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Abstract. In this paper, we propose a robust and efficient end-to-end
non-local spatial propagation network for depth completion. The pro-
posed network takes RGB and sparse depth images as inputs and esti-
mates non-local neighbors and their affinities of each pixel, as well as
an initial depth map with pixel-wise confidences. The initial depth pre-
diction is then iteratively refined by its confidence and non-local spatial
propagation procedure based on the predicted non-local neighbors and
corresponding affinities. Unlike previous algorithms that utilize fixed-
local neighbors, the proposed algorithm effectively avoids irrelevant local
neighbors and concentrates on relevant non-local neighbors during prop-
agation. In addition, we introduce a learnable affinity normalization to
better learn the affinity combinations compared to conventional methods.
The proposed algorithm is inherently robust to the mixed-depth problem
on depth boundaries, which is one of the major issues for existing depth
estimation/completion algorithms. Experimental results on indoor and
outdoor datasets demonstrate that the proposed algorithm is superior
to conventional algorithms in terms of depth completion accuracy and
robustness to the mixed-depth problem. Our implementation is publicly
available on the project page.4
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1 Introduction

Depth estimation has become an important problem in recent years with the
rapid growth of computer vision applications, such as augmented reality, un-
manned aerial vehicle control, autonomous driving, and motion planning. To
obtain a reliable depth prediction, information from various sensors is utilized,
e.g., RGB cameras, radar, LiDAR, and ultrasonic sensors [2, 3]. Depth sensors,
such as LiDAR sensors, produce accurate depth measurements with high fre-
quency. However, the density of the acquired depth is often sparse due to hard-
ware limitations, such as the number of scanning channels. To overcome such

4 https://github.com/zzangjinsun/NLSPN ECCV20
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Fig. 1. Example of the depth completion on the NYU Depth V2 dataset [29].
(a) RGB image and a few samples of the estimated non-local neighbors. Depth com-
pletion results by (b) direct regression [21], (c) local propagation [9], and (d) non-local
propagation (ours), respectively, and (e) the ground truth.

limitations, there have been a lot of works to estimate dense depth information
based on the given sparse depth values, called depth completion.

Early methods for depth completion [30, 10] rely only on sparse measurement.
Therefore, their predictions suffer from unwanted artifacts, such as blurry and
mixed-depth values (i.e., mixed-depth problem). Because RGB images show sub-
tle changes of color and texture, recent methods use RGB images as the guidance
to predict accurate dense depth maps.

Direct depth completion algorithms [30, 21] take RGB or RGB-D images and
directly infer a dense depth using a deep convolutional neural network (CNN).
These direct algorithms have shown superior performance compared to conven-
tional ones; however, they still generate blurry depth maps near depth bound-
aries. Soon after, this phenomenon is alleviated by recent affinity-based spatial
propagation methods [9, 32]. By learning affinities for local neighbors and itera-
tively refining depth predictions, the final dense depth becomes more accurate.
Nonetheless, previous propagation networks [19, 9] have an explicit limitation
that they have a fixed-local neighborhood configuration for propagation. Fixed-
local neighbors often have irrelevant information that should not be mixed with
reference information, especially on depth boundaries. Hence, they still suffer
from the mixed-depth problem in the depth completion task (see Fig. 1(c)).

To tackle the problem, we propose a Non-Local Spatial Propagation Network
(NLSPN) that predicts non-local neighbors for each pixel (i.e., where the infor-
mation should come from) and then aggregates relevant information using the
spatially-varying affinities (i.e., how much information should be propagated),
which are also predicted from the network. By relaxing the fixed-local neighbor-
hood configuration, the proposed network can avoid irrelevant local neighbors
affiliated with other adjacent objects. Therefore, our method is inherently robust
to the mixed-depth problem. In addition, based on our analysis of conventional
affinity normalization schemes, we propose a learnable affinity normalization
method that has a larger representation capability of affinity combinations. It
enables more accurate affinity estimation and thus improves the propagation
among non-local neighbors. To further improve robustness to outliers from input
and inaccurate initial prediction, we predict the confidence of the initial dense
depth simultaneously, and it is incorporated into the affinity normalization to
minimize the propagation of unreliable depth values. Experimental results on
the indoor [29] and outdoor [30] datasets demonstrate that our method achieves
superior depth completion performance compared with state-of-the-art methods.
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2 Related Work

Depth Estimation and Completion The objective of depth estimation is to
generate dense depth predictions based on various input information, such as a
single RGB image, multi-view images, sparse LiDAR measurements, and so on.
Conventional depth estimation algorithms often utilize information from a single
modality. Eigen et al. [11] used a multi-scale neural network to predict depth
from a single image. In the method introduced by Zbontar and LeCun [35], the
deep features of image patches are extracted from stereo rectified images, and
then the disparity is determined by searching for the most similar patch along
the epipolar line. Depth estimation with accurate but sparse depth information
(i.e., depth completion) has been intensively explored as well. Uhrig et al. [30]
proposed sparsity invariant CNNs to predict a dense depth map given a sparse
depth image from a LiDAR sensor. Ma and Sertac [21] introduced a method
to construct a 4D volume by concatenating RGB and sparse depth images and
then feed it into an encoder-decoder CNN for the final prediction. Chen et al. [7]
adopted a fusion of 2D convolution and 3D continuous convolution to effectively
consider the geometric configuration of 3D points.
Spatial Propagation Network Although direct depth completion algorithms
have demonstrated decent performance, sparse-to-dense propagation with accu-
rate guidance from different modalities (e.g., an RGB image) is a more effective
way to obtain dense prediction from sparse inputs [9, 32, 17, 22]. Liu et al. [19]
proposed a spatial propagation network (SPN) to learn local affinities. The SPN
learns task-specific affinity values from large-scale data, and it can be applied
to a variety of high-level vision tasks, including depth completion and seman-
tic segmentation. However, the individual three-way connection in four-direction
is adopted for spatial propagation, which is not suitable for considering all lo-
cal neighbors simultaneously. This limitation was overcome by Cheng et al. [9],
who proposed a convolutional spatial propagation network (CSPN) to predict
affinity values for local neighbors and update all the pixels simultaneously with
their local context for efficiency. However, both the SPN and the CSPN rely
on fixed-local neighbors, which could be from irrelevant objects. Therefore, the
propagation based on those neighbors would result in mixed-depth values, and
the iterative propagation procedure used in their architectures would increase the
impact. Moreover, the fixed neighborhood patterns restrict the usage of relevant
but wide-range (i.e., non-local) context within the image.
Non-Local Network The importance of non-local information has been widely
explored in various vision tasks [5, 31, 34, 28]. Recently, a non-local block in deep
neural networks was proposed by Wang et al. [31]. It consists of pairwise affin-
ity calculation and feature-processing modules. The authors demonstrated the
effectiveness of non-local blocks by embedding them into existing deep networks
for video classification and image recognition. These methods showed significant
improvement over local methods.
Our Work Unlike previous algorithms [19, 9, 32], our network is trained to pre-
dict non-local neighbors with corresponding affinities. In addition, our learnable
affinity normalization algorithm searches for the optimal affinity space, which has
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Fig. 2. Overview of the proposed algorithm. The encoder-decoder network is
built upon the residual network [13]. Given RGB and sparse depth images, an initial
dense depth and its confidence, non-local neighbors, and corresponding affinities are
predicted from the network. Then non-local spatial propagation is conducted iteratively
with the confidence-incorporated learnable affinity normalization.

not been explored in conventional algorithms [6, 19, 9]. Furthermore, we incorpo-
rate the confidence of the initial dense depth prediction (which will be refined by
propagation procedure) into affinity normalization to minimize the propagation
of unconfident depth values. Figure 2 shows an overview of our algorithm. Each
component will be described in subsequent sections in detail.

3 Non-Local Spatial Propagation

The goal of spatial propagation is to estimate missing values and refine less con-
fident values by propagating neighbor observations with corresponding affini-
ties (i.e., similarities). Spatial propagation has been utilized as one of the key
modules in various computer vision applications [24, 17, 16]. In particular, spa-
tial propagation is suitable for the depth completion task [19, 9, 32], and its
superior performance compared to direct regression algorithms has been demon-
strated [30, 21]. In this section, we first briefly review the local SPNs and their
limitations, and then describe the proposed non-local SPN.

3.1 Local Spatial Propagation Network

Let X = (xm,n) ∈ RM×N denote a 2D map to be updated by spatial propagation,
where xm,n denotes the pixel value at (m,n). The propagation of xm,n at the
step t with its local neighbors, denoted by Nm,n, is defined as follows:

xtm,n=wcm,nx
t−1
m,n+

∑
(i,j)∈Nm,n

wi,jm,nx
t−1
i,j , (1)

where (m,n) and (i, j) are the coordinates of reference and neighbor pixels, re-
spectively; wcm,n represents the affinity of the reference pixel; and wi,jm,n indicates
the affinity between the pixels at (m,n) and (i, j). The first term in the right-
hand side represents the propagation of the reference pixel, while the second
term stands for the propagation of its neighbors weighted by the corresponding
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(a) SPN [19] (b) CSPN [9] (c) Ours (d) RGB/Depth (e) Fixed-local (f) Non-local

Fig. 3. Visual comparison of SPNs. (a)-(c) Examples of neighbor configurations of
the (a) SPN [19], (b) CSPN [9], and (c) NLSPN (ours), where purple and light purple
pixels denote reference and neighboring pixels, respectively. Compared to the others,
our neighbor configuration is highly flexible, and can be fractional. (d)-(f) Compari-
son of fixed-local and non-local configurations for various situations. The fixed-local
configuration (e) cannot utilize relevant information beyond the fixed-local region. In
contrast, the non-local configuration (f) avoids this problem effectively by predicting
and utilizing relevant neighbors at various distances without limitation.

affinities. The affinity of the reference pixel wcm,n (i.e., how much the original
value will be preserved) is obtained as

wcm,n = 1−
∑

(i,j)∈Nm,n

wi,jm,n. (2)

Spatial Propagation Network The original SPN [19] is formulated on the
configuration of three-way local connections, where each pixel is linked to three
adjacent pixels from the previous row or column (see Fig. 3(a)). For instance,
the local neighbors of the pixel at (m,n) for top-to-bottom propagation (i.e.,
vertical) in the SPN, denoted by N S

m,n, are defined as follows:

N S
m,n = {xm+p,n+q | p = −1, q ∈ {−1, 0, 1}} . (3)

The local neighbors for other directions (i.e., bottom-to-top, left-to-right and
right-to-left) can be defined in similar ways. Figure 3(a) shows several examples
of N S for other directions. Note that the SPN updates rows or columns in X
sequentially. Thus, a natural limitation of the three-way connection is that it
does not explore information from all the directions simultaneously.
Convolutional Spatial Propagation Network To consider all the possible
propagation directions together, the original SPN propagates in four directions
individually. Then it utilizes max-pooling to integrate those predictions [19]. The
CSPN [9] addresses the inefficiency issue by simplifying separate propagations
via convolution operation at each propagation step. For the CSPN with a 3×3
local window size, the local neighbors NCS

m,n are defined as follows:

NCS
m,n = {xm+p,n+q | p ∈ {−1, 0, 1} , q ∈ {−1, 0, 1} , (p, q) 6= (0, 0)}. (4)

Figure 3(b) shows some examples of NCS. For more details of each network (the
SPN and the CSPN), please refer to earlier works [19, 9].

3.2 Non-Local Spatial Propagation Network

The SPN and the CSPN are effective in propagating information from more
confident areas into less confident ones with data-dependent affinities. However,
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their potential improvement is inherently limited by the fixed-local neighbor-
hood configuration (Fig. 3(e)). The fixed-local neighborhood configuration ig-
nores object/depth distribution within the local area; thus, it often results in
mixed-depth values of foreground and background objects after propagation.
Although affinities predicted from the network can alleviate the depth mixing
between irrelevant pixels to a certain degree, they can hardly avoid incorrect
predictions and hold up the use of appropriate neighbors beyond the local area.

To resolve the above issues, we introduce a deep neural network that esti-
mates the neighbors of each pixel beyond the local region (i.e., non-local) based
on color and depth information within a wide area. The non-local neighbors
NNL
m,n are defined as follows:

NNL
m,n = {xm+p,n+q | (p, q) ∈ fφ(I,D,m, n), p, q ∈ R}, (5)

where I and D are the RGB and sparse depth images, respectively, and fφ(·) is
the non-local neighbor prediction network that estimates K neighbors for each
pixel, under the learnable parameters φ. We adopt an encoder-decoder CNN
architecture for fφ(·), which will be described in Sec. 5.1. It should be noted
that p and q are real numbers in Eq. (5); thus, the non-local neighbors can be
defined to sub-pixel accuracy, as illustrated in Fig. 3(c).

Figure 3(f) shows some examples of appropriate and desired non-local neigh-
bors near depth boundaries. In the fixed-local setup, affinity learning learns how
to encourage the influence of the related pixels and suppress that of unrelated
ones simultaneously. On the contrary, affinity learning with the non-local setup
concentrates on relevant neighbors, and this facilitates the learning process.

4 Confidence-Incorporated Affinity Learning

Affinity learning is one of the key components in SPNs, which enables accu-
rate and stable propagation. Conventional affinity-based algorithms utilize color
statistics or hand-crafted features [17, 27, 16]. Recent affinity learning meth-
ods [18, 19, 9] adopt deep neural networks to predict affinities and show substan-
tial performance improvement. In these methods, affinity normalization plays an
important role to stabilize the propagation process.

In this section, we analyze the conventional normalization approach and its
limitation, and then propose a normalization approach in a learnable way. More-
over, we incorporate the confidence of the initial prediction during normalization
to suppress negative effects from unreliable depth values during propagation.

4.1 Affinity Normalization

The purpose of affinity normalization is to ensure stability during propagation.
For stability, the norm of the temporal Jacobian of x, ∂xt/∂xt−1 should be equal
to or less than one [19]. Under the spatial propagation formulation in Eq. (1),
this condition would be satisfied if

∑
(i,j)∈Nm,n |w

i,j
m,n| ≤ 1, ∀m,n. To enforce
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(a) Abs−Sum (b) Abs−Sum∗ (c) Tanh−C (d) Tanh−γ−Abs−Sum∗ (e) Norm. Prob.

Fig. 4. Illustration of affinity normalization schemes. (a)-(d) Affinity distribu-
tion after various normalization schemes for the 2-neighbor case. Color bar is shown
on the left. (e) Probabilities of normalization with different strategies for each number
of neighbors. Please refer to the text for details.

the condition, previous works [19, 9] normalize affinities by the absolute-sum
(dubbed Abs−Sum) as follows:

wi,jm,n = ŵi,jm,n/
∑

(i,j)∈Nm,n

|ŵi,jm,n|, (6)

where ŵ denotes the raw affinity before normalization. Although the stability
condition is satisfied by Abs−Sum, it has a problem in that the viable combina-
tions of normalized affinities are biased to a narrow high-dimensional space.

Without loss of generality, we first analyze the biased affinity problem using
a toy example of the 2-neighbor case and then present solutions to the issue.
In the 2-neighbor case, we denote affinities of the two neighbors as w1 and w2

with a slight abuse of notation. We assume that the unnormalized affinities are
sampled from the standard normal distribution, N(0, 1) for simplicity.

For the Abs−Sum, the normalized affinities lie on the lines satisfying |w1| +
|w2| = 1 (referred to as A1), as shown in Fig. 4(a). This limits the usage of
potentially advantageous affinity configuration within the area |w1| + |w2| < 1
(referred to as A2). To fully explore the affinity configuration |w1|+ |w2| ≤ 1, a
simple remedy is to apply Eq. (6) only when

∑
i |wi| > 1 (noted as Abs−Sum∗).

Figure 4(b) shows the affinity distribution of our simple remedy. However, the
affinities normalized by Abs−Sum∗ still have a high chance to fall on A1. Indeed,
with the increasing number of neighbors K, the affinities are more likely to lie on
A1. (e.g., the normalization probability is 0.985 when K = 4). Figure 4(e) (blue
bars) shows the probability of affinities falling on A1 with various K values.

One way to reduce the bias is to limit the range of raw affinities [20], for
example, to [−1/C, 1/C] using the hyperbolic tangent function (tanh(·)) with
a normalization factor C. We refer to this normalization procedure as Tanh−C,
which is defined as follows:

wi,jm,n = tanh(ŵi,jm,n)/C, C ≥ K, (7)

where the condition C ≥ K enforces the normalized affinities to guarantee∑
(i,j)∈Nm,n |w

i,j
m,n| ≤ 1; therefore, this condition ensures stability. Figure 4(c)

shows the affinity distribution of Tanh−C when C = 2. With a sacrifice of bound-
ary values, Tanh−C enables a more balanced affinity distribution. Moreover, the
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Fig. 5. Example of propagation with and without confidence incorporation.

optimal value of C in Tanh−C may vary depending on the training task, e.g.,
the number of neighbors, the activation functions, and the dataset.

To determine the optimal value for the task, we propose to learn the nor-
malization factor together with non-local affinities, and apply the normalization
only when

∑
(i,j)∈Nm,n |w

i,j
m,n| > 1. The affinity of the proposed normalization,

referred to as Tanh−γ−Abs−Sum∗, is defined as follows:

wi,jm,n = tanh(ŵi,jm,n)/γ, γmin ≤ γ ≤ γmax, (8)

where γ denotes the learnable normalization parameter, and γmin and γmax are
the minimum and maximum values that can be empirically set. Figure 4(d) shows
an example of Tanh−γ−Abs−Sum∗ when γ = 1.25. Here, Tanh−γ−Abs−Sum∗ can
be viewed as a mixture of Abs−Sum∗ and Tanh−C (see Figs. 4(b) and (c)). The
probability of affinities falling on the boundary with respect to the number
of neighbors with γ = K/2 is shown in Fig. 4(e) (yellow bars). Compared to
Abs−Sum∗, Tanh−γ−Abs−Sum∗ still has a chance to avoid normalization, and it
allows us to explore more diverse affinities with a larger number of neighbors.

4.2 Confidence-Incorporated Affinity Normalization

In the existing propagation frameworks [17, 27, 16, 18, 19, 9], the affinity depicts
the correlation between pixels and provides guidance for propagation based on
similarity. In this case, each pixel in the map is treated equally without consid-
eration of its reliability. However, in the depth completion task, different pixels
should be weighted based on their reliability. For example, information from
unreliable pixels (e.g., noisy pixels and pixels on depth boundaries) should not
be propagated into neighbors regardless of their affinity to the neighboring pix-
els. The recent work DepthNormal [32] addresses this problem with confidence
prediction. It utilizes confidence as a mask for the weighted summation of input
and prediction for seed point preservation. However, it does not fully prevent the
propagation of incorrect depth values because weighted summation is conducted
before each propagation separately.

In this work, we consider the confidence map of pixels and combine it with
affinity normalization. That is, we predict not only the initial dense depth but
also its confidence, and then the confidence is incorporated into affinity normal-
ization to reduce disturbances from unreliable depths during propagation. The
affinity of the confidence-incorporated Tanh−γ−Abs−Sum∗ is defined as follows:

wi,jm,n = ci,j · tanh(ŵi,jm,n)/γ, (9)

where ci,j ∈ [0, 1] denotes the confidence of the pixel at (i, j).
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Figure 5(d) shows an example of a confidence-agnostic depth estimation re-
sult. Some noisy input depth points generate unreliable depth values with low
confidences (see Fig. 5(c)). Without using confidence, the noisy and less con-
fident pixels would harm their neighbor pixels during propagation and lead to
unpleasing artifacts (see Fig. 5(d)). After the incorporation of confidence into
normalization, our algorithm can successfully eliminate the impact of unconfi-
dent pixels and generate more accurate depth estimation, as shown in Fig. 5(e).

5 Depth Completion Network

In this section, we describe network architecture and loss functions for network
training. The proposed NLSPN mainly consists of two parts: (1) an encoder-
decoder architecture for the initial depth map, a confidence map and non-local
neighbors prediction with their raw affinities, and (2) a non-local spatial propa-
gation layer with a learnable affinity normalization.

5.1 Network Architecture

The encoder-decoder part of the proposed network is built upon residual net-
works [13], and it extracts high-level features from RGB and sparse depth images.
Additionally, we adopt the encoder-decoder feature connection strategy [26, 9]
to simultaneously utilize low-level and high-level features.

In Fig. 2, we provide an overview of our algorithm. Features from the encoder-
decoder network are shared for the initial dense depth, confidence, non-local
neighbor, and raw affinity estimation. Then non-local spatial propagation is con-
ducted in an iterative manner. As described in Sec. 3.2, non-local neighbors can
have fractional coordinates. To better incorporate fractional coordinates into
training, differentiable sampling [15, 36] is adopted during propagation. We note
that our non-local propagation can be efficiently calculated by deformable con-
volutions [36]. Therefore, each propagation requires a simple forward step of
deformable convolution with our affinity normalization. Please refer to the sup-
plementary material for the detailed network configuration.

5.2 Loss Function

For accurate prediction of the dense depth map, we train our network with `1
or `2 loss as a reconstruction loss with the ground truth depth as follows:

Lrecon(Dgt,Dpred) =
1

|V|
∑
v∈V

∣∣ dgtv − dpredv

∣∣ρ , (10)

where Dgt is the ground truth depth; Dpred is the prediction from our algorithm;
and dv, V, and |V| denote the depth values at pixel index v, valid pixels of Dgt,
and the number of valid pixels, respectively. Here, ρ is set to 1 for `1 loss and 2
for `2 loss. Note that we do not have any supervision on the confidence because
there is no ground truth; therefore, it is indirectly trained based on Lrecon.
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(a) RGB (b) Depth (c) S2D [21] (d) CSPN [9] (e) Ours (f) GT

Fig. 6. Depth completion results on the NYUv2 dataset [29]. Note that sparse
depth images are dilated for visualization.

6 Experimental Results

In this section, we first describe implementation details and the training envi-
ronment. After that, quantitative and qualitative comparisons to previous algo-
rithms on indoor and outdoor datasets are presented. We also present ablation
studies to verify the effectiveness of each component of the proposed algorithm.

The proposed method was implemented using PyTorch [23] with NVIDIA
Apex [1] and trained with a machine equipped with Intel Xeon E5-2620 and 4
NVIDIA GTX 1080 Ti GPUs. For all our experiments, we adopted an ADAM
optimizer with β1 = 0.9, β2 = 0.999, and the initial learning rate of 0.001. The
network training took about 1 and 3 days on the NYU Depth V2 [29] and KITTI
Depth Completion [30] datasets, respectively. We adopted the ResNet34 [13] as
our encoder-decoder baseline network. The number of non-local neighbors was
set to 8 for a fair comparison to other algorithms using 3×3 local neighbors. The
number of propagation steps was set to 18 empirically. Other training details
will be described for each dataset individually. For the quantitative evaluation,
we utilized the following commonly used metrics [29, 21, 9]:

– RMSE (mm) :
√

1
|V|

∑
v∈V

∣∣∣ dgtv − dpredv

∣∣∣2
– MAE (mm) : 1

|V|
∑
v∈V

∣∣∣ dgtv − dpredv

∣∣∣
– iRMSE (1/km) :

√
1
|V|

∑
v∈V

∣∣∣ 1/d
gt
v − 1/d

pred
v

∣∣∣2
– iMAE (1/km) : 1

|V|
∑
v∈V

∣∣∣ 1/d
gt
v − 1/d

pred
v

∣∣∣

– REL : 1
|V|

∑
v∈V

∣∣∣ (d
gt
v − d

pred
v )/d

gt
v

∣∣∣
– δτ : Percentage of pixels satisfying

max

(
dgtv

d
pred
v

,
dpredv

d
gt
v

)
< τ

6.1 NYU Depth V2

The NYU Depth V2 dataset [29] (NYUv2) consists of RGB and depth images
of 464 indoor scenes captured by a Kinect sensor. For the training data, we
utilized a subset of ∼50K images from the official training split. Each image
was downsized to 320×240, and then 304×228 center-cropping was applied. We
trained the model for 25 epochs with `1 loss, and the learning rate decayed by
0.2 every 5 epochs after the first 10 epochs. We set the batch size to 24. The
official test split of 654 images was used for evaluation and comparisons.

In Fig. 6, we present some depth completion results obtained for the NYUv2
dataset. As in previous works [21, 9], 500 depth pixels were randomly sampled
from a dense depth image and used as the input along with the correspond-
ing RGB image. For comparison, we provide results from the Sparse-to-Dense
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Method RMSE

(m)

REL δ1.25 δ
1.252

δ
1.253

S2D [21] 0.230 0.044 97.1 99.4 99.8

[21]+Bilateral [4] 0.479 0.084 92.4 97.6 98.9

[21]+SPN [19] 0.172 0.031 98.3 99.7 99.9

DepthCoeff [14] 0.118 0.013 99.4 99.9 -

CSPN [9] 0.117 0.016 99.2 99.9 100.0

CSPN++ [8] 0.116 - - - -

DeepLiDAR [25] 0.115 0.022 99.3 99.9 100.0

DepthNormal [32] 0.112 0.018 99.5 99.9 100.0

Ours 0.092 0.012 99.6 99.9 100.0

Table 1. Quantitative evaluation on the
NYUv2 [29] dataset. Results are borrowed
from each paper. Note that S2D [21] uses 200
sampled depth points per image as the input,
while the others use 500.

Method RMSE

(mm)

MAE iRMSE iMAE

CSPN [9] 1019.64 279.46 2.93 1.15

DDP [33] 832.94 203.96 2.10 0.85

NConv [12] 829.98 233.26 2.60 1.03

S2D [21] 814.73 249.95 2.80 1.21

DepthNormal [32] 777.05 235.17 2.42 1.13

DeepLiDAR [25] 758.38 226.50 2.56 1.15

FuseNet [7] 752.88 221.19 2.34 1.14

CSPN++ [8] 743.69 209.28 2.07 0.90

Ours 741.68 199.59 1.99 0.84

Table 2. Quantitative evalua-
tion on the KITTI DC test
dataset [30]. The results from other
methods are obtained from the KITTI
online evaluation site.

(S2D) [21] and the CSPN [9]. The S2D (Fig. 6(c)) generates blurry depth images,
as it is a direct regression algorithm. Compared to the S2D, the CSPN and our
method generate depth maps with substantially improved accuracy thanks to the
iterative spatial propagation procedure. However, the CSPN suffers from mixed-
depth problems, especially on tiny or thin structures. In contrast, our method
well preserves tiny structures and depth boundaries using non-local propagation.

Table 1 shows the quantitative evaluation of the NYUv2 dataset. The pro-
posed algorithm achieves the best result and outperforms other methods by a
large margin (RMSE 0.020m). Compared to geometry-agnostic methods [21, 19,
9], geometry-aware ones [14, 8, 25, 32] show better performance in general. The
proposed algorithm can be also viewed as a geometry-aware algorithm because
it implicitly explores geometrically relevant neighbors for propagation.

6.2 KITTI Depth Completion

The KITTI Depth Completion (KITTI DC) dataset [30] consists of over 90K
RGB and LiDAR pairs. We ignored regions without LiDAR projection (i.e., top
100 pixels) and center-cropped 1216 × 240 patches for training. The proposed
network was trained for 25 epochs with both `1 and `2 losses to balance RMSE
and MAE, and the initial learning rate decayed by 0.4 every 5 epochs after the
first 10 epochs. We used a batch size of 25 for the training.

Table 2 shows the quantitative evaluation of the KITTI DC dataset. Similar
to the results obtained for the NYUv2, geometry-aware algorithms [32, 25, 7, 8]
perform better in general compared to geometry-agnostic methods [21, 9]. Since
LiDAR sensor noise (i.e., mixed foreground and background points as shown in
Fig. 5) is inevitable, the predicted confidence is highly beneficial to eliminate the
impact of the noise. DepthNormal [32] utilizes confidence values as a mask for
weighted summation during refinement. However, its confidence mask does not
totally prevent incorrect values from propagating into neighboring pixels. On the
contrary, the proposed confidence-incorporated affinity normalization effectively
restricts the propagation of erroneous values during propagation. We note that
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Depth completion results on the KITTI DC dataset [30]. (a) RGB, (b)
Sparse depth, (c) CSPN [9], (d) DepthNormal [32], (e) DeepLiDAR [25], (f) FuseNet [7],
(g) CSPN++ [8], (h) Ours. Note that sparse depth images are dilated for visualization.

the proposed method outperformed all the peer-reviewed methods in the KITTI
online leaderboard when we submitted the paper.

Figure 7 shows some examples of predicted dense depth with highlighted chal-
lenging areas. Those areas usually contain small structures near depth bound-
aries, which can be easily affected by the mixed-depth problem. Compared to
the other methods (Figs. 7(c)-(g)), our algorithm (Fig. 7(h)) handles those chal-
lenging areas better with the help of non-local neighbors.

6.3 Ablation Studies

We conducted ablation studies to verify the role of each component of our net-
work, including non-local propagation, affinity normalization, and the confidence-
incorporated propagation. For all the experiments, we used a set of 10K images
sampled from the KITTI DC training dataset for training and evaluated the per-
formance on the full validation dataset. The network was trained for 20 epochs
with center-cropped patches of 912×228 for fast training, and the batch size was
set to 12. Other settings were set the same as those mentioned in Sec. 6.2.
Non-Local Neighbors Figure 8 visualizes some examples of non-local neigh-
bors predicted by our algorithm. Compared to fixed-local neighbors, our pre-
dicted non-local neighbors have higher flexibility in the selection of neighbor
pixels. In particular, non-local neighbors are selected from chromatically and
geometrically relevant locations near the depth boundaries (e.g., same objects
or planes). Moreover, we collected the statistics of the depth variance of neigh-
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Fig. 8. Examples of non-
local neighbors predicted
by our network.

Neighbors Affinity Norm. Conf. RMSE
(mm)

(a)

NCS Learned

Abs−Sum No 908.4

(b) Yes 891.6

(c)

Tanh−γ−Abs−Sum∗
No 896.4

(d)
Yes

890.4

(e)

NNL

Color 930.3

(f)

Learned

Abs−Sum No 903.1

(g)

Yes

889.5

(h) Abs−Sum∗ 886.0

(i) Tanh−C 886.4

(j)

Tanh−γ−Abs−Sum∗

No 891.3

(k) Binary 892.9

(l) Weighted 884.8

(m) Yes 884.1

Table 3. Quantitative evaluation on the KITTI
DC validation set [30] with various configura-
tions. Please refer to the text for details.

boring pixels to show the relevance of the selected neighbors. On the KITTI DC
validation set, the average depth variances for fixed-local and non-local neighbor
configurations were 22.7mm and 11.6mm, respectively. The small variance of the
non-local neighbor configuration demonstrates that the proposed method is able
to select more relevant neighbors for propagation.

The quantitative results obtained for the network with fixed-local NCS and
that with non-local neighbors NNL are shown in Tab. 3. These networks were
also tested with two normalization techniques: (1) with Abs−Sum (Tab. 3(b)
and (g)), and (2) with Tanh−γ−Abs−Sum∗ (Tab. 3(d) and (m)). The proposed
method with non-local neighbors consistently outperformed that with fixed-local
neighbors, demonstrating the superiority of the non-local framework.

Affinity Normalization and Confidence Incorporation To validate the
proposed affinity normalization algorithm, we compare it with three different
affinity normalization methods (cf., Sec. 4). Table 3(g)-(i), and (m) assessed the
performance using the same network but different affinity normalization meth-
ods. The model with Abs−Sum does not perform well due to the limited range
of affinity combinations, as shown in Fig. 4(a). When relaxing the normalization
condition while maintaining the stability condition (Abs−Sum∗), the performance
was improved thanks to the wider area of feasible affinity space and better affin-
ity distribution (Fig. 4(b)). Tanh−C strengthens the stability condition without
explicit normalization. However, as shown in Fig. 4(c), the resulting affinity val-
ues reside in a smaller affinity space (i.e., in a K-dimensional hypercube with
edge size 2/K); therefore, it achieved a slightly worse performance compared to
Abs−Sum∗. The proposed Tanh−γ−Abs−Sum∗ was able to alleviate this limita-
tion with a learnable normalization parameter γ. The learned γ compromises
between Abs−Sum∗ and Tanh−C, and can boost the performance. Note that the
final γ values (initialized with γ = K = 8) trained on the NYUv2 (Sec. 6.1) and
the KITTI DC (Sec. 6.2) datasets were 5.2 and 6.3, respectively. This observation
indicates that the optimal γ varies based on the training environment.
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Method CSPN [9] DDP [33] NConv [12] S2D [21] DepthNormal [32] DeepLiDAR [25] Ours

# Params. (M) 17.41 28.99 0.36 42.82 28.99 53.44 25.84

Table 4. Comparison of the number of network parameters. Note that only
methods with publicly available implementations [9, 33, 12, 21, 32, 25] are included.

We also compared the performance of the network with and without con-
fidence, to verify the importance of confidence incorporation. In addition, we
tested two alternative confidence-aware networks (1) by generating a binary
mask from confidence with a threshold of 0.5 and (2) with the weighted summa-
tion approach of DepthNormal [32], and applying each method during the prop-
agation to eliminate the effect of outliers. The comparison results are shown
in Tab. 3(j)-(m). The proposed confidence-incorporated affinity normalization
(Tab. 3(m)) outperforms the others due to its capability of suppressing propaga-
tion from unreliable pixels. The mask-based (Tab. 3(k)) and weighted summation
(Tab. 3(l)) approaches show worse performance compared to that of ours, indi-
cating that the hard-thresholding and weighted summation approaches are not
optimal for encouraging propagation from relevant pixels but suppressing that
from irrelevant pixels. Note that the proposed confidence-incorporated approach
is effective for both the network with NNL and that with NCS (Tab. 3(a)-(d)).
These results demonstrate the effectiveness of our confidence incorporation.
Further Analysis To verify the importance of learned affinities, we further
evaluated the proposed method with conventional affinities calculated based on
the Euclidean distance between color intensities. As shown in Tab. 3(e) and
(m), the network using learned affinities performed much better than the net-
work using the hand-crafted one. In addition, we provide the number of network
parameters of the compared methods in Tab. 4. The proposed method achieved
superior performance with a relatively small number of network parameters.
Please refer to the supplementary material for additional experimental results,
visualizations, and ablation studies.

7 Conclusion

We have proposed an end-to-end trainable non-local spatial propagation network
for depth completion. The proposed method gives high flexibility in selecting
neighbors for propagation, which is beneficial for accurate propagation, and it
eases the affinity learning problem. Unlike previous algorithms (i.e., fixed-local
propagation), the proposed non-local spatial propagation efficiently excludes ir-
relevant neighbors and enforces the propagation to focus on a synergy between
relevant ones. In addition, the proposed confidence-incorporated learnable affin-
ity normalization encourages more affinity combinations and minimizes harmful
effects from incorrect depth values during propagation. Our experimental results
demonstrated the superiority of the proposed method.
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16. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian
edge potentials. In: Proc. of Advances in Neural Information Processing Systems
(2011)

17. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image
matting. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2006)

18. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation
from a single image. In: Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (2015)

19. Liu, S., De Mello, S., Gu, J., Zhong, G., Yang, M.H., Kautz, J.: Learning affinity
via spatial propagation networks. In: Proc. of Advances in Neural Information
Processing Systems (2017)



16 J. Park et al.

20. Liu, S., Pan, J., Yang, M.H.: Learning recursive filters for low-level vision via a
hybrid neural network. In: Proc. of European Conf. on Computer Vision (ECCV)
(2016)

21. Ma, F., Karaman, S.: Sparse-to-dense: Depth prediction from sparse depth samples
and a single image. In: Proc. of IEEE Int’l Conf. on Robotics and Automation
(ICRA) (2018)

22. Park, J., Tai, Y.W., Cho, D., Kweon, I.S.: A unified approach of multi-scale deep
and hand-crafted features for defocus estimation. In: Proc. of IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR) (2017)

23. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NIPS Autodiff Workshop (2017)

24. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. on Pattern Anal. and Mach. Intell. (TPAMI) (1990)

25. Qiu, J., Cui, Z., Zhang, Y., Zhang, X., Liu, S., Zeng, B., Pollefeys, M.: Deeplidar:
Deep surface normal guided depth prediction for outdoor scene from sparse lidar
data and single color image. In: Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2019)

26. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Proc. of Int’l Conf. on Medical Image Computing and
Computer Assisted Intervention (MICCAI) (2015)

27. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images.
In: Proc. of Advances in Neural Information Processing Systems (2006)

28. Shim, G., Park, J., Kweon, I.S.: Robust reference-based super-resolution with
similarity-aware deformable convolution. In: Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (2020)

29. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from rgbd images. In: Proc. of European Conf. on Computer Vision
(ECCV) (2012)

30. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity
invariant CNNs. In: Int’l Conf. on 3D Vision (3DV) (2017)

31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proc. of
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2018)

32. Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse
lidar data with depth-normal constraints. In: Proc. of IEEE Int’l Conf. on Com-
puter Vision (ICCV) (2019)

33. Yang, Y., Wong, A., Soatto, S.: Dense depth posterior (ddp) from single image and
sparse range. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2019)

34. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence
search. IEEE Trans. on Pattern Anal. and Mach. Intell. (TPAMI) (2006)

35. Zbontar, J., LeCun, Y., et al.: Stereo matching by training a convolutional neural
network to compare image patches. Journal of Machine Learning Research (2016)

36. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better
results. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2019)


