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Abstract. Recent studies have shown that current VQA models are
heavily biased on the language priors in the train set to answer the
question, irrespective of the image. E.g., overwhelmingly answer “what
sport is” as “tennis” or “what color banana” as “yellow.” This behavior
restricts them from real-world application scenarios. In this work, we pro-
pose a novel model-agnostic question encoder, Visually-Grounded Ques-
tion Encoder (VGQE), for VQA that reduces this effect. VGQE utilizes
both visual and language modalities equally while encoding the question.
Hence the question representation itself gets sufficient visual-grounding,
and thus reduces the dependency of the model on the language priors.
We demonstrate the effect of VGQE on three recent VQA models and
achieve state-of-the-art results on the bias-sensitive split of the VQAv2
dataset; VQA-CPv2. Further, unlike the existing bias-reduction tech-
niques, on the standard VQAv2 benchmark, our approach does not drop
the accuracy; instead, it improves the performance.
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1 Introduction

Visual Question Answering (VQA) is a good benchmark for context-specific rea-
soning and scene understanding that requires the combined skill of Computer
Vision (CV) and Natural Language Processing (NLP). Given an image and a
question in natural language, the task is to answer the question by understanding
cues from both the question and the image. Tackling the VQA problem requires
a variety of scene understanding capabilities such as object and activity recogni-
tion, enumerating objects, knowledge-based reasoning, fine-grained recognition,
and common sense reasoning, etc. Thus, such a multi-domain problem yields a
good measure of whether computers are reaching capabilities similar to humans.

With the success of deep-learning in CV and NLP, several datasets [3, 14, 21,
15, 19, 42], and models [2, 4, 6, 5, 22] have been proposed to solve VQA. Most of
these models perform well in the existing benchmark datasets where the train
and test sets have similar answer distribution. However, recent studies show
that these models often rely on the statistical correlations between the question
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patterns & the most frequent answer in the train set, and shows poor gener-
alized performance (i.e., poor performance on a test set with different answer
distributions than the train set [1]). In other words, they are heavily biased on
the language modality. E.g., most of the existing models overwhelmingly answer
“tennis” by seeing the question pattern “what sport is.. ” or answer the question
“what color of the banana?” as “yellow” even though it is a “green banana,”
By definition and design, the VQA models need to merge the visual and textual
modalities to answer the question. However, in practice, they often answer the
question without considering the image modality, i.e., they tend to have less im-
age grounding and rely more on the question. This undesirable behavior restricts
the existing VQA models being applicable in practical scenarios.

One reason for this behavior is the strong language biases that exist in the
available VQA datasets [3, 14]. Hence, the models trained on these datasets will
often rely on such biases [1, 32, 7, 33, 39, 9]. E.g., in the most popular and large
VQAv2 dataset [14], a majority of the “what sport is” question is linked to
“tennis.” Hence, upon training, the model will blindly learn the superficial cor-
relations between the “what sport is” language pattern from the question, and
the most frequent answer “tennis.” Unfortunately, it is hard to avoid these bi-
ases from the train set when collecting real-world samples due to the annotation
cost. Instead, we require methods that force the model to look at the image
and question equally to predict the answer. Since the main source of bias is
the over-dependency of the models on the language side, some approaches such
as [32, 7, 9], tried to overcome this by reducing the contribution from the lan-
guage side. On the other hand, some approaches [33, 1, 39] tried to improve the
visual-grounding of the model in order to reduce the language-bias. All of these
existing bias reduction methods cause a performance reduction in the standard
benchmark VQA datasets.

A common pipeline in existing VQA models is to encode the image and ques-
tion separately and then fuse them to predict the answer. Typically the image
is encoded using a pre-trained CNN (e.g., ResNet [16], VGGNet [35], etc. ), and
the question is encoded by sending the word-level features to an RNN (GRU [10]
or LSTM [18]). In this approach, while encoding the question, it only considers
the language modality, and such a question representation has not contained
any distinguishable power based on the content in the image. In other words,
the question representation is not grounded in the image. E.g., with this scheme,
the question “what sport is this?” has the same encoded representation irrespec-
tive of whether the image contains “tennis,” “baseball,” or “skateboarding,” etc.
Since the majority of such questions are linked to the answer “tennis” in the
train set, the model will learn a strong correlation between the question pattern
“what sport is” to the answer “tennis,” irrespective of the image. This leads
to overfitting the question representation to the most frequent answer, and the
model will ignore the image altogether.

In this paper, we propose a generic question encoder for VQA, the Visually-
Grounded Question Encoder (VGQE), that reduces this problem. VGQE en-
codes the question by considering not only the linguistic information from the
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(a) A generic VQA model with a tradi-
tional question encoder.
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(b) A generic VQA model with
VGQE.

Fig. 1. A VQA model with a traditional question encoder vs. with VGQE: A traditional
question encoder uses only the language modality while encoding the question, whereas
VGQE uses both language and visual modalities to encode the question.

question but also the visual information from the image. A visual comparison
of a generic VQA model with a traditional question encoder and with VGQE is
shown in Fig 1. The VGQE explicitly forces the model to look at the image while
encoding the question. For each question word, VGQE finds the important vi-
sual feature from the image and generates a visually-grounded word-embedding
vector. This word embedding vector contains the language information from
the question word and the corresponding visual information from the image.
These visually-grounded word-embedding vectors are then passed to a sequence
of RNN cells (inside VGQE) to encode the question. Since VGQE considers
both the modalities equally, the encoded question representation will get suffi-
cient distinguishing power based on the visual counterpart. For e.g., with VGQE,
in the case of the “what sport is this” question, the model can easily distinguish
the question for “baseball,” “tennis,” or “skateboarding,” etc. As a result, the
question representation itself is heavily influenced by the image, and the learn-
ing of the correlation between specific language patterns and the most frequent
answers in the train set can be reduced.

The VGQE is generic and easily adaptable to any existing VQA models, i.e.,
replace the existing traditional language-based question encoder in the model
with VGQE. In this paper, we demonstrate the ability of VGQE to reduce
the language bias on three recent best performing baseline VQA models, i.e.,
MUREL [6], UpDn [2] and BAN [22]. We did extensive experiments on the
VQA-CPv2 dataset [1] and demonstrate the ability of VGQE to push the base-
line models to achieve state-of-the-art results. The VQA-CPv2 dataset is specif-
ically designed to test the VQA model’s capacity to overcome the language
biases from the train set. Further, we show the effect of VGQE in the standard
VQAv2 benchmark as well. Unlike existing bias reduction techniques [1, 32, 7,
9, 39], VGQE does not show any drop in the accuracy on the standard VQAv2
dataset; instead, it improves the performance.

2 Related Works

A major role in the success of deep-learning models lies in the availability of
large datasets. Most of the existing real-world datasets for various problems will
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have some form of biases, and it is hard to avoid this at the time of dataset col-
lection, due to the annotation cost. Consequently, the models trained on these
datasets often over-fit to the biases between the inputs and ground truth anno-
tations from the train set. Researchers tried different procedures to mitigate this
problem in various domains. For instance, some methods focused on the biases
in captioning models [17], gender biases in multi-label object classification [43],
biases in ConvNets and ImageNet [36], etc. Since our work focuses on reduc-
ing the language biases in VQA models, in the following, we discuss the related
works lying on the same line.

Approaches in the dataset side: In VQA, various datasets have been
proposed so far such as [3, 14, 21, 24]. The main source of bias in these datasets
are from the language side, i.e., the question. There exist strong correlations
between some of the word patterns in the question and the frequent answer
words in the dataset. For e.g., in the large and popular VQAv1 dataset [3],
there exist strong language priors such as “what color..” to “white,” “is there..”
to “yes,” “how many..” to “2”, etc. To reduce the language biases in VQAv1,
in [14], the authors introduced a more balanced VQAv2 dataset, by adding
at least two similar images with different answers for each question. However,
with this additional refinement also, there still exists a considerable amount of
language biases that can be leveraged by the model during training. In [1, 27,
8], the authors empirically show that a question-only model (without using the
image) trained on VQAv2 shows reasonable performance, indicating the strong
language priors in the dataset. In [1], the authors show that since the train
and test answer distributions of VQAv2 are still similar, and the models that
solely memorize language biases in the train set show acceptable performance
while testing. In this regard, they introduced a diagnostic dataset, the VQA-CP
(VQA under Changing Priors), to measure the language bias learned by the VQA
models. This dataset is constructed with vastly different answer distributions
between the train and test splits. Hence the models that rely heavily on the
language priors in the train set will show poor performance while testing. [1]
empirically shows that most of the existing best performing VQA models on the
VQAv2 dataset show a significant drop in the accuracy when tested on the new
test split from VQA-CPv2. E.g., a model with ≈ 66% accuracy in the standard
VQAv2 shows only ≈ 40% accuracy in the bias sensitive VQA-CPv2.

Approaches in the architecture side: Several approaches have been con-
sidered in the literature to remove such biases. In [1], the authors propose a
specific VQA model built upon [40], the GVQA model, consists of specially
designed architectural restrictions to prevent the model from relying on the
question-answer correlations. This model is complicated in design and requires
multi-stage training, which makes it challenging to adapt to existing VQA mod-
els. In [32, 7], the authors propose different regularization techniques that can be
applied via the question encoder to reduce the bias. In [32], the authors added
an adversary question-only branch to the model, and it is supposed to find the
amount of bias that exists in the question. Then, a gradient negation of the
question-only branch loss is applied to remove answer discriminative features
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from the question representation of the original model. They also propose a dif-
ference of entropy (DoE) loss captured between the output distributions of the
VQA model and the additional question-only branch. In [7], the authors propose
a similar approach as in [32], named RUBi, where instead of using the DoE and
question-only loss, they mask (using the sigmoid operation) the output from
the question-only branch and element-wise multiplying it with the output of
the original model, to dynamically adapt the value of the classification loss to
reduce the bias. However, both of these regularization approaches show a de-
crease in the performance on the standard VQAv2 benchmark, while reducing
the bias. In [33], the authors propose a tuning method, called HINT, that is
used to improve the visual-grounding of the existing model. Specifically, they
tuned the model with manually annotated attention maps from the VQA-HAT
dataset [11]. Similar to this, in [39], the authors propose a tuning approach called
SCR, which uses additional manually annotated attention maps (from the VQA-
HAT [11]) or textual explanations (from the VQA-X dataset [20]) to improve
the visual-grounding of the model. However, both of these approaches [33, 39]
require additional manually annotated data, and collecting the same is expen-
sive. Also, these approaches reduce the performance on the standard VQAv2.
Recently, in [9], the authors proposed an approach based on language-attention
and is built upon the GVQA model [1]. The language attention module splits
the question into three language phrases: question type, referring objects, and
specific features of the referring object. These phrases further utilized to infer
the answers from the image. They claim that splitting the question into different
language phrases reduces the learning of the bias. However, this approach also
shows a reduction in the performance on VQAv2.

The prior works are trying to overcome the bias either by reducing the con-
tribution from the language side as in [32, 7, 9], or by improving the visual-
grounding by tuning with additional manually annotated data as in [33, 39].
One common drawback of all of these methods is that they show a significant
drop in the performance on the standard VQAv2 benchmark while reducing the
bias. On the contrary, our approach improves the representation power of the
question encoder to make visually-grounded question encodings to reduce the
bias. The advantage of such an approach is that it is not only model-agnostic
but also does not sacrifice the performance on the standard VQAv2 benchmark.
Also, it does not require any additional manually annotated data or tuning.

Traditional question encoders and pitfall: The widely adopted ques-
tion encoding scheme in VQA is passing the word-level features to a recurrent
sequence model (LSTM [18] or GRU [10]) and taking the final state vector as
the encoded question. Some early works use one-hot representations of question
words and pass through an LSTM such as in [3, 13, 41], or GRU as in [4]. The
drawback of using the one-hot vector representations of question words is the
manual creation of the word vocabulary. Later, the usage of pre-trained word em-
bedding vectors such as GloVe [30], BERT [12], etc., becomes popular, since they
do not require any word vocabulary and also rich in linguistic understanding.
This question encoding scheme, i.e., pass the pre-trained word embeddings of the
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question words to some RNNs, is the currently popular approach in VQA [2, 22,
6, 5, 28, 29]. However, recently, with the success of Transformer based models in
various NLP tasks [12], usage of Multi-modal Transformers (MMT) are becom-
ing popular, such as ViLBERT [26], LXMERT [37], etc. These are co-attention
models working on top of the Transformers [38], where while encoding the ques-
tion, the words are prioritized with the guidance of the visual information.

The above-mentioned question-encoding schemes only use the language modal-
ity, i.e., the word-embeddings of the question words. As a result, the encoded
question contains only the linguistic information from the question, and it cannot
distinguish the questions based on their visual counterpart. This situation forces
the model to learn the unwanted correlations between the language patterns in
the questions, and the most frequent answers in the train set without consid-
ering the image which leads to a language side biased model. On the contrary,
our question encoder, the VGQE, considers both visual and language modal-
ities equally and generate visually-grounded question representations. A VQA
model with such a question representation can reduce the over-dependency on
the language priors in the train set.

The VGQE is also related to approaches such as FiLM [31], in terms of the
early usage of the complementary information. The FiLM uses the question con-
text to influence the image encoder, whereas VGQE uses the visual information
inside the question encoder.

3 Visually-Grounded Question Encoder (VGQE)

We follow the widely-adopted RNN based question encoding scheme in VQA as
the base. In VGQE, instead of the traditional RNN cell, a specially designed
cell called the VGQE cell is used. A VGQE cell takes the word embedding of
the current question word and finds its relevant visual counterpart feature from
the image, then creates a visually-grounded question word embedding. This new
word embedding is passed to an RNN cell to encode the sequence information.

Before going into the VGQE cell details, we explain the image and question
feature representations used by the model. The image is represented by two sets
of features V = {vi ∈ Rdv}i∈[1,k] and L = {li ∈ Rdw}i∈[1,k] corresponding to the
CNN features of objects and embeddings of the class labels respectively, where
k is the total number of objects. The question is represented as a sequence of
words with corresponding word embedding vectors, the word embedding of the
tth question word is being denoted by qt ∈ Rdw .

3.1 VGQE cell

The basic building block of the proposed question encoder is the VGQE cell.
This is analogous to the RNN cell (LSTM [18] or GRU [10]) in the traditional
approach. An illustration of the VGQE cell at time t is shown in Fig. 2. Each
VGQE cell takes the object-level features V , L, the current question word em-
bedding qt and the previous state context vector ht−1, and then outputs the
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Fig. 2. VGQE cell at time t: VGW module finds the visually-grounded word embedding
gt for the current question word qt and the RNN cell (GRU or LSTM) encodes the
sequential information in the question. V and L are the sets of object-level features.

current state context vector ht. The context vector ht is then pass to the next
VGQE cell in sequence. Mathematically we represent a VGQE cell as follows:

ht = VGQE(V,L, qt, ht−1) (1)

A VGQE cell consists of two modules: the Visually-Grounded Word embedding
(VGW) module and a traditional RNN cell (GRU [10] or LSTM [18]). The VGW
module is responsible for finding the visually-grounded word embedding vector
gt for the current question word embedding qt. Then, gt is passed to the RNN
cell to encode the question sequence information.

VGW module: This module is the crux of the VGQE cell, where the visually-
grounded word embedding gt for the current question word qt is extracted. It
works in two stages: 1)Attention and 2)Fusion. The first stage calculates the
visual counterpart feature ft of the question word embedding qt, while in the fu-
sion stage, ft and qt are fused to generate the visually-grounded word embedding
vector gt.
Attention: This module takes the set of object-label features L and the current
question word qt as inputs and outputs a relevance score vector αt ∈ Rk. Each of
the k values in αt tells the relevance of the corresponding object from the image
in the context of the current question word qt. Then, one single visual feature
vector ft is extracted by taking the weighted sum over the set of object CNN
features V , where the weights are defined by αt. Mathematically, the above steps
are formulated as follows:
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ft =

k∑
i=1

αt[i] ∗ vi (2)

αt = softmax(wT
a (W (L ∗ (1qt))

T ))

where ∗ is element-wise multiplication, vi ∈ V is the ith object CNN feature
vector, αt ∈ Rk and ft ∈ Rdv are the object-relevance score vector and the
visual counter part feature for the current question word qt respectively, αt[i] is
the relevance of the ith object at time t, L ∈ Rk×dw is the matrix representation
of the set of object-label features, wa ∈ Rdw and W ∈ Rdw×dw are learnable
parameters and 1 is a column vector of length k consists all ones.
Fusion: In this stage, the word-level visual feature ft is grounded to the word-
level language feature qt. This results in the visually-grounded word embedding
vector gt. For fusion, any multi-modal fusion function Fm such as element-wise
multiplication, bi-linear fusion [13, 4, 23, 41, 5] etc. can be used. In this paper, we
use the BLOCK fusion as Fm, which is a recently proposed best performing bi-
linear multi-modal fusion method [5]. The formal representation of the visually-
grounded word embedding vector gt is as follows:

gt = Fm(ft, q̂t;Θ) (3)

where Fm is the multi-modal fusion function (in our case BLOCK) with Θ as the
learnable parameters, the vector q̂t = Wq(qt) is the fine-tuned word embedding
vector with Wq as the learnable parameters of a two-layer network that projects
from dw-space to d-space, and ft is the visual feature as defined in Eq. (2). The
fused vector gt contains relevant language information from the word embedding
qt and visual information from ft; in other words, gt is a visually-grounded word
embedding vector. For the same question word (e.g., banana), the gt vector will
vary according to their visual counterpart (as a result, the “green banana” and
“yellow banana” will get distinguishable representations in the question.).

The output from the VGW module, the visually-grounded word embedding
vector gt along with the previous state context vector ht−1, is then passed to a
traditional RNN cell to generate the current state question context vector ht.

3.2 Using VGQE cell to encode the question

In the proposed question encoder, we use the VGQE cell instead of the traditional
RNN cell. An illustration of a generic VQA model with VGQE is shown in Fig. 3.
The visual encoder encodes the image as in the original model. The question is
encoded using VGQE instead of the existing question encoder. The question
word embeddings are passed through a sequence of VGQE cells along with the
object-level features (V and L) and take the final state representation as the
encoded question. In this paper, we use GRU as the RNN cell inside the VGQE
cell. Other question-encoder adaptations using variants of RNN, such as LSTM,
are also possible, with appropriate changes in the RNN cell of VGQE. Since, in
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Fig. 3. An illustration of a generic VQA model with VGQE

VGQE, the question words are grounded on its visual counterpart, the encoded
questions itself contain sufficient visual-grounding. Hence, they become robust
enough to reduce the correlation between specific language patterns and the
most frequent answers in the train set.

3.3 Baseline VQA architecture

In this paper, we adopt the same baseline as used in prior work [7], to perform
various experiments, also to make a fair comparison. This baseline is a simplified
version of the MUREL VQA model [6]. The word embeddings are passed to a
GRU [10] to encode the question. Then, each of the object CNN features vi ∈ V
are bi-linearly fused (using BLOCK fusion [5]) with the encoded question to get
the question-aware object features. A max-pool operation over these features
gives a single vector that later used by the answer prediction network.

4 Experiments and Results

4.1 Experimental setup

We train and evaluate the models on the VQA-CPv2 dataset [1]. This dataset is
designed to test the robustness of VQA models in dealing with language biases.
The train and test sets of VQA-CPv2 have totally different answer distributions;
hence a model that strongly depends on the language priors in the train set
will perform poorly on the test set. We also use the VQAv2 dataset to train
and evaluate the models on the standard VQA benchmark. We use the VQA
accuracy [3] as the evaluation metric.

We use the object-level CNN features provided in [2] as V (dv = 2048).
We use the pre-trained Glove [30] for the object-label features L and question
word embeddings qt (dw = 300). We train the model using Adamw [25] with
weightdecay = 2 ∗ 10−5 and cross-entropy loss. Further implementation details
are provided in the supplementary material.
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Table 1. Comparison with existing models on VQA-CPv2.

Model Overall Yes/No Number Other

GVQA [1] 31.30 57.99 13.68 22.14
RAMEN [34] 39.21 - - -
BAN [22] 39.31 - - -
MUREL [6] 39.54 42.85 13.17 45.04
UpDn [2] 39.74 42.27 11.93 46.05
UpDn+Q-Adv+DoE [32] 41.17 65.49 15.48 35.48
UpDn+HINT [33] 46.73 67.27 10.61 45.88
UpDn+LangAtt [9] 48.87 70.99 18.72 45.57
UpDn+SCR (VQA-X) [39] 49.45 72.36 10.93 48.02
Baseline [7] 38.46 42.85 12.81 43.20
Baseline+RUBi [7] 47.11 68.65 20.28 43.18

Baseline+VGQE 50.11 66.35 27.08 46.77

4.2 Results

Comparison with state-of-the-art models: In Table 4.1, we compare VGQE
against existing state-of-the-art bias reduction techniques in VQA-CPv2. We
can see that our approach achieves a new state-of-the-art. With VGQE, we
improved the baseline model (that uses the traditional GRU based question
encoder) accuracy from 38.46 to 50.11. This performance also corresponds to
a notable improvement from the RUBi approach [7], where they also use the
same baseline. Our approach outperforms the UpDn based approaches [32, 33,
9, 39] as well. Comparing with GVQA, a specific model designed for VQA-CP,
our generic approach outperforms with a +18.81 gain in the accuracy.

Question-type-wise results: In Table 2, we show the comparison of some
of the question-type-wise results of the baseline and with VGQE (+VGQE)
models. The baseline model shows comparatively poor performance than the
model with VGQE. Since most of the time, the baseline model with a traditional
question encoder tries to memorize the language biases in the train set. We can
see that, in all the question-types, the incorporation of VGQE reduces such
biases and improves performance. To further clarify this, in Fig. 4, we visualize
the answer distributions of some of the question-types in the VQA-CPv2 train
& test sets and outputs of the baseline & baseline+VGQE models (less frequent
answers are ignored for better visualization). It is clear from the visualizations
that the baseline model learns the language biases in the train set and predicts
the answer without considering the image. The incorporation of VGQE helps
to reduce such biases and to answer by grounding the question onto the image.
E.g., from Fig. 4, consider the case of the “Do you” type questions. Most of
such questions are linked to the answer “no” in the train set; in other words,
there is a strong correlation between the “Do you” language pattern and the
answer “no.” We can see that most of the time, the baseline model predicts the
answer ”no” upon seeing the pattern “Do you,” without considering the image.
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Table 2. Performance comparison be-
tween the baseline and VGQE corre-
sponding to some of the question-types
in the VQA-CPv2 test set. VGQE re-
duces the learning of unwanted ques-
tion pattern-answer correlations and
improves the performance. All numbers
are VQA accuracy values.

Question Type Baseline +VGQE

Do you 30.7 93.19
Can you 29.04 52.54
What are the 39.8 48.52
What color are the 28.32 64.42
What sport is 88.39 93.19
What is the person 57.40 63.65
What time 39.28 57.88
What room is 80.34 92.87
What is in the 29.34 35.84
Where are the 19.87 31.88
What brand 28.54 47.19
How many 12.91 19.65
How many people 36.62 50.03
Does the 31.91 77.39
Which 26.73 39.0
Why 12.28 14.76

Do you

What color are the

What time

Fig. 4. Answer distributions from train &
test sets of VQA-CPv2, and outputs of
baseline & baseline+VGQE models, for
some question types from Table 2. We can
see that VGQE helps the model to reduce
the learning of bias from the train set.

This indicates that the baseline model relies on the strong correlation between
the language pattern “Do you” and the answer “no,” rather than looking at the
image. In contrast, the incorporation of VGQE helps to reduce such learning of
biases and to predict the answer by considering the image as well.

On comparing the performance gain among the question types, we can see
that the questions that start with ”why” show relatively less improvement. Since
these questions usually require common sense reasoning (e.g., Why people wear
the hat?), and in such cases, the VGQE cannot improve much from the baseline.

Qualitative results: In Fig. 5, we show some qualitative comparisons be-
tween the baseline (Base) and baseline+VGQE (Ours) models. Fig 5 (a), shows
the case of the “What color are the” question pattern, where the train set has
heavy biases towards the colors “black”, “red”, “blue”,“brown”, and “yellow”
(see Fig.4). In Fig 5 (b) and (c), we show the cases of the same question asked
for different images. The question “What sport is being played?” has a bias on
”tennis” (≈ 63.2%) and “soccer” (≈ 17.5%) whereas “What color is the fire
hydrant?” is biased towards the colors “yellow” (≈ 46%), “white” (≈ 12%) and
“black” (≈ 10%) in the train set [1]. These visualizations further show that
incorporating VGQE helps the baseline model to reduce the learning of biases.
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Q: What color are the
bananas. GT: green,

Ours:green,Base: yellow.

Q: What color are the
umbrellas. GT: white,
Ours:white,Base: blue.

Q: What color are the
cabinets. GT: white,

Ours:white, Base: brown.

(a) Question Pattern: What color are the

GT: frisbee,
Ours: frisbee,
Base: soccer

GT: baseball,
Ours: baseball,
Base: tennis

GT: baseball,
Ours: baseball,
Base: tennis

(b) Common Question: What sport is being played?

GT: red,
Ours: red, Base: yellow

GT: red,
Ours: red, Base: white.

GT: red,
Ours: red, Base: black

(c) Common Question: What color is the fire hydrant?

Fig. 5. Some qualitative comparisons of our model (Baseline+VGQE) with Baseline.
Ours, Base and GT represents the baseline+VGQE, baseline and the ground truth,
respectively. Best viewed in color.

In Fig. 6, we show a visualization of the grounded image regions at each
time step of VGQE with the same question (“What sport is being played?”)
but different images. We can see that the question words are grounded onto
the relevant visual counterparts. Hence, the same words will get different rep-
resentations based on the image. For e.g., the word “sport” is grounded on the
”baseball” player in the first case, whereas it is grounded on the ”frisbee” player
in the second case. Hence, even though the question is the same, the VGQE
generates different visually-grounded question representations.

4.3 Performance of VGQE on other baselines

The proposed question encoder, the VGQE, can be easily incorporated into any
existing VQA model, i.e., replace the existing question encoder with VGQE (See
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Input image what sport is being played

Input image what sport is being played

Fig. 6. A visualization of the grounded visual regions at each time step of VGQE with
the same question (“What sport is being played?”) but different images. The same
words will get different visually-grounded embeddings based on the visual counterpart.

Fig. 3 for an illustration). We have already shown the effectiveness of VGQE on
the MUREL baseline (see Table 4.1). In this section, we show (see Table 3) the
impact of VGQE on two more recent best performing models as well:

– UpDn [2]: This VQA model is based on question guided visual attention.
The word embeddings are pass to a GRU to encode the question. The image
is encoded using visual attention guided by the question representation, over
the set of object CNN features V . Then, both encoded image and question are
combined using element-wise multiplication and pass to the answer predictor.

– BAN [22]: This model is based on bi-linear co-attention maps between
the objects and question words. The question word embeddings are passed
through a GRU. Then all the GRU cell outputs and the object-level CNN
features are given to a co-attention module, the BAN. This module will give
a combined vector which later used by the answer predictor.

In both models, we replaced the traditional GRU-based question encoder
with VGQE. Note that, unlike other model-agnostic bias reduction methods,
VGQE does not require a new question-only branch as in [32, 7] or tuning with
additional annotated data as in [33, 39], while training. The results are shown
in Table 3. We can see that, in both models, VGQE consistently improves the
performance (39.74 to 48.75 in UpDn [2] and 39.31 to 50.0 in BAN [22]) on
VQA-CPv2, showing that here also VGQE reduces the language-bias.

4.4 Performance of VGQE on the standard VQAv2 benchmark

Existing bias reduction techniques such as [32, 7, 9, 33, 39] show a reduction in the
performance on the standard VQAv2 benchmark. For instance, in Table 3, the
best performing UpDn based models on VQA-CPv2, such as UpDn+LangAtt [9]
reduce the accuracy in the VQAv2 val set from 63.48 to 57.96 & UpDn+SCR [39]
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Table 3. Effect of VGQE on UpDn [2] and BAN [22]
models, on VQA-CPv2 and VQAv2 val.

Model VQA-CPv2 VQAv2 val

UpDn [2] 39.74 63.48
UpDn+Q-Adv [32] 40.08 60.53
UpDn+DoE [32] 40.43 63.43
UpDn+Q-Adv+DoE [32] 41.17 62.75
UpDn+RUBi [7] 44.23 -
UpDn+HINT [33] 46.73 63.38
UpDn+LangAtt [9] 48.87 57.96
UpDn+SCR [39] 48.47 62.3
UpDn+SCR (HAT) [39] 49.17 62.2
UpDn+SCR (VQA-X) [39] 49.45 62.2

UpDn+VGQE 48.75 64.04

BAN [22, 7] 39.31 65.36
BAN+VGQE 50.00 65.73

Table 4. Comparison of
performance of the base-
line model with RUBi
and VGQE on VQAv2
val set. RUBi shows a
drop in the accuracy
whereas VGQE does not
show any drop.

Model VQAv2 val

Baseline [7] 63.10
+RUBi [7] 61.16

+VGQE 63.18

reduces it from 63.48 to 62.2. Note that, UpDn+SCR reduces the performance
even though it uses additional manually annotated data (HAT or VQA-X). Also,
in Table 4, adding RUBi to the baseline model decreases the accuracy from 63.10
to 61.16. On the contrary, VGQE does not sacrifice the performance on the stan-
dard VQAv2 benchmark. Interestingly, VGQE slightly improves the performance
of the respective models; from 63.48 to 64.04, 63.10 to 63.18 and 65.36 to 65.73
in UpDn [2], baseline [7] and BAN [22] respectively. We ascribe this to the fol-
lowing; VGQE adds a robust and visually-grounded question representation to
the model without damaging its existing reasoning power.

5 Conclusion

Current VQA models rely heavily on the language priors that exists in the train
set, without considering the image. Such models that fail to utilize both modal-
ities equally would likely perform poorly in real-world scenarios. We propose
VGQE, a novel question-encoder that utilizes both the modalities equally and
generates visually-grounded question representations. Such question representa-
tions have sufficient distinguishing power based on the visual counterpart and
help the models to reduce the learning of language biases from the train set. We
did extensive experiments on the bias sensitive VQA-CPv2 dataset and achieved
a new state-of-the-art. The VGQE is model agnostic and can easily incorporate
into existing VQA models without the need for additional manually annotated
data and training. We experimented with three best performing VQA models,
and deliver consistent performance improvement in all of them. Further, unlike
existing bias reduction techniques, VGQE does not sacrifice the original model’s
performance on the standard VQAv2 benchmark.
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