
Supplemental Material for

Generating Handwriting via
Decoupled Style Descriptors

Atsunobu Kotani, Stefanie Tellex, and James Tompkin

Brown University

A Table of Variables . 1
B Comparison with Style Transfer Baselines 2
C Investigating the C-matrix . 3
D Network Capacity . 6
E Further Generated Comparisons . 7
F Sampling Algorithm for Writer-Character-DSD wct 10
G Sequence Decoder fdec

θ . 11
H Character Encoder Function gϕ . 12
I Segmentation Network kθ . 13
J Detailed Training Procedure . 14
K Dataset Specification and Collection Methodology 16

A Table of Variables

We include a brief table of the key variables used throughout the main manuscript
and in this supplemental manuscript (Table 1).

Table 1: Brief explanation of key variables used throughout these manuscripts.
Name Shape Note

x Input data (N, 3) A handwriting sample; a time sequence of 2D points.
x∗ Encoded input (N, 256) A raw output from fenc

θ (x).
s Sentence (M) A string label for x (e.g., hello).
ct Substring (t) A substring of s (e.g., he).
ct Character vector (87×1) A one-hot vector denoting the t-th character in s .
craw
t Encoded character (256×1) An output from gFC1

θ (ct). Input for gLSTM
θ .

craw
ct Encoded substring (256×1) An output from gLSTM

θ (craw
t).

w Writer-DSD (256×1) Content-independent handwriting style for a writer A.
Cct Character-DSD (256×256) An encoded character matrix for a substring ct.
wct Writer-Character-DSD (256×1) An encoded drawing representation for ct, extracted from x∗.

fenc
θ Sequence encoder Outputs a list of Writer-Character-DSDs wct from an input drawing x.
fdec
θ Sequence decoder Outputs a drawing x from a list of wct .
gθ Character encoder Outputs a character matrix Cct . Simplified function used as shorthand.
gFC1
θ Outputs a vector craw

t from a vector ct.
gLSTM
θ Outputs a vector craw

ct from a list [craw
1 , ..., craw

t].
gFC2
θ Outputs a Character-DSD Cct from a vector craw

ct .
hθ Temporal encoder LSTM to restore dependencies between Writer-Character DSDs wct .
kθ Segmentation function Segments a handwriting sample x into characters.

2 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 1: Qualitative evaluation of two common style-transfer techniques.

B Comparison with Style Transfer Baselines

We evaluated our proposed model against two style transfer baselines. We define
a style vector as s = f enc

θ (x) and a character-content vector as c = gθ(ct). To
interweave s and c, we consider a new operator F where F (s, c) = z. Then, we
feed z into our decoder function fdec

θ to synthesize a drawing. We examined two
operators for F : A) three stacked FC+ReLU layers, and B) AdaIN layer [5].

In our method, f enc
θ (x) produces wct , which is then decoupled from the

character content via our C matrix operation. In Method A and B, f enc
θ (x)

produces s, and via F the network must implicitly represent content and writer
style parts. For fairness, we keep the architectures of f enc

θ , fdec
θ , gθ the same as

in our approach, and train each method from scratch with the same data and
loss function as in our approach.

Neither Method A or B is competitive with our method or with DeepWrit-
ing [1]. While A and B can generate readable letters, A) has only one style,
and B) fails to capture important character shape details leaving some illegible,
and has only basic style variation like slant and size (Figure 1). This is because
f enc
θ must represent a content-independent style for a reference sample without

its content information. The DeepWriting model decouples style and content by
making f enc

θ additionally predict the reference content via a character classifica-
tion loss. Our approach does not try to decouple style and content within f enc

θ ;
instead our model extracts style from the output of f enc

θ by multiplication with
a content-conditioned matrix C.

This simple experiment demonstrates that style-content decoupling is a diffi-
cult task. Instead of making one network (i.e., f enc

θ) responsible for filtering out
content information from the style reference sample implicitly, we show empiri-
cally that our method to structurally decouple content information via C matrix
multiplication is more effective in the online handwriting domain.

C Investigating the C-matrix

The C matrix for a character string ct—Cct—is designed to contain information
about how people generally write ct: its role is to extract character(s)-specific

Supplemental Material for Generating Handwriting via DSDs 3

information from wct . Intuitively, the relationship between Cct and wct can be
seen as one of a key and a key-hole. Our model tries to create a perfect fit between
a key (wct) and a key-hole (Cct), where both shapes are learned simultaneously.
But what if we fix the key-hole shape ahead of time, and simply learn to fit the
key? That is, what if we assign pre-defined values to substring character matrices
C ahead of time? This would reduce the number of model parameters, speed up
training and inference, and allow us to store C in memory as a look-up table
rather than predict its values.

One issue with fixing the C matrix is the exponential growth in the number
of possible strings ct as we allow longer words. Thus, for this analysis, we will
initialize C for single- and two-character substrings only, which have a tractable
number of variations in our Latin alphabet (Sec. K). For example, instead of
Chello for a word ‘hello’, we consider its five constituent single- and two-character
substrings Ch, Che, Cel, Cll, Clo. Consequently, we modified the training data
format by segmenting every sentence into two-character pairs.

We consider three scenarios (Figure 2):

Fixed random single- and two-character C In principle, each substring that
C represents only needs to be different from other substrings, and so we as-
sign a random matrix to each two-character substring.

Fixed well-spaced single- and two-character C Two matrices Csh and Che

could contain mutual information about how to write the character h, and
so we try to assign fixed matrices in a way that places similar substrings
close to each other in high-dimensional space.

Learned single- and two-character C Our model trained only on single char-
acters and two-character pairs. This trains gθ to predict the values of C.

Well-spaced C. If we randomly initialize C (i.e., I(Csh;Che) ≈ 0), the values of
two writer-character-DSDs, whe and wshe, must be significantly different from
each other to output consistent w, and this makes the learning task harder for
the f enc

θ LSTM. Instead, to determine how to manually initialize C such that
they are more well spaced out, we look at the character information within wct .
As we use an LSTM to encode the input drawing to obtain wct , it models long
temporal dependencies. In other words, by the nature of LSTMs, wct tends to
‘remember’ more recent characters than older characters, and so we assume wct

remembers the second character more than the first character. Thus, we initialize
the character matrix for a two-character substring ct as follows:

Cct = rCc1 + (1.0− r)Cc2 (1)

where Cc1 and Cc2 are randomly initialized single-character-DSDs, and we set
r = 0.1. This leads to Cct that have the same ending character (i.e., c2) having
similar representations, as shown in Figure 2b.

Results. Under t-SNE projections, the learned C models create more meaningful
C representation layouts (Figure 2). Unlike the well-spaced C, when we project C
for two-character substrings (Figure 2c), we see a few outer clusters, with a larger

4 A. Kotani, S. Tellex, and J. Tompkin.

(a) Random C (2-character-string) (b) Spaced C (2-character-string)

(c) Learned C (2-character-string) (d) Learned C (1-character-string)

Fig. 2: t-SNE visualization of different C. Each dot indicates different substring.
The substrings with the same last character (e.g., ‘ab’, ‘bb’, ‘cb’) are colored
same. The learned C in Figure 2c are mostly concentrated in the middle. As
each C contains information about how to draw two characters, even the two
C with the same last character (e.g., ‘ab’ and ‘bb’) are often distant from each
other, because of the different first character. By contrast, isolating the single
characters within the learned C (Figure 2d) shows them to be well mapped in
the space: similar characters such as ‘(’, ‘c’ and ‘C’ are closely positioned.

Supplemental Material for Generating Handwriting via DSDs 5

Fig. 3: Qualitative comparisons of results from different two-character C. When
C are fixed through training, the models failed to synthesize recognizable letters.

Fig. 4: Instances of missed delayed strokes by our proposed model.

‘more chaotic’ central concentration. As each dot in the projections represents C
for two characters, these C cannot be easily clustered by the ending characters
(e.g., considering general shapes, ‘cb’ is likely to have a representation closer to
the one of ‘C6’ than ‘fb’, despite the common 2nd character b). When looking
at just the single-characters within our learned C representations (Figure 2d),
characters with similar shapes (e.g., ‘9’,‘q’,‘g’) are closely positioned, and this
indicates a successful representation learning for C.

Figure 3 shows writing generation results from these different approaches.
Both fixed C approaches fail to generate good samples.

Limitations of two-character substrings. One might think that using single- and
two-character substrings could represent most variation in writing—how much
do letters two behind the currently-written letter really affect the output? Cur-
sive writing especially contains delayed strokes: for example, adding the dot for
‘i’ in ‘himself’ after writing ‘f’. Changing to two-character substrings removes the
ability of our model to learn delayed strokes in writings. In practice, our origi-
nal C model can struggle to correctly place delayed strokes (Fig. 4): the model
must predict a negative x-axis stroke to finish a previous character, which rarely
occurs in our training set. This is one area for future work to improve.

6 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 5: To match the total number of parameters between DeepWriting and our
model, we increased the LSTM dimension in DeepWriting from 512 to 1, 041.
There is little improvement in quality from the initial DeepWriting model of 512
LSTM dimension to 1, 041. These drawings are generated with 10 sentence-level
reference samples of the same writer.

D Network Capacity

To validate our network capacity, we conducted two comparison studies with the
DeepWriting model by Aksan et al. [1]. The first is to decrease the number of
parameters in our DSD-based model, and the second is to increase the number
of parameters in the DeepWriting model.

D.1 Increasing DeepWriting Model Parameters

We modified the hidden state dimension for the DeepWriting model from 512 to
1, 071, and the total number of parameters subsequently increased from 7.2M to
31.3M . We show a side-by-side comparison of generated samples with DSD-256
model in Figure 5. For our 8GB VRAM GPU to accommodate this large LSTM,
we decreased the batch size by half from 64 to 32, and doubled the number of
learning rate decay steps from 1, 000 to 2, 000. However, increasing the capacity
of the DeepWriting model did not improve the generated results (Figure 5).

D.2 Decreasing DSD Model Parameters

Is our decoupled model more efficient than the DeepWriting model [1], or simply
more capacitive? With 256-dimensional latent vectors, our model has 31.33M
parameters, whereas DeepWriting has 7.27M . This difference is largely in the
gθ fully connected layer which expands craw

ct into Cct via 16.84M parameters.
As such, we reduced our latent vector dimension from 256 to 141, which leads

Supplemental Material for Generating Handwriting via DSDs 7

Fig. 6: We decreased the DSD dimension in our model from 256 to 141 to match
the total number of parameters to DeepWriting. As we decrease DSD dimensions,
there is a slight fall in quality, particularly the examples with green dots that
are generated from a single global writer-DSD w in Method α.

to a model with 7.25M parameters. While we observe minor deterioration in
generation quality (Figure 6), the model still creates higher-quality samples than
DeepWriting. This suggests that our architecture is more efficient.

E Further Generated Comparisons

Figure 7 and 8 show all 40 samples of drawing used for our qualitative/quantitative
study on Amazon Mechanical Turk.

8 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 7: The first 20 out of 40 samples used for quantitative evaluation.

Supplemental Material for Generating Handwriting via DSDs 9

Fig. 8: The second 20 out of 40 samples used for quantitative evaluation.

10 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 9: Generated image by our sampling algorithm. The black letters in the
synthesis indicate that they are predicted from w, while the colored characters
in reference samples are encoded and saved in the database in the form of writer-
character-DSDs wct and retrieved during synthesis.

F Sampling Algorithm for Writer-Character-DSD wct

When handwriting samples x with corresponding character strings s are provided
for inference, we can extract writer-character-DSDs wct from x for substrings
of s. For example, for character string his, we can first extract the following 3
arrays of writer-character-DSDs using fenc

θ : [wh], [wh,whi], and [wh,whi,whis].
In addition, if the handwriting is non-cursive and each character is properly
segmented, then we can also obtain 3 more ([wi], [wi,wis], and [ws]). However,
we must ensure that the handwriting is cursive, as h, i, and s could be connected
by a single stroke. In such cases, we only extract the first 3 arrays.

We create a database D of these arrays of writer-character-DSDs with sub-
strings as their keys, and query substrings in the target sentence s∗ for genera-
tion to obtain relevant writer-character-DSDs. We also compute the mean global
writer-DSD w as w = 1

N

∑
ct
C−1

ct wct where N is the number of obtained wct .
To synthesize a sample thin from his, we query the substring hi and receive

an array of DSDs: [wh,whi]. As wt and wn are computed from w:

wrec
t = hθ([wt]) (2a)

wrec
th = hθ([wt,wh]) (2b)

wrec
thi = hθ([wt,whi]) (2c)

wrec
thin = hθ([wt,whi,wn]) (2d)

We use [wt,whi] instead of [wt,wh,whi] in Equations 2c and 2d because, as one
might recall from generation Method β in the main paper (Sec. 3), the function
approximator hθ is designed to restore temporal dependencies between writer-
character-DSDs. As ‘h’ and ‘i’ are already temporally dependent within whi, we
need only connect characters ‘t’ and ‘h’ through LSTM hθ. The pseudocode for
this sampling procedure is shown in Algorithm 1, with example generations in
Figure 9.

Supplemental Material for Generating Handwriting via DSDs 11

Algorithm 1: Pseudocode for our sampling algorithm to reconstruct
writer-character-DSDs for the target sentence to synthesize.

Input: D: database of writer-character-DSD, s∗: target sentence to generate,
w: mean global writer-DSD

1 Function PerformSamplingAlgorithm(D, s∗, w):
2 Initialize empty sets L, R and result
3 s∗ ← MarkAllCharactersAsUncovered(s∗)
4 ss∗ ← ExtractSubStringsAndOrderByLength(s∗)
5 for each substring ss in ss∗ do
6 if ss is in D and every characters in ss are not-covered then
7 [wc1 , ...,wct] = QueryDatabaseWithKey(ss)
8 Add [wc1 , ...,wct] to L
9 s∗ ← MarkCharactersInSubstringAsCovered(s∗, ss)

10 for each uncovered character ct in s∗ do
11 wct ← Cctw
12 Add [wct] to L

13 L∗ ← OrderSetBySubstringAppearanceIn(s∗)
14 for each array A in L∗ do
15 for each wci in A do
16 wrec

ci ← hθ([R1, R2, ...,wci])
17 Add wrec

ci to the result list
18 if wct is the last element in A then
19 Add wci to the reference set R

20 return result

G Sequence Decoder fdec
θ

To synthesize a new sample from a list of writer-character-DSD wct , we train a
sequence decoder function fdec

θ . The inputs to this decoder are: 1) initial point
p0 = (0, 0, 0), and 2) the first writer-character-DSD wc1 . Continuing with the
thin example, we predict the first point p1 from p0 and wt. At runtime, the
predicted point p∗1 will be fed into the LSTM at the next timestep to predict
p2. When the decoder model outputs an eoc > 0.5 (end-of-character probabil-
ity), the model stops drawing the current character and start referencing the
next writer-character-DSD so that it starts drawing the next character. This
procedure is illustrated as the red lines in Figure 10. Similarly, to determine the
touch/untouch status of the pen to the canvas, we use the eos (end-of-stroke
probability) which is enclosed in point prediction p∗t . If eost > 0.5, our model
lifts up the pen; if eost ≤ 0.5, our model continues the stroke.

Note that when we use the predicted p∗t as an input to the LSTM at runtime,
we binarize the eos value. This is because all eos values in training data are
binarized. Further, we do not use the predicted points to predict the next point

12 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 10: Overview of our decoder architecture. During training, we feed true point
sequences to the LSTM and do not use the predicted output p∗t as the next input
(the procedure shown as dotted blue lines).

Fig. 11: Variations in generated results from a single writer-character-DSD wct ,
achieved by sampling points from predicted MDN distributions.

during training, because we have the true point sequence x. In other words:

p∗t+1 = fdec
θ (p0, p1, ..., pt|wct) (training) (3a)

p∗t+1 = fdec
θ (p0, p

∗
1, ..., p

∗
t |wct) (runtime) (3b)

where ∗ indicates predicted outputs by the decoder network.
Finally, the mixture density networks [2] (MDN) layer in our decoder makes

it possible for our model to generate varying samples even from the same writer-
character-DSD wct . Examples are shown in Figure 11.

H Character Encoder Function gθ

Next, we discuss in detail how the character matrix C is computed. First, we
convert each one-hot character vector ct in the sentence s into a 256 dimensional

Supplemental Material for Generating Handwriting via DSDs 13

vector craw
t via a fully-connected layer gFC1

θ . Then, we feed this vector into LSTM
gLSTM
θ and receive outputs craw

ct of the same size. gLSTM
θ is designed to encode

temporal dependencies among characters. Then, we use a mapping function gFC2
θ

to transform the 256 × 1 vector into a 65, 536 dimensional vector, and finally
reshape the output vector to a 256× 256 matrix Cct . This process is as follows:

craw
t = gFC1

θ (ct) (4a)
craw
ct = gLSTM

θ ([craw
1 , ..., craw

t]) (4b)
Cct = Reshape(gFC2

θ (craw
ct)) (4c)

The parameters in gFC2
θ take up about one third of total number of parame-

ters in our proposed model; this is expensive. However, using a fully-connected
layer allows each value in the output Cct to be computed from all values in
the 256-dimensional vector craw

ct . If each value in craw
ct represents some different

information about the character, then we intended to weight them 65, 536 times
via distinct mapping functions to create a matrix Cct . We leave the study of
other possible gθ architectures for future work.

I Segmentation Network kθ

We introduce an unsupervised training technique to segment sequential hand-
writing samples into characters without any human intervention. For compari-
son, the existing state-of-the-art DeepWriting handwriting synthesis model [1]
relies on commercial software for character segmentation.

Our data samples for training arrive as stroke sequences and character strings,
with no explicit labeling on where one character ends and another begins within
the stroke sequence. As such, we train a segmentation network kθ to segment
sequential input data x into characters, and to predict end of character (eoc)
labels for each point in x. Relying on these predicted eoc labels, we can extract
wct from encoded x∗ and synthesize new samples with fdec

θ .
To prepare the input data for training, we extract 23 features per point pt

in x, as is commonly used in previous work [4,6,7]. We feed these into a bidirec-
tional LSTM to output a probability distribution over all character classes. From
this output O of size (N,Q), where N is the input sequence length and Q is the
total number of characters, we compute a loss that is similar to a connectionist
temporal classification (CTC) loss [3]. As seen in Figure 12, we make a slight
modification in connections among nodes to adjust the change in two domains:
character recognition and segmentation. In the recognition task, the blank char-
acter - was introduced to fill the gap between two character predictions (e.g.,
a–b–b), but because our goal is to label each point in the input sequence with
a specific character in the corresponding sentence, we must avoid unnecessary
use of the blank character and instead predict actual characters (e.g., aaabbbb).
The only case where the blank character is needed in segmentation is when a
character is repeated in a sentence. To highlight the switch from the first b case
to the second b case, we use the - (e.g., aaabb-b). This slight modification in

14 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 12: Illustration of connections between temporal nodes. (Left) Original CTC
connections. (Right) Our design of CTC connections. The connections between
non-character nodes ‘-’ are prohibited (red arrows in the original). The shaded
nodes shows an example route for prediction.

CTC connections enables us to train our segmentation network in an unsuper-
vised manner, automatically label sequential handwriting data with characters
and identify eoc indices. Examples of segmentation are shown in Figure 13.

J Detailed Training Procedure

J.1 Ablation Study

In the main paper, we discussed three different ways to obtain wct : f enc
θ , Method

α, and Method β. As we compute losses for each type, we conducted a simple
ablation study. First, removing Lα from the total loss will take away the ability
to generate handwriting samples from the mean writer-DSD w from the model
by construction. Similarly, excluding Lβ will disallow our model to synthesize a
new sample from saved writer-character-DSDs in the database D and only allow
it to generate from the mean w. It is clear that we need both types of losses, Lα

and Lβ , to have the current model capabilities.
However, eliminating Lfenc

θ
, the loss term for a method that uses the origi-

nal writer-character-DSD extracted from f enc
θ , does not change model dynamics.

Hence, we trained ablated models with modified loss functions that do not in-
clude: 1) any terms related to f enc

θ (i.e., Lfenc
θ

, L
wct
α and L

wct

β), and 2) just
Lfenc

θ
. Figure 14 shows the training curve for word-level location losses L loc.

Removing Lfenc
θ

had significant influence on Method β locational loss, L loc
β

(standard: −3.213 vs. ablated: −1.811 after 250K training steps).

Supplemental Material for Generating Handwriting via DSDs 15

Fig. 13: Segmentation results. A) in handwriting image format. Different colors
indicate different character segments. B) in CTC best route format. C) enlarged
figure of the route path. D) More results.

From this result, we assume that Lfenc
θ

works as a learning guideline for our
model, and speeds up the training. We analyze that this is because having Lfenc

θ

in our loss function encourages accurate learning for our decoder function fdec
θ . In

this setting, the function fθ is indeed an autoencoder, and the decoder is trained
to restore x from its encoded representation, writer-character-DSDs. This will
increase the decoder performance, and as the decoder accuracy is maintained,
the model can focus on learning the encoder problem, which is reconstruction of
writer-character-DSDs by Method α and β.

The reconstruction losses, L
wct
α and L

wct

β , by contrast, did not affect the
learning speed. We assume this can also be addressed by the same reason. Even
if we constrained the reconstructed DSDs by Method α and β to minimize their
differences with the original DSDs from f enc

θ , those constraints will penalize the
encoder more than they do for the decoder. To effectively train the decoder
function, our model thus requires the loss term Lfenc

θ
.

J.2 Hyperparameters

To train our synthesis model, we use Adam [8] as our optimizer and set the
learning rate to 0.001. We also clip the gradients in the range [−10.0, 10.0] to
enhance learning stability. We use 5 sentence-level samples (relevant word-level
and character-level samples are included as well) for each batch in training. We
use multi-stacked (3-layers) LSTMs for our recurrent layers.

16 A. Kotani, S. Tellex, and J. Tompkin.

Fig. 14: Effects of Lfenc
θ

on training word-level location loss L word
loc . Transparent

lines show the actual data points, and solid lines show smoothed training curves.
Full-Stacked model is trained with the full loss, while No-f model’s loss function
does not include Lfenc

θ
. Further, No-f-rec model does not have Lfenc

θ
, L

wct
α ,

L
wct

β terms in its loss function. Test data is 20 held-out writers.

K Dataset Specification and Collection Methodology

Our dataset considers the 86 characters: a space character ‘ ’, and the following
85 characters:

0123456789
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
!?"'*+-=:;,.<>\/[]()#$%&

We collected handwriting samples from 170 writers using Amazon Mechanical
Turk. An example screen of our data collection website is shown in Figure 15.
Writing arbitrary words is laborious, and so we set a data-collection time limit
of 60 minutes. Given this, it was necessary to select a subset of English words
for our data collection.

K.1 Defining Target Words and Sentences

We analyzed the Gutenberg Dataset [9], which is a large corpus of 3, 036 En-
glish books. These documents use 99 characters in total, including alphabetical,
numerical, and special characters. In total, 5, 831 character pairs appear in the
dataset, while theoretically there are 9, 702 possible character pairs (99×99−99).
By counting the number of occurrences of each character pair, we constructed
an ordered list of character pairs that is then used to score 2, 158, 445 distinctive
words within the corpus.

The first word to be selected from the corpus was therefore, which includes
the two most frequently used character pairs th and he. In fact, the character

Supplemental Material for Generating Handwriting via DSDs 17

Fig. 15: Example screen of our data collection website. Each drawing box is 750
pixels × 120 pixels, and we provide a baseline at 80 pixels from the top.

pairs within therefore appear so frequently that they altogether cover 13.5% of
all character pair occurrences.

After adding therefore to the list of words for experiments, we then add addi-
tional words iteratively: we re-calculate scores for all other words with updated
scores of character pairs (i.e., after adding therefore, the pairs th and he will not
have high scores in future iterations). This process was repeated until the words
in the list exceeded 99% coverage of all character pair occurrences.

Then, we constructed sentences from these high-scored words. Each sentence
was less than 24 characters length to meet a space constraint due to our experi-
ment setup. We asked tablet owners to write the prompted sentences using their
stylus within the bounding box (750 pixels × 120 pixels), and 24 characters was
the maximum number of characters that could reasonably fit into the region.

We also added several pangram sentences as well as repeated characters sen-
tences (e.g., aaa bbb ccc ddd), and that led to our basic list of 192 sentences.
These sentences use 86 unique characters, instead of 99 available characters, due
to our decision to ignore rarely used special characters. They also use 1, 182
distinct character pairs which cover 99.5% of all character pair occurrences
(1, 158, 051, 103/1, 164, 429, 941). The remaining pairs could have been ignored,
yet because that 0.5% was still large—6, 378, 838 occurrences by 4, 649 character
pairs—we decided to create a list of extra words with less frequently used char-
acter pairs, distribute them to 170 writers. Thus, each writer creates some rarer
data that varies for each writer, in addition to their basic 192 sentences. As a
result, we achieve 99.9% coverage with 3, 894 character pairs.

K.2 Writer Behavior

Handwriting dataset collection is complex for various reasons, and in general
creating a clean dataset without heuristic or manual cleaning is difficult. In our
collection process, sometimes a writer would realizes that s/he missed certain

18 A. Kotani, S. Tellex, and J. Tompkin.

characters in the sentence after finishing the line, and so would go back to the
location to add new strokes. These ‘late’ character additions are accidental rather
than intentional. In contrast, conventional online handwriting recognition litera-
ture defines delayed strokes, where in cursive writing the horizontal bar of t and
f, or the dot of i and j, are often added after a writer finished the current word.
To distinguish between these two cases of late characters and delayed strokes,
we disregard the temporal order of each stroke in a sample and reorder them
from left to right if the leftmost point in a stroke is to the right of the rightmost
point in another stroke. In this way, accidental omissions are removed.

Further, although we strongly advised participants to erase previous lines if
they made mistakes, most participants either ignored this and left mistakes in,
or scribbled over those regions to block them out. Writers also missed characters
from the prompted sentences, and not a single participant (out of 170 writers)
succeeded in near-perfect writing of 192 sentences. As our segmentation network
(Sec. I) assumes that each drawing sample is labeled with the accurate character
sequence, missed characters can directly affect the performance of segmentation.
Hence, we manually corrected these instances throughout our dataset.

References
1. Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep

Generative Modeling. In: SIGCHI Conference on Human Factors in Computing
Systems. CHI ’18, ACM, New York, NY, USA (2018)

2. Bishop, C.M.: Mixture density networks (1994)
3. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal

classification: Labelling unsegmented sequence data with recurrent neural net-
works. In: Proceedings of the 23rd International Conference on Machine Learn-
ing. p. 369–376. ICML ’06, Association for Computing Machinery, New York,
NY, USA (2006). https://doi.org/10.1145/1143844.1143891, https://doi.org/10.
1145/1143844.1143891

4. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence 31(5), 855–868 (2008)

5. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV) (Oct 2017)

6. Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting recognition: the
npen++ recognizer. International Journal on Document Analysis and Recognition
3(3), 169–180 (2001)

7. Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.L., Carbune, V.: Multi-language
online handwriting recognition. IEEE transactions on pattern analysis and machine
intelligence 39(6), 1180–1194 (2016)

8. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (12 2014)

9. Lahiri, S.: Complexity of Word Collocation Networks: A Preliminary Structural
Analysis. In: Proceedings of the Student Research Workshop at the 14th Conference
of the European Chapter of the Association for Computational Linguistics. pp. 96–
105. Association for Computational Linguistics, Gothenburg, Sweden (April 2014),
http://www.aclweb.org/anthology/E14-3011

https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
http://www.aclweb.org/anthology/E14-3011

	Supplemental Material forGenerating Handwriting via Decoupled Style Descriptors
	Table of Variables
	Comparison with Style Transfer Baselines
	Investigating the C-matrix
	Network Capacity
	Further Generated Comparisons
	Sampling Algorithm for Writer-Character-DSD wct
	Sequence Decoder fdec
	Character Encoder Function g
	Segmentation Network k
	Detailed Training Procedure
	Dataset Specification and Collection Methodology

