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1 Derivation of the ACM Evolution PDE

Following [1], we derive the Euler-Lagrange PDE governing the evolution of the
ACM. Let C be a 2D closed time-varying contour represented in Ω ∈ R2 by the
zero level set of the signed distance map φ, and X1 = (u, v) and X2 = (x, y)
represent two independent spatial variables that each represent a point in Ω. The
interior of C is represented by the smoothed Heaviside function
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the derivative of which is the smoothed Dirac delta function
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Using the characteristic function Ws, which selects regions within a square window
of size s, the energy functional of C may be written in terms of a generic internal
energy density F as

E(φ) =
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∫
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WsF (φ,X1, X2) dX2 dX1. (3)

To compute the first variation of the energy functional, we add to φ a perturbation
function εψ, where ε is a small number; hence,
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WsF (φ+ εψ,X1, X2) dX2 dX1. (4)

Taking the partial derivative of (4) with respect to ε and evaluating at ε = 0
yields, according to the product rule,
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where γφ is the derivative of δ(φ). Since γφ is zero on the zero level set, it does
not affect the movement of the curve. Thus the second term in (5) and can be
ignored. Exchanging the order of integration, we obtain
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ψδ(φ(X1))Ws∇φF (φ,X1, X2) dX1 dX2. (6)

Invoking the Cauchy–Schwartz inequality yields
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Adding the contribution of the curvature term and expressing the spatial variables
by their coordinates, we obtain the desired curve evolution PDE:
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where, assuming a uniform internal energy model and defining m1(x, y) and
m2(x, y) as the mean image intensities inside and outside C and within Ws, we
have

∇φF = δ(φ)
(
λ1(u, v)[I(u, v)−m1(x, y)]2 − λ2(u, v)[I(u, v)−m2(x, y)]2

)
. (9)

2 TDAC Backbone Architecture

In Tables 1 and 2 we present the details of the encoder and decoder in the TDAC
backbone CNN architecture. BN, Add, Pool, Upsample, Conv and Conv1 denote
batch normalization, addition, 2 × 2 max pooling, bilinear upsampling, 3 × 3
convolutional, and 1× 1 convolutional layers, respectively.

Table 1: Detailed information about the TDAC encoder.

Operations Output size

Input 512× 512× 3
Conv, ReLU, BN, Conv, ReLU, BN, Pool 256× 256× 16
Conv, ReLU, BN 256× 256× 32
Conv, ReLU, BN, Conv, ReLU, BN, Add, Pool 128× 128× 32
Conv, ReLU, BN 128× 128× 64
Conv, ReLU, BN, Conv, ReLU, BN, Add, Pool 64× 64× 64
Conv, ReLU, BN 64× 64× 128
Conv, ReLU, BN, Conv, ReLU, BN, Add 64× 64× 128
Conv, ReLU, BN, Conv, ReLU, BN, Add 64× 64× 128
Conv, ReLU, BN, Conv, ReLU, BN, Add 64× 64× 128



Trainable Deep Active Contours 3

Table 2: Detailed information about the TDAC decoder.

Operations Output size

Input 64× 64× 128
Upsample, Conv, ReLU, BN, Conv, ReLU, BN 128× 128× 64
Upsample, Conv, ReLU, BN, Conv, ReLU, BN 256× 256× 32
Upsample, Conv, ReLU, BN, Conv, ReLU, BN 512× 512× 16
Conv, ReLu, BN 512× 512× 16
Conv1 512× 512× 3

(a) Image (b) DSAC (c) DarNet (d) TDAC (e) φ0(x, y) (f) λ1(x, y) (g) λ2(x, y)

Fig. 1: Additional comparative visualization of the labeled image, the output of
DSAC, the output of DarNet, and the output of our TDAC, for the Vaihingen
dataset. (a) Image labeled with (green) ground truth segmentation. (b) DSAC
output. (c) DarNet output. (d) TDAC output. (e) TDAC’s learned initialization
map φ0(x, y) and parameter maps (f) λ1(x, y) and (g) λ2(x, y).

3 Comparative Visualization

Additional comparative visualizations are presented in Fig. 1.
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