
Supplementary Material

Class-Incremental Domain Adaptation

Reference
in paper

Contents
Section

in Suppl.

§2 Experimental details of STA 1

§3 Notation Table 2

§3 Algorithms 3

§3.1b Generation of negative samples (un) 3.1

§3.1c Foresighted source-model training 3.2

§3.2c Selection of confident target samples (Bct) 3.3

§3.2e Class-Incremental Domain Adaptation 3.4

§3.2d Pseudo-labeling precision 4

§4.1 Dataset (label-set) details 5

§4 Architecture details 6

§4.1b Office and Visda datasets 6.1

§4.1b Digits dataset 6.2

§4.2a Illustrations for baselines 6.3

§4.2b Theoretical Insights 7

§4.2f Discussion on multi-step model upgrade 8

1 Experimental details of STA

The label-sets used for the experiment are as mentioned in Sec. 5 and the
architecture is given in [7]. After the adaptation, we predict labels for all target
samples and collect the samples predicted as unknown. We then label 5% of these
samples (ensuring equal number of samples in each class) to obtain few-shot
target-private samples. Note that the few-shot target-private samples do not
contain the mis-classified target-shared samples. Finally, we learn a target-private
classifier (TPC) that is similar to gt (Table 2).

We evaluate the method over 5 separate runs (with different sets of few-
shot samples). First, we classify all target samples into Cs ∪ {unknown}. Then,
samples predicted as unknown are further classified into C′t using the TPC, thereby
assigning a unique target-private label to each sample predicted as unknown. With
target samples classified into |Ct| classes, we obtain the accuracy on target-shared
samples (95.9± 0.3%) and target-private samples (17.7± 3.5%).

This evaluation scheme is followed for all UDA methods. Particularly, in
DANN [3] and UAN [13], we obtain the unknown label prediction using confidence
thresholding. In STA [7] and OSBP [12], the classifier is trained with an additional
unknown class that is used to detect unknown samples.

2 Kundu et al.

2 Notation Table

In Table 1, we provide an exhaustive list of symbols used in the paper and the
corresponding description.

Table 1. Notations used in the paper

Symbol Description

S
p

a
ce

X Input space

Y Label space

U Output space of fs
V Output space of ft

D
is

tr
.

p Source distribution on X × Y
q Target distribution on X × Y
qX Target marginal input distribution

r Negative data distribution in U-space

N
et

w
o
rk

fs Feature extractor of the source-model

gs Classifier of the source-model

ft Target-specific feature extractor

gt Classifier accounting for C′t
fe, fd Domain projection networks

S
et

s

Ds Set of labeled source samples

Dt Set of unlabeled target samples

Dn Set of labeled Negative samples

Cs, Ct, C′t Set of shared classes, target classes and target-private classes

Bct Set of confident target samples for each class c ∈ Ct

S
a
m

p
le

s

xs,xt Source and Target domain input samples (image)

ys, yt Source and Target domain labels

{(x̃ct , ỹct)} One-shot target-private samples ∀c ∈ C′t
ŷ(·) Concatenated output pertaining to Cs (gs(·)|c∈Cs) and Ct (gt)

us Source / proxy-source sample feature in the U-space

un Negative sample feature in the U-space

vt Target sample feature in the V-space

vcg Guide for class c ∈ Ct in the V-space

P
ro

to
ty

p
es

Pcs ,Pct Source and Target domain class-specific Gaussian Prototypes

Ps,Pt Source and Target domain Global Gaussian Prototypes

µcs,Σ
c
s Class-specific mean and covariance of source features fs(xs)

µs,Σs Mean and covariance of source features fs(xs) for all xs in Ds
µct ,Σ

c
t Class-specific mean and covariance of target features ft(xt)

µt,Σt Mean and covariance of source features ft(xt) for all xt in Dt

M
is

c.

E Expectation

lce(·, ·) Standard cross-entropy function

l2(·, ·) Euclidean distance function

d, k Distance to the nearest guide and pseudo-label of a target sample

n Percentage of confident target samples during CIDA

Nsrc, Nneg Number of source and negative samples in a batch

Class Incremental Domain Adaptation 3

3 Algorithms

Here we provide the algorithms corresponding to each stage of our approach,
along with a description of the major steps involved.

3.1 Generation of negative samples (un)

During the source-model training, we generate negative samples at each iteration
as outlined in Algo. 1. Specifically, negative samples are those samples obtained
from the global Gaussian Prototype Ps = N (µs,Σs) that fall outside the 3-σ
confidence threshold of each class-specific Gaussian Prototype Pcs = N (µcs,Σ

c
s).

This 3-σ threshold is calculated in lines 3-6 of Algo. 1, where we obtain the
eigen decomposition of the covariance matrix Σc

s and select the largest eigen
value λcs and the corresponding eigen vector νcs. Then, we define the 3-σ threshold
for class c as the likelihood of the sample µcs + 3 ·

√
λcs · νcs.

To generate negative samples (un), we obtain samples from the global Gaussian
Prototype Ps (line 8) and reject those samples that are within the 3-σ confidence
interval of any class. In other words, we keep those samples which do not fall
within the 3-σ interval of any class (lines 10-12).

3.2 Foresighted source-model training

The source-model training is outlined in Algo. 2. We pre-train the network
for 1 epoch (lines 2-5) using the vanilla cross-entropy loss (to provide a fair
initialization for the Gaussian Prototypes). Here, line 4 denotes the parameter
update step performed by gradient descent using the Adam optimizer. The term
inside the Adam operator denotes the (negative) gradient of the mean loss for
the mini-batch of the source samples.

After this initialization, we calculate the Gaussian Prototypes, both class-
specific (lines 6-11) and global (lines 12-14). Note that, in the paper we mention
that an alternating minimization scheme is used for training the network. This is
implemented by maintaining a list of corresponding losses, optimizers and model
parameters. Particularly, use a separate Adam optimizer (line 16) for each loss
(line 15) that trains only the parameters specific to the loss (line 17). Further,
we maintain a counter iter (line 18) that is used to determine the loss that is to
be optimized at each iteration (cur = iter mod 2).

During training, we obtain a mini-batch with an an equal amount of source
(Nsrc) and negative samples (Nneg), i.e.Nsrc = Nneg (lines 22-29). Line 30 denotes
the optimization process, where cur is used to index the list of parameters Θ,
optimizers Opt and losses Loss. Note, here the update step denotes the update
of the parameters Θ[cur] specific to the loss Loss[cur] being optimized by the
optimizer Opt[cur] (similar to that in line 4). Finally, at the end of each epoch,
we recalculate the Gaussian Prototypes which are then used for the next epoch.

3.3 Selection of confident target samples Bc
t

The process of confident target sample (Bct) selection is shown in Algo. 3. Specifi-
cally, for each guide vcg, we obtain the nearest n-percent pseudo-labeled target
samples. Lines 3-7 denote the pseudo-labeling process, while the selection of
nearest n-percent target samples is shown in lines 8-12.

4 Kundu et al.

3.4 Class-Incremental Domain Adaptation

We outline the algorithm for performing CIDA on the target domain in Algo. 4.
The target feature extractor ft is initialized from fs and the domain projection
networks fe, fd are initialized with near-identity mappings (to effectively “initalize
V-space with the U-space). This is depicted in lines 2-7. Particularly, we use
separate Adam optimizers (Adamfe for training fe, and Adamfd for training
fd) and train the networks with the reconstruction losses (similar to a vanilla
auto-encoder). Note that, lines 5-6 denote the parameter update step performed
by gradient descent using the Adam optimizer specific to each loss. Here, the
term inside the Adam operator is the (negative) gradient of the mean loss for
the mini-batch of the proxy-source samples.

After the initialization, we begin the model upgrade. Note that, as mentioned
in the paper, we use separate Adam optimizers for each loss and follow a round-
robin alternating minimization scheme by optimizing a single loss using its specific
optimizer. This allows each optimizer to adaptively scale the gradients of the
corresponding loss, thus, avoiding the need to have separate hyperparameters
for loss weighting. To this end, we define lists of corresponding losses (Loss),
optimizers (Opt) and model parameters (Θ) (lines 8-10 in Algo. 4). Further, iter
(line 11) is a counter that is used to obtain the index of the loss to be optimized
at each iteration (cur = iter mod 5).

At each iteration, we obtain the guides (line 15) for each class. For the losses
Lr1,Lr2, we use the proxy-source samples (lines 16-18). The adaptation loss La1
is applied on the pseudo-labeled target samples (lines 19-22), while the losses
La2 and Lc are applied on the confident target samples (23-25). For convenience,
we depict the round-robin alternating loss optimization in line 26 where for the
iteration iter, the index of the loss to be optimized is cur = iter mod 5. Thus, the
corresponding loss is Loss[cur], which is optimized using the optimizer Opt[cur]
thereby training the parameters Θ[cur]. Note that the implementation of the
parameter update step (line 26) is similar to that in lines 5-6, where the actual loss
optimized is the mean loss calculated over the samples in the mini-batch under
consideration. Finally, at the end of each epoch, we recalculate the Gaussian
Prototypes Pct (line 29) and obtain confident target samples Bct .

4 Pseudo-labeling Precision

We analyze the precision of the pseudo-labels obtained for the top-n percent
confident target samples Bct for each class c ∈ Ct. The precision of the target
pseudo-labels for the task A→D on Office dataset is shown in Fig. 1 (in line
with the setting in Table 3 in the paper). The overall precision is computed as
the class-averaged precision of the pseudo-labels. Specifically, Fig. 1A shows the
precision for samples predicted with a pseudo-label k ∈ Ct (ALL) and Fig. 1
shows the precision for samples predicted with a pseudo-label k ∈ C′t (PRIV).

We observe that the pseudo-labeling precision for n = 20% target samples is
high. This validates the efficacy of the pseudo-labeling process. Further, we also
show the precision-curve obtained as the training proceeds. We find that the area

Class Incremental Domain Adaptation 5A

P
re

ci
si

on

A
cc

ur
ac

y

10.5 2

0.6

0.7

0.8

0.9

1

Value of

A
cc

ur
ac

y

D Sensitivity to

negpos

Inc OS

negpos

Inc OS Inc OS

Inc OS

Inc OS

AA

A
cc

ur
ac

y

A
cc

ur
ac

y

A

30%10% 50%
Value of n

20% 40%

ALL

ALL

C D

0.6

0.8

1.0

0.7

0.9
B

30%10% 50%
Value of n

20% 40%

PRIV

epochs epochs

Fig. 1. A) Pseudo-labeling precision on A→D for ALL classes (Ct) during adaptation.
B) Pseudo-labeling precision on A→D for PRIV classes (C′t) during adaptation. C)
Losses imposed during Foresighted source-model training. D) Losses imposed during
CIDA on the target domain. 4 indicates the modules trained by each loss.

under the curve increases as the training proceeds (increasing number of epochs
is indicated by the arrow ↑). This demonstrates the reliability of pseudo-labels
during adaptation. We find this trend in all our experiments, i.e. samples that are
nearest to the guides have the highest pseudo-labeling precision. This validates
our intuition for obtaining the set of confident samples Bct .

5 Dataset details

The Office [11] dataset consists of 31 classes and has 3 domains: Amazon (A),
DSLR (D) and Webcam(W). In our experiments, we use the first 10 classes in
alphabetical order as the shared classes Cs and those ranked 21-31 alphabetically
as target-private classes C′t. Since the DSLR and Webcam domains contain a
relatively small number of images, we perform image augmentations as shown in
Fig. 2 for each domain. The Digits dataset contains three domains MNIST (M) [6],
SVHN (S) [8], USPS (U) [5]. We use the classes from 0 through 4 as the shared
categories Cs whereas the classes from 5 through 9 are used as target-private
categories C′t. The VisDA [9] dataset consists of 12 classes in total with Synthetic
(Sy) and Real (Re) domains. The source domain consists of synthetic images
that were created by rendering CAD models while the target domain consists of
real-world images. Here, we set Cs = {bicycle, bus, car, motorcycle, train, truck},
and set C′t = {aeroplane, horse, knife, person, plant, skateboard}.

6 Architecture details

In this section, we provide the details of the architectures used for Office [11],
VisDA [9] and Digits datasets, along with the architectures of the baseline
models presented in the paper (§4.2a). Additionally, in Fig. 1C-D, we show
the modules that are trained with each loss imposed during the foresighted
source-model training and during CIDA on the target domain.

6.1 Office and VisDA datasets

For training on the Office and VisDA datasets, we use ResNet-50 [4], pretrained
on the ImageNet [10] dataset, as the CNN backbone for the feature extractor
fs. The rest of the network architecture is given in Table 2A.

6 Kundu et al.

6.2 Digits dataset

We use a modified version of LeNet [5] architecture (Table 2B) for training on
Digits dataset, similar to that used in [12]. We use RGB images for training on
each dataset (for MNIST and USPS, we repeat the pixel values across channels).

6.3 Illustrations for baselines

We illustrate the architectures (and gradient backpropagation pathways) for each
baseline model in Fig. 3. In Ours-a, the clusters of the proxy-source samples
in the V-space are frozen (blue clusters in Fig. 3A) and are the same as that
obtained in the U-space at the end of the source-model training. In Ours-b, the
loss Lr is not imposed as shown in Fig. 3B. In Ours-c, the loss La2 is not enforced,
as shown in Fig. 3C. In Ours-d, the source features fs(xs) are used in place of
the Gaussian Prototypes as shown in Fig. 3D.

7 Theoretical Insights

In the paper, we argue that the adaptation process tightens the upper bound
of target risk of the model, yielding a superior adaptation guarantee. In this
section, we provide a formal discussion for this observation and demonstrate that
our approach conforms with the theory proposed in [1]. In our approach, since
we aim to learn a target-specific model to perform the model upgrade, we are
interested in the dynamics of the target-specific latent space V. Therefore, we
begin by analyzing the properties of the distributions in the V-space.

7.1 Definitions

Let qV denote the marginal distribution of target features in the V-space. Subse-
quently, we denote the marginal target-shared and target-private distributions by
qsV and qpV respectively. Further, let the marginal distribution of the high-source-
density region (effectively modeled by proxy-source samples) be pV , and the
marginal distribution corresponding to the low-source-density region (effectively
modeled by negative samples) be rV .

In our formulation, for a given sample, the label is predicted by taking the
arg max over the logits corresponding to Cs and Ct. In other words, for a sample
v in the V-space, we can define the label predictor (classifier) as follows,

g(v) = arg max
c∈Ct

gs ◦ fd(v)|c′∈Cs || gt(v) (1)

where g ∈ H is an instance of predictors pertaining to the hypothesis space H
and || denotes concatenation. With this setup, we derive an upper bound on the
target-domain risk of the predictor g and show that the bound is tightened by
the adaptation process. To this end, we define two useful tools - the disagreement
among predictors, and, the triangle inequality for classification error.

Class Incremental Domain Adaptation 7

Definition 1 (Disagreement Measure). The disagreement between two pre-
dictors g1 and g2 under a distribution d is given as,

εd(g1, g2) = Prv∼d

(
g1(v) 6= g2(v)

)
(2)

Eq. 2 is a multi-class variation of the classifier disagreement proposed in [1].
We now extend Def. 1 to define the risk of a predictor.

Definition 2 (Risk Measure). Let the ground-truth labeling function be h. The
risk of a predictor g under a distribution d is defined as the probability with which
the classifier g disagrees with the ground-truth labeling function h,

εd(g, h) = Prv∼d

(
g(v) 6= h(v)

)
(3)

For convenience, we shall use the short-hand notation to denote the risk of
a predictor g as εd(g), i.e. , εd(g) = εd(g, h). Further, we use the disagreement
measure to define the H∆H-distance [1] between two distributions d1 and d2.

Definition 3 (H∆H-distance). Given a hypothesis space H and two distribu-
tions d1 and d2, the H∆H-distance is given by

lH∆H(d1, d2) = 2 sup
g1,g2∈H

|εd1(g1, g2)− εd2(g1, g2)| (4)

Here, lH∆H is a measure of the distribution shift between the distributions
d1 and d2. In other words, lH∆H grows as the discrepancy between the two
distributions (domain-shift) grows. Note, in this section we use the notation
lH∆H in place of dH∆H as done in [1], since here, d denotes a generic distribution.
Now we describe the second tool, the triangle inequality for classification error [2].

Lemma 1 (Triangle Inequality). Given three predictors g1, g2, g3 ∈ H, the
triangle inequality for the disagreement measure is stated as

εd(g1, g3) ≤ εd(g1, g2) + εd(g2, g3) (5)

Finally, let us describe the performance of an ideal predictor. We define a
predictor as ideal if it achieves the minimal combined risk over all distributions
under consideration.

Definition 4 (Ideal Predictor). Given a hypothesis space H and a set of
n distributions {d1, d2, ...dn}, an ideal predictor g∗ ∈ H achieves the minimal
combined risk on the given set of distributions. In other words,

g∗ = arg min
g∈H

n∑
i=1

εdi(g) (6)

Particularly, we consider the following distributions in the V-space: the source
distribution pV , the negative distribution rV , the target-shared distribution qsV
and the target-private distribution qpV . Thus, the ideal predictor g∗ is given as,

8 Kundu et al.

g∗ = arg min
g∈H

εpV (g) + εrV (g) + εqsV (g) + εqpV (g) (7)

Note that, given a hypothesis space H, the combined risk of the ideal predictor
g∗ is a constant (i.e. λ = εpV (g∗) + εrV (g∗) + εqsV (g∗) + εqpV (g∗)).

7.2 A theoretical target risk bound

Using these definitions, we now derive a bound for the target-domain risk of the
predictor g (Eq. 1). We do this by an extension of the theory in [1]. Recall that
the target risk under consideration is εqV (g). We state the theorem as follows.

Theorem 1 (Target risk bound). Let H be a hypothesis space and let g :
V → Y be a predictor such that g ∈ H. Given the distributions pV , rV , q

s
V , q

p
V , the

upper-bound for the target risk εqV (g) is given as,

εqV (g) ≤ εpV (g) + εrV (g) +
1

2

{
lH∆H(qsV , pV) + lH∆H(qpV , rV)

}
+ λ (8)

where λ = εpV (g∗) + εrV (g∗) + εqsV (g∗) + εqpV (g∗) is the combined risk of the ideal
predictor g∗ ∈ H.

Proof. By definition, the target-shared and target-private samples correspond
to two mutually exclusive sets, and hence, independently contribute to the target
risk. Thus, we can decompose the risk as,

εqV (g)︸ ︷︷ ︸
target-domain risk

= εqsV (g)︸ ︷︷ ︸
target-shared risk

+ εqpV (g)︸ ︷︷ ︸
target-private risk

(9)

Consider the first term on the right hand side of Eq. 9, i.e. the target-shared risk
εqsV . We derive an upper bound for the target-shared risk as follows,

εqsV (g) = εqsV (g, h)

≤ εqsV (g, g∗) + εqsV (g∗, h) using Lemma 1

= εqsV (g, g∗)− εpV (g, g∗) + εpV (g, g∗) + εqsV (g∗, h) introducing εpV (g, g∗)
≤ |εqsV (g, g∗)− εpV (g, g∗)|+ εpV (g, g∗) + εqsV (g∗, h) modulus operation

≤ 1

2
lH∆H(qsV , pV) + εpV (g, g∗) + εqsV (g∗, h) using Definition 3

≤ 1

2
lH∆H(qsV , pV) + εpV (g, h) + εpV (g∗, h) + εqsV (g∗, h) using Lemma 1

Using the short-hand notations for εpV (g, h), εpV (g∗, h) and εqsV (g∗, h) we get,

εqsV (g) ≤ 1

2
lH∆H(qsV , pV) + εpV (g) + εpV (g∗) + εqsV (g∗) (10)

In the derivation above, we have the following steps. First, we use the triangle
inequality (Lemma 1) to obtain a relation among the disagreement between the

Class Incremental Domain Adaptation 9

predictor g, the ideal predictor g∗ and the ground-truth labeling function h.
Then, we introduce the term εpV (g, g∗) into the equation (zero-sum), and obtain
an upper bound by the property of the modulus operation. At this stage, we
analyze the modulus term on the RHS. Recall that the definition of lH∆H(d1, d2)
between two distributions d1, d2 is the supremum of 2|εqsV (g1, g2)− εpV (g1, g2)|
over all g1, g2 ∈ H. Since, the modulus term on RHS (|εqsV (g, g∗)− εpV (g, g∗)|) is

a special case (with g and g∗), it is upper bounded by 1
2 lH∆H(qsV , pV). Finally,

we use the triangle inequality to obtain an upper bound for the term εpV (g, g∗).
Thus, we obtain the inequality in Eq. 10.

In a similar manner, we can derive an upper bound for the second term on
the RHS of Eq. 9, i.e. the target-private risk εqpV (g). Here, we shall consider

lH∆H(qpV , rV). Now, following the steps used to derive Eq. 10 we get,

εqpV (g) = εqpV (g, h)

≤ εqpV (g, g∗) + εqpV (g∗, h) using Lemma 1

= εqpV (g, g∗)− εrV (g, g∗) + εrV (g, g∗) + εqpV (g∗, h) introducing εrV (g, g∗)
≤ |εqpV (g, g∗)− εrV (g, g∗)|+ εrV (g, g∗) + εqpV (g∗, h) modulus operation

≤ 1

2
lH∆H(qpV , rV) + εrV (g, g∗) + εqpV (g∗, h) using Definition 3

≤ 1

2
lH∆H(qpV , rV) + εrV (g, h) + εrV (g∗, h) + εqpV (g∗, h) using Lemma 1

Thus, the upper bound for target-private risk is,

εqpV (g) ≤ 1

2
lH∆H(qpV , rV) + εrV (g) + εrV (g∗) + εqpV (g∗) (11)

Finally, we combine the bounds for the target-shared risk (Eq. 10) and target-
private risk (Eq. 11), and substitute them in Eq. 9,

εqV = εqsV + εqpV

≤ 1

2
lH∆H(qsV , pV) + εpV (g) + εpV (g∗) + εqsV (g∗)

+
1

2
lH∆H(qpV , rV) + εrV (g) + εrV (g∗) + εqpV (g∗)

Rearranging the terms, we get the target risk bound stated in Theorem 1.

εqV ≤ εpV (g) + εrV (g)︸ ︷︷ ︸
augmented source

domain risk

+
1

2

{
lH∆H(qsV , pV) + lH∆H(qpV , rV)︸ ︷︷ ︸
distribution-shift between target

and augmented source domains

}

+ εpV (g∗) + εrV (g∗) + εqsV (g∗) + εqpV (g∗)︸ ︷︷ ︸
λ (minimal combined risk of the ideal predictor)

(12)

ut

10 Kundu et al.

We have three major terms in Eq. 12 - the augmented source domain risk
(source samples augmented with negative samples), distribution-shift between
the target and the augmented source domains, and the minimal combined risk of
the ideal predictor. We will now analyze the significance of this result.

7.3 Analysis

We now show that the target risk bound (Eq. 12) is tightened during adaptation.

Minimizing the distribution-shift. In the paper, we argue that the adaptation
loss La minimizes the distribution-shift in the V-space between the target and
the augmented source domain. Here, we describe the process. From the bound
in Eq. 12, it is evident that the minimization of the distribution-shift entails
the alignment of target-shared and the source distribution, and the alignment of
target-private and negative sample distribution. Note that, the negative samples
are essentially used to model the low-source-density region, while the proxy-source
samples are used to model the high-source-density region.

In our approach, the loss La2 pulls the target samples closer to the guides.
As a result, the target-shared samples are aligned with high source-density
region (proxy-source distribution). As we show in the paper in §4.2a, the proxy-
source samples are effective in capturing the source-distribution. Therefore,
La2 contributes to the minimization of the term lH∆H(qsV , pV). Secondly, La1
disperses the target clusters away, thereby separating target-private clusters into
the low-source-density negative region in the V-space. Thus, the shift between the
target-private and the low-source-density distribution lH∆H(qpV , rV) (modelled
by the negative samples) is minimized. Overall, the adaptation process enforces
the minimization of the distribution-shift between the target and the augmented
source domains lH∆H(qsV , pV) + lH∆H(qpV , rV).

Mitigating Catastrophic Forgetting. We argue that Lr = Lr1+Lr2 mitigates
catastrophic forgetting, by preserving a low augmented source risk. Specifically,
Lr1 is the classification loss applied on the proxy-source samples. The supervision
obtained from Lr1 ensures that the discriminatory knowledge among the source
samples is maintained. This preserves a low source risk εpV (g).

Further, to understand how εrV (g) is minimized, we must study the effect of
compact decision boundaries. Intuitively, during the source training (§3.1b of the
paper), the (|Cs|+ 1)th logit of gs is trained to have the highest activation for the
negative samples, while the source samples are subject to a lower negative class
activation. This conditioning ensures that in the U-space, whenever a sample
falls in the high-source-density region (Fig. 2A of the paper), the highest class
logit corresponds to Cs, and vice-versa (if a source class logit is the highest, the
sample should pertain to the high-source-density region). Similarly, whenever
the source class logits have a lower activation than the negative class logit, the
sample pertains to the negative regime. This property is achieved due to the
compact decision boundaries (Fig. 2A of the paper).

During adaptation, by applying the loss Lr1 on the proxy-source samples we
enforce the logits corresponding to Cs to have a higher activation than those

Class Incremental Domain Adaptation 11

corresponding to Ct. Indeed, this ensures that the proxy-source samples fall into
the high-source-confidence regions when projected back to the U-space using fd
(see Fig. 2B in the paper). Additionally, Lr2 avoids degenerate solutions (such
as mode-collapse at the projected U-space), which maintains the property that
negative samples would be projected to a low-source-density region by fd. Thus,
the negative samples receive a low source class confidence (alternatively, a higher
target-private class confidence from g) which is the criterion to detect negative
samples. Thus, the negative sample risk (εrV (g)) is minimized. To summarize,
the augmented source domain risk εpV (g) + εrV (g) is minimized by Lr.

Performance of the ideal predictor. Finally, we also claim that the precision
of pseudo-labels for the confident target samples is high. This is verified in Sec. 4.
Thus, training the model with Lc along with Lr1 achieves a performance close to
the combined risk λ of the ideal predictor (referred to as the minimal risk of the
optimal joint classifier). This is because, by virtue of Lc the model is conditioned
to minimize the risk on qsV and qpV . Further, as argued above, the loss Lr1 drives
the model to minimize the risk on pV and rV . Note that, if we had enough labeled
samples from each of the four distributions, we could learn the ideal predictor
g∗. Nevertheless, using the pseudo-labeled target samples in addition to the
proxy-source samples, we can learn a predictor whose performance is close to g∗.

The observations made above provide a basis for our intuition that the
adaptation process tightens the target risk bound (Eq. 12). This enables a
superior model upgrade under the CIDA paradigm.

8 Discussion on multi-step model upgrade

In this section, we provide details of the multi-step model upgrade experiment.
Further, we highlight certain key features of our approach that makes our approach
useful in a lifelong learning scenario.

Approach. In our approach, a foresighted source-model is trained with the
aim of reducing domain and category bias incurred in the given source training
dataset. This allows for a source-free model upgrade. We achieve this by modelling
Gaussian Prototypes that allows us to enforce the class separability objective and
to perform negative training using samples that fall outside the 3-σ confidence
region of each class-specific Gaussian Prototype.

We adopt the same strategy during the model upgrade to prepare the target-
specific model for a potential future upgrade (i.e. a second class-incremental
upgrade). Specifically, we add an additional negative training loss (similar to Ls2)
during the first model-upgrade.

Implementation. In §4.2f of the paper, we demonstrate CIDA of the (A+D)-
specific model to the W domain. During the first upgrade, the feature extractor
ft is adapted to the domain D. Simultaneously, we introduce a negative-class
(|C′t|+ 1)th to the classifier gt which is trained to detect negative samples in the V-
space. These negative samples are obtained using the target Gaussian Prototypes

12 Kundu et al.

by following a sampling strategy similar to that done in the foresighted source-
model training on the domain A (i.e. we choose samples beyond the 3-σ confidence
interval of each class-specific target Gaussian Prototype Pct).

The model being used for the target domain D is {ft, gt, fd, gs}. For the
second model upgrade, we consider a new domain W. In order to adapt to W,
we initialize the parameters of the W-specific feature extractor ft2 with those
of ft. For convenience, we denote the W-specific semantic space as V2. The
domain projection networks fe2 : V → V2 and fd2 : V2 → V are pre-trained
to a near-identity function. Likewise, we introduce a W-specific target-private
classifier gt2 which is applied on the V2-space. Further, the final predictor for W
is the concatenation of the logits produced by the predictor for D and gt2 , i.e. ,
{{gs ◦ fd}||ft}|c∈Ct acting on the V − space and gt acting on the V2-space.

Suitability for lifelong learning. One of the key aspects of our proposed
framework is the seamless deployment of the target model to multiple steps of
CIDA. This is attributed to the following:

– Our approach to tackle CIDA is source-free in nature, and does not require
the presence of the past source training datasets.

– The adaptation step ensures that the model is ready for a future upgrade on
a new domain, without having to be retrained with the previously seen data.

– The domain-specific representation (V-space) allows for a better trade-off
between domain-specificity and domain-generalization, where the target-
specific model achieves a semantic granularity suitable for the target domain
under consideration.

– The domain projection networks {fe, fd} effectively establish a transit mech-
anism between two semantically diverse latent spaces, allowing the model to
exploit the knowledge of all the previously seen classes.

– The efficacy of the pseudo-labeling process and the selection of confident
target samples Bct enhances the reliability of the adaptation process.

We believe that our framework will provide new insights for future studies on
lifelong learning in the presence of new domains and tasks.

Class Incremental Domain Adaptation 13

15° CW 10° CW 5° CW 5° CCW 10° CCW 15° CCW

Rotation

RGB channel swap

Original Flip

Color Jitter

Crop

Fig. 2. Augmentations applied to the images in Office dataset

()th

Cs

Foresighted source-model training

Source semantic space
Ds

C′s
()th

Immunize decision boundaries

Source
embedding space

gt

()th

A

B

Source data
available

Source data
unavailable

CNN FC

Source feature
clusters

Gaussian
Prototypes

Target feature
clusters

Decision
Boundaries

Frozen

negative featuressource features

(high-source-density) (low-source-density)

initialize

concat.initialize

initialize

concat.initialize

concat.

A B

Ours-a Ours-b

Ours-c Ours-d

C D

CNN FC Source feature
clusters

Gaussian
Prototypes

Target feature
clusters

Decision
BoundariesFrozen

Fig. 3. Illustrations of the various baselines of our approach. See §4.2a in the paper for
the discussion.

14 Kundu et al.

Algorithm 1 GetNegativeSamples

1: require: Global Gaussian Prototype Ps, Class-specific Gaussian Prototypes {Pcs :
c ∈ Cs}, number of negative samples Nneg /* || denotes append */

2: initialize: Un ← {}, Yn ← {}

3: for c in Cs do // Obtain 3-σ confidence interval thresholds for each class
4: λcs,ν

c
s ← largest eigen value and the corresponding eigen vector of Σc

s

5: T cs ← Pcs (µcs + 3 ·
√
λcs · νcs)

6: end for

7: while |Un| ≤ Nneg do // Obtain negative samples
8: Draw a sample un ∼ Ps
9: ŷn ← arg maxc Pcs (us)

10: if P ŷns (un) < T ŷns then
11: Un ← Un ||un
12: Yn ← Yn || {unknown}
13: end if
14: end while

15: return {Un,Yn}

Class Incremental Domain Adaptation 15

Algorithm 2 Foresighted Source-model training

1: require: Source samples Ds, model parameters θfs , θgs , batch size of source samples
Nsrc and negative samples Nneg // || denotes append

2: repeat // Pre-train the network for 1 epoch with cross-entropy loss
3: Obtain a mini-batch of source samples Ss = {(xs, ys) ∼ p}
4: θfs ← θfs +Adamfs

(
−∇θfs

1
|Ss|

∑
(xs,ys)∈Ss

lce(gs ◦ fs(xs), ys)
)

5: until reached the end of 1 epoch

// Calculate Gaussian Prototypes
6: for c ∈ Cs do
7: Dcs ← {(xs, ys) : (xs, ys) ∈ Ds and ys = c} // subset of samples in class c
8: µcs ← mean(xs,ys)∈Dc

s

(
fs(xs)

)
// mean vector

9: Σc
s ← cov(xs,ys)∈Dc

s

(
fs(xs)

)
// covariance matrix

10: Pcs ← N (µcs,Σ
c
s) // class-specific Gaussian Prototypes

11: end for
12: µs ← mean(xs,ys)∈D

(
fs(xs)

)
// mean vector

13: Σs ← cov(xs,ys)∈Ds

(
fs(xs)

)
// covariance matrix

14: Ps ← N (µs,Σs) // global Gaussian Prototype

// Define list of losses and optimizers for alternating minimization
15: Loss← [Ls1, Ls2]
16: Opt← [Adam{fs}, Adam{fs,gs}]
17: Θ ← [{θfs}, {θfs , θgs}]
18: iter ← 0

19: repeat // Training loop for source-model
20: iter ← iter + 1
21: cur ← iter mod 2

// Get a mini-batch of source and negative samples
22: Ss ← {(xs, ys) ∼ p} // |Ss| = Nsrc
23: Sn ← GetNegativeSamples(Ps, {Pcs : c ∈ Cs}, Nneg) // |Sn| = Nneg
24: for (xs, ys) ∈ Ss do
25: ys ← gs ◦ fs(xs)
26: end for
27: for (un, yn) ∈ Sn do
28: yn ← gs(un)
29: end for

// Optimize the loss Loss[cur] using the optimizer Opt[cur]

30: Θ[cur]← Θ[cur] + Opt[cur]
(
−∇Θ[cur]Loss[cur]

)
31: if reached the end of an epoch then
32: Recalculate Gaussian Prototypes following lines 6-14
33: end if
34: until convergence

16 Kundu et al.

Algorithm 3 GetConfidentSamples

1: require: Target samples Dt, guides {vcg : c ∈ Ct}, percentage of confident samples
n, model parameters θft // || denotes append, [:] denotes indexing

2: initialize: Bct ← {} // ∀c ∈ Ct

3: for xt ∈ Dt do
4: vt ← ft(xt)
5: d← minc∈Ct l2(vt,v

c
g) // distance to the nearest guide

6: k ← arg minc∈Ct
l2(vt,v

c
g) // pseudo-label for the target sample

7: end for

8: for c ∈ Ct do
9: T ← Target samples with k = c sorted in asc. order of d

10: b = n
100
· |T | // number of confident samples for class c

11: Bct ← T [0 : b] // the nearest b samples are the confident target samples for vcg
12: end for

13: return {Bct : c ∈ Ct}

Class Incremental Domain Adaptation 17

Algorithm 4 CIDA on the Target Domain

1: require: Target samples Dt, Gaussian Prototypes Pcs , parameters
θfs , θgs , θfe , θfd , θft , θgt , percentage of confident samples n // || denotes append

2: θft ← θfs // Initialize ft from fs
3: repeat // Initialize fe, fd with near-identity functions
4: Obtain a mini-batch of proxy-source samples S = {ucs ∼ Pcs : c ∈ Cs}
5: θfe ← θfe +Adamfe

(
−∇θfe

1
|S|
∑

uc
s∈S

l2(us, fe(us))
2
)

6: θfd ← θfd +Adamfd

(
−∇θfd

1
|S|
∑

uc
s∈S

l2(us, fd(us))
2
)

7: until convergence

// Define list of losses and optimizers for round-robin alternating minimization
8: Loss← [Lr1,Lr2,Lc,La1,La2]
9: Opt← [Adam{fe,fd,gt}, Adam{fe,fd}, Adam{ft,gt}, Adam{ft}, Adam{fe,ft}]

10: Θ ← [{θfe , θfd , θgt}, {θfe , θfd}, {θft , θgt}, {θft}, {θfe , θft}]
11: iter ← 0

12: repeat // Training loop for CIDA
13: iter ← iter + 1
14: cur ← iter mod 5

15: vcg ← fe(µ
c
s) ∀c ∈ Cs, vcg ← ft(x̃

c
t) ∀c ∈ C′t // Calculate guides

16: for ucs ∈ {ucs ∼ Pcs : c ∈ Cs} do // Mini-batch of proxy-source samples
17: vcs ← fe(u

c
s); ûcs ← fd(v

c
s); ŷs ← gs(û

c
s)|c∈Cs || gt(vcs)

18: end for

19: for xt ∈ {xt ∼ qX} do // Mini-batch of target samples
20: vt ← ft(xt); ut ← fd(vt); ŷt ← gs(ut)|c∈Cs || gt(vt)
21: d← minc∈Ct l2(vt,v

c
g); k ← arg minc∈Ct

l2(vt,v
c
g) // Pseudo-label

22: end for

23: for xct ∈ {xct ∼ Bct : c ∈ Ct} do // Mini-batch of confident target samples
24: vct ← ft(x

c
t), uct ← fd(v

c
t), yct ← gs(u

c
t)|c∈Ct || gt(vct)

25: end for

// Optimize the loss Loss[cur] using the optimizer Opt[cur]

26: Θ[cur]← Θ[cur] + Opt[cur]
(
−∇Θ[cur]Loss[cur]

)
27: if reached the end of an epoch then
28: Pseudo-label all samples in Dt using guides {vcg : c ∈ Ct}
29: Pct ← Gaussian Prototypes obtained using pseudo-labeled target samples
30: Bct ← GetConfidentSamples(Dt, {vcg : c ∈ Ct}, n)
31: end if
32: until convergence

18 Kundu et al.

Table 2. The architecture used for training on Office, VisDA and Digits datasets. FC
denotes a Fully Connected layer. BN denotes a BatchNorm layer. Conv is Convolutional
layer. Act. denotes the activation applied at the output of the module.

A. Office and VisDA B. Digits

Module Features Act. Module Features Act.

fs
ResNet-50

(till avg pool)
2048 - Conv 28× 28× 64 LeakyReLU

FC 1024 ELU Conv 24× 24× 64 LeakyReLU
BN - - Conv 11× 11× 128 LeakyReLU
FC 256 ELU Conv 5× 5× 128 LeakyReLU
FC 256 ELU Flatten 3200 -
BN - - FC 100 LeakyReLU

gs Input 256 - Input 100 -
FC 64 ELU FC 32 LeakyReLU
FC |Cs|+ 1 - FC |Cs|+ 1 -

ft same as fs same as fs
fe Input 256 - Input 100 -

FC 256 ELU FC 100 LeakyReLU
FC 256 ELU FC 100 LeakyReLU
FC 256 ELU - - -

fd same as fe same as fe
gt Input 256 - Input 100 -

FC 64 ELU FC 32 LeakyReLU
FC |C′t| - FC |C′t| -

Class Incremental Domain Adaptation 19

References

1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Machine learning 79(1-2), 151–175
(2010) 6, 7, 8

2. Crammer, K., Kearns, M., Wortman, J.: Learning from multiple sources. Journal
of Machine Learning Research 9(Aug), 1757–1774 (2008) 7

3. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks.
JMLR 17(1), 2096–2030 (2016) 1

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 5

5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) 5, 6

6. LeCun, Y., Cortes, C., Burges, C.J.C.: The mnist database of handwritten digits
http://yann.lecun.com/exdb/mnist/ 5

7. Liu, H., Cao, Z., Long, M., Wang, J., Yang, Q.: Separate to adapt: Open set domain
adaptation via progressive separation. In: CVPR (2019) 1

8. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: Deep Learning and
Unsupervised Feature Learning Workshop at NeurIPS (2011) 5

9. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: The
visual domain adaptation challenge. arXiv preprint arXiv:1710.06924 (2017) 5

10. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition
challenge. IJCV (2015) 5

11. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: ECCV (2010) 5

12. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by
backpropagation. In: ECCV (2018) 1, 6

13. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation.
In: CVPR (2019) 1

http://yann.lecun.com/exdb/mnist/

