similar background appearance across all videos (a high school
gym), (ii) has a limited number of training videos (∼ 1K), and (iii) has the main
activities occurring with small spatial footprint (as the actors are small given
the videos were captured by drones). Thus, applying COP on the NEC-Drone
dataset does not lead to improved results. However, applying COP on the source
or both source/target produces large improvements over the baseline.
Clip attention performance. We evaluate the two different design choices,
MLP and GRU, for our attention module in this experiment. We show the clip
attention accuracy on the three source datasets in Table 3. We get the attention
accuracy by comparing the ground truth importance label (see Section 3.3 for the
details) and the predicted importance. We compute the clip attention performance
on the three source datasets Kinetics, UCF, and HMDB. Using such curated
ground truth ensures that the attention module starts from good local minima,
which is in tune with the base I3D encoder network.

The GRU shows a higher attention performance in two out of the three cases,
while it has a similar number of parameters to the MLP-based attention. Thus,
we employ the GRU-based attention module on all experiments in this paper.
Effect of attention module. We show the effect of the attention module in
the overall method in Table 2. Here, all the methods are pre-trained using source
and target COP losses turned on. We train our domain adaptation network with
three settings, (i) video-level alignment with clip attention (our full model), (ii)
video-level alignment without clip attention (using temporal average pooling
instead), and finally (iii) clip-level alignment.

The results show that video-level alignment gives an improvement over random
clip sampling alignment, 30.3% vs. 28.5%. Our full model with clip attention
alignment further improves the performance to 31.6%, over video-level alignment
without attention. The video-level alignment without attention treats every clip
equally. Hence, if there are some non informative clips, e.g., temporal background,
equally aligning those clips is a waste of the network capacity. Our discriminative
clip attention alignment is more effective in determining more discriminative
clips and doing alignment based on those.

4.4 Comparison with other methods

Methods compared. The methods reported are (i) ‘supervised source only’:
the network trained with supervised source data (a lower bound for adaptation
methods), (ii) ‘supervised target only’: the network trained with supervised
target data (an upper bound for the adaptation methods), and (iii) different
unsupervised domain adaptation methods. For the TA3N, we compare with the
latest results obtained by running the public code3 provided by the authors [3]
and not the results in the paper (given in brackets for reference, in Table 4).
While the original TA3N [3] works with 2D features based temporal relation
network (TRN) [58], we go beyond and integrate the TA3N with stronger I3D [2]
based TRN features. This allows a fair comparison with our method when all

3 https://github.com/cmhungsteve/TA3N

https://github.com/cmhungsteve/TA3N


12 J. Choi, G. Sharma, S. Schulter, and J.-B. Huang

Table 4: Results on UCF↔HMDB.
Method Encoder UCF→HMDB HMDB→UCF

Supervised source only [3] ResNet-101-based TRN 73.1 (71.7) 73.9 (73.9)
TA3N [3] ResNet-101-based TRN 75.3 (78.3) 79.3 (81.8)
Supervised target only [3] ResNet-101-based TRN 90.8 (82.8) 95.6 (94.9)

Supervised source only [3] I3D-based TRN 80.6 88.8
TA3N [3] I3D-based TRN 81.4 90.5
Supervised target only [3] I3D-based TRN 93.1 97.0

TCoN [37] ResNet-101-based TRN 87.2 89.1

Supervised source only I3D 80.3 88.8
SAVA (ours) I3D 82.2 91.2
Supervised target only I3D 95.0 96.8

other factors (backbone, computational complexity, etc) are similar. For TCoN,
we report the numbers from the paper [37] as code is not publicly available.

For the Kinetics → NEC-Drone setting, we implement video versions of
the DANN [13] and ADDA [48], which align the clip-level I3D [2] features and
show the results. We also compare with both unsupervised and semi-supervised
methods of Choi et al. [10].
UCF→ HMDB.We compare our method with existing methods in Table 4. The
first three blocks contain the results of the method with TRN-based encoder [58].
The fourth block shows the results of our SAVA with domain adaptation as well
as the source only I3D [2] baseline. We also show the result of fully supervised
finetuning of the I3D network on the target dataset as an upper bound.

SAVA with the I3D-based encoder shows 82.2% top-1 accuracy on the HMDB
dataset, in this setting. SAVA improves the performance of the strong I3D encoder,
80.3%, which in itself obtains better results than the TRN-based adaptation
results, 75.3% with TA3N. Our SAVA is closer to the upper bound (82.2%
vs. 95.0%), than the gap between TA3N and its upper bound (75.3% vs. 90.8%).
Furthermore, SAVA outperforms TA3N with I3D-based TRN features, 81.4%.

HMDB → UCF. Table 4 gives the comparison of our method with existing
methods in this setting. We achieve state-of-the-art results in this setting while
the other trend is similar to the UCF→HMDB setting. SAVA achieves 91.2%
accuracy on the target dataset with domain adaptation and without using any
target labels. The baseline source only accuracy of the I3D network is already
quite strong cf. the existing best adaptation method, i.e., 88.8% vs. 90.5% for
TA3N with I3D-based TRN features. We improve this to 91.2%. SAVA is quite
close to the upper bound of 96.8%, which strongly supports the proposed method.
In contrast, TA3N is still far behind its upper bound (79.3% vs. 95.6%).

Kinetics → NEC-Drone. This setting is more challenging, as the domain gap
is larger, i.e., the gap between the source only and target finetuned classifiers is
64.5% cf. 14.7% for UCF→HMDB.
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Table 5: Results on the Kinetics→NEC-Drone.
Method Encoder Target labels used (%) Top-1 acc (%)

Supervised source only [3] ResNet-101-based TRN None 15.8
TA3N [3] ResNet-101-based TRN None 25.0

Supervised source only [3] I3D-based TRN None 15.8
TA3N [3] I3D-based TRN None 28.1

Supervised source only I3D None 17.2
DANN [13] I3D None 22.3
ADDA [48] I3D None 23.7
Choi et al. [10] (on val set) I3D None 15.1
SAVA (ours) I3D None 31.6

Choi et al. [10] I3D 6 32.0
Supervised target only I3D 100 81.7
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Fig. 4: Class activation maps (CAM) on the UCF (first row) and
HMDB (second row) datasets. The actions green are correct predictions,
and those in red are incorrect predictions. Here the baseline is ADDA without
COP, and ours is ADDA with COP. Note how the COP encourages the model to
focus more on human action instead of scene context. Best viewed with zoom
and color.

Table 5 gives the results. The first block uses the TRN with ResNet-101
features, and the second block uses the TRN with I3D features while the others
use I3D features. We observe that similar to previous cases, SAVA outperforms
all methods, e.g., DANN (42% relative), ADDA (33% relative), TA3N (26.4%
relative), TA3N with I3D features (12.4% relative), and Choi et al. (the unsuper-
vised domain adaptation case). It is very close to the semi-supervised result of
Choi et al. (31.6 vs. 32.0), where they use 5 target labeled examples per class.

While the improvements achieved by SAVA are encouraging in this challenging
setting, the gap is still significant, 31.6% with adaptation vs. 81.7% with the
model finetuned with the target labels. The gap highlights the challenging nature
of the dataset, and the large margin for improvement in the future, for video-based
domain adaptation methods.

4.5 Qualitative evaluation

Clip order prediction. To better understand the effect of the proposed COP
module, we show class activation maps (CAM) [59] of target videos in Figure 4.
We compute the CAM of the center (8th) frame of a 16 frames long clip. We
show CAMs from models with and without COP (baseline/ours). The baseline

Fig. 4: Class activation maps (CAM) on the UCF (first row) and
HMDB (second row) datasets. The actions green are correct predictions,
and those in red are incorrect predictions. Here the baseline is ADDA without
COP, and ours is ADDA with COP. Note how the COP encourages the model to
focus more on human action instead of scene context.

Table 5 gives the results. The first block uses the TRN with ResNet-101
features, and the second block uses the TRN with I3D features while the others
use I3D features. We observe that similar to previous cases, SAVA outperforms
all methods, e.g., DANN (42% relative), ADDA (33% relative), TA3N (26.4%
relative), TA3N with I3D features (12.4% relative), and Choi et al. (the unsuper-
vised domain adaptation case). It is very close to the semi-supervised result of
Choi et al. (31.6 vs. 32.0), where they use 5 target labeled examples per class.

While the improvements achieved by SAVA are encouraging in this challenging
setting, the gap is still significant, 31.6% with adaptation vs. 81.7% with the
model finetuned with the target labels. The gap highlights the challenging nature
of the dataset, and the large margin for improvement in the future, for video-based
domain adaptation methods.

4.5 Qualitative evaluation

Clip order prediction. To better understand the effect of the proposed COP
module, we show class activation maps (CAM) [59] of target videos in Figure 4.
We compute the CAM of the center (8th) frame of a 16 frames long clip. We
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punch (UCF ) golf swing (UCF )

fencing (HMDB) bike riding (HMDB)

Fig. 5: Attention visualization on center frames of 4 clips from 4 videos.
The frames with green borders are given more importance by our attention
module cf. those with red borders. Note that our attention module can attend
to relevant clips where the action is clearly visible, while the baseline without
attention would align all clips equally, even those where the actor is missing or
highly occluded. Best viewed with zoom and color.

without COP tends to focus more on the scene context. However, the proposed
model with COP focuses more on the actual human action (typically around the
actors). As the model with COP focuses more on the actual action, it generalizes
better to a new domain with a completely different scene cf. the model without
COP, which is heavily biased by the scene context.
Clip attention. We show the center frames of 4 clips per video with the clip
attention module based selection. The videos demonstrate how the proposed clip
attention module focuses more on the action class relevant clips and less on the
irrelevant clips with either highly occluded actors or mainly background. E.g., in
the fencing video in the second row, first and the fourth clips are not informative
as the actor, or the object (sword), is highly occluded or cropped. Thus, aligning
the features from the relevant second and the third clips is encouraged. Similarly,
in the golf video of the first row, the last clip (green background) is irrelevant
to the golf action, and our attention module does not attend to it. However, a
model without attention treats all the clips equally.

5 Conclusion

We proposed Shuffle and Attend: Video domain Adaptation (SAVA), a
novel video domain adaptation method with self-supervised clip order prediction
and clip attention based feature alignment. We showed that both of the two
components contribute to the performance. We achieved state-of-the-art perfor-
mance on the publicly available HMDB!UCF and Kinetics!Drone datasets.
We showed extensive ablation studies to show the impact of different aspects
of the method. We also validated the intuitions for designing the method with
qualitative results for both the contributions.
Acknowledgment. This work was supported in part by NSF under Grant No.
1755785 and a Google Faculty Research Award. We thank NVIDIA Corporation
for the GPU donation.
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show CAMs from models with and without COP (baseline/ours). The baseline
without COP tends to focus more on the scene context. However, the proposed
model with COP focuses more on the actual human action (typically around the
actors). As the model with COP focuses more on the actual action, it generalizes
better to a new domain with a completely different scene cf. the model without
COP, which is heavily biased by the scene context.
Clip attention. We show the center frames of 4 clips per video with the clip
attention module based selection. The videos demonstrate how the proposed clip
attention module focuses more on the action class relevant clips and less on the
irrelevant clips with either highly occluded actors or mainly background. E.g., in
the fencing video in the second row, first and the fourth clips are not informative
as the actor, or the object (sword), is highly occluded or cropped. Thus, aligning
the features from the relevant second and the third clips is encouraged. Similarly,
in the golf video of the first row, the last clip (green background) is irrelevant
to the golf action, and our attention module does not attend to it. However, a
model without attention treats all the clips equally.

5 Conclusion

We proposed Shuffle and Attend: Video domain Adaptation (SAVA), a
novel video domain adaptation method with self-supervised clip order prediction
and clip attention based feature alignment. We showed that both of the two
components contribute to the performance. We achieved state-of-the-art perfor-
mance on the publicly available HMDB→UCF and Kinetics→Drone datasets.
We showed extensive ablation studies to show the impact of different aspects
of the method. We also validated the intuitions for designing the method with
qualitative results for both the contributions.
Acknowledgment. This work was supported in part by NSF under Grant No.
1755785 and a Google Faculty Research Award. We thank NVIDIA Corporation
for the GPU donation.



Shuffle and Attend: Video Domain Adaptation 15

References

1. Cai, Q., Pan, Y., Ngo, C.W., Tian, X., Duan, L., Yao, T.: Exploring object relation
in mean teacher for cross-domain detection. In: CVPR (2019)

2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

3. Chen, M.H., Kira, Z., AlRegib, G., Woo, J., Chen, R., Zheng, J.: Temporal attentive
alignment for large-scale video domain adaptation. In: ICCV (2019)

4. Chen, M.H., Li, B., Bao, Y., AlRegib, G., Kira, Z.: Action segmentation with joint
self-supervised temporal domain adaptation. In: CVPR (2020)

5. Chen, M., Xue, H., Cai, D.: Domain adaptation for semantic segmentation with
maximum squares loss. In: ICCV (2019)

6. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster
r-cnn for object detection in the wild. In: CVPR (2018)

7. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: Pixel-level domain transfer
with cross-domain consistency. In: CVPR (2019)

8. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In: EMNLP (2014)

9. Choi, J., Gao, C., Messou, J.C., Huang, J.B.: Why can’t i dance in the mall?
learning to mitigate scene bias in action recognition. In: NeurIPS (2019)

10. Choi, J., Sharma, G., Chandraker, M., Huang, J.B.: Unsupervised and semi-
supervised domain adaptation for action recognition from drones. In: WACV
(2020)

11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition.
In: ICCV (2019)

12. Gaidon, A., Harchaoui, Z., Schmid, C.: Temporal localization of actions with actoms.
TPAMI 35(11), 2782–2795 (2013)

13. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML (2015)

14. Gao, C., Zou, Y., Huang, J.B.: ican: Instance-centric attention network for human-
object interaction detection. In: BMVC (2018)

15. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations. In: ICLR (2018)

16. Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. In: NeurIPS
(2017)

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
19. He, Z., Zhang, L.: Multi-adversarial faster-rcnn for unrestricted object detection.

In: ICCV (2019)
20. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial

and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)
21. Hsu, H.K., Yao, C.H., Tsai, Y.H., Hung, W.C., Tseng, H.Y., Singh, M., Yang, M.H.:

Progressive domain adaptation for object detection. In: WACV (2020)
22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected

convolutional networks. In: CVPR (2017)
23. Jamal, A., Namboodiri, V.P., Deodhare, D., Venkatesh, K.: Deep domain adaptation

in action space. In: BMVC (2018)
24. Jetley, S., Lord, N.A., Lee, N., Torr, P.H.: Learn to pay attention. In: ICLR (2018)
25. Kar, A., Rai, N., Sikka, K., Sharma, G.: Adascan: Adaptive scan pooling in deep

convolutional neural networks for human action recognition in videos. In: CVPR
(2017)



16 J. Choi, G. Sharma, S. Schulter, and J.-B. Huang

26. Khodabandeh, M., Vahdat, A., Ranjbar, M., Macready, W.G.: A robust learning
approach to domain adaptive object detection. In: ICCV (2019)

27. Korbar, B., Tran, D., Torresani, L.: Scsampler: Sampling salient clips from video
for efficient action recognition. In: ICCV (2019)

28. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: A large video
database for human motion recognition. In: ICCV (2011)

29. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual
understanding. In: CVPR (2017)

30. Lee, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Unsupervised representation learning
by sorting sequences. In: ICCV (2017)

31. Li, Y., Vasconcelos, N.: Repair: Removing representation bias by dataset resampling.
In: CVPR (2019)

32. Li, Y., Li, Y., Vasconcelos, N.: Resound: Towards action recognition without
representation bias. In: ECCV (2018)

33. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable
representations acrosss domains and tasks. In: NeurIPS (2017)

34. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using
temporal order verification. In: ECCV (2016)

35. Munro, J., Damen, D.: Multi-modal domain adaptation for fine-grained action
recognition. In: CVPR (2020)

36. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: ECCV (2016)

37. Pan, B., Cao, Z., Adeli, E., Niebles, J.C.: Adversarial cross-domain action recognition
with co-attention. In: AAAI (2020)

38. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders:
Feature learning by inpainting. In: CVPR (2016)

39. Ren, Z., Jae Lee, Y.: Cross-domain self-supervised multi-task feature learning using
synthetic imagery. In: CVPR (2018)

40. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: CVPR (2018)

41. Sikka, K., Sharma, G.: Discriminatively trained latent ordinal model for video
classification. TPAMI 40(8), 1829–1844 (2017)

42. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: NeurIPS (2014)

43. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

44. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal
features with 3d convolutional networks. In: ICCV (2015)

45. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: CVPR (2017)

46. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured
output via discriminative representations. In: ICCV (2019)

47. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: ICCV (2015)

48. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: CVPR (2017)

49. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Dada: Depth-aware domain
adaptation in semantic segmentation. In: ICCV (2019)

50. Wang, J., Wang, W., Huang, Y., Wang, L., Tan, T.: M3: Multimodal memory
modelling for video captioning. In: CVPR (2018)

51. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018)



Shuffle and Attend: Video Domain Adaptation 17

52. Wang, Y., Hoai, M.: Pulling actions out of context: Explicit separation for effective
combination. In: CVPR (2018)

53. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning for video understanding. In: ECCV (2018)

54. Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., Zhuang, Y.: Self-supervised spatiotem-
poral learning via video clip order prediction. In: CVPR (2019)

55. Xu, D., Zhao, Z., Xiao, J., Wu, F., Zhang, H., He, X., Zhuang, Y.: Video question
answering via gradually refined attention over appearance and motion. In: ACM
MM (2017)

56. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for
visual domain adaptation. In: CVPR (2017)

57. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised
domain adaptation for semantic segmentation. In: NeurIPS (2019)

58. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in
videos. In: ECCV (2018)

59. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning Deep Features
for Discriminative Localization. CVPR (2016)

60. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective
cross-domain alignment. In: CVPR (2019)


