
PackDet: Packed Long-Head Object Detector

Kun Ding1, Guojin He1, Huxiang Gu2,3, Zisha Zhong2, Shiming Xiang2, and
Chunhong Pan2

1 Aerospace Information Research Institute, Chinese Academy of Sciences
kding1225@gmail.com, hegj@radi.ac.cn

2 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

{smxiang,chpan}@nlpr.ia.ac.cn, zisha.zhong@ia.ac.cn
3 Beijing EvaVisdom Tech, guhuxiang@evavisdom.com

Abstract. State-of-the-art object detectors exploit multi-branch struc-
ture and predict objects at several different scales, although substantially
boosted accuracy is acquired, low efficiency is inevitable as fragmented
structure is hardware unfriendly. To solve this issue, we propose a packing
operator (PackOp) to combine all head branches together at spatial.
Packed features are computationally more efficient and allow to use cross-
head group normalization (GN) at handy, leading to notable accuracy
improvement against the common head-separate GN. All of these are only
at the cost of less than 5.7% relative increase on runtime memory and
introduction of a few noisy training samples, however, whose side-effects
could be diminished by good packing patterns design. With PackOp, we
propose a new anchor-free one-stage detector, PackDet, which features a
single deeper/longer but narrower head compared to the existing methods:
multiple shallow but wide heads. Our best models on COCO test-dev

achieve better speed-accuracy balance: 35.1%, 42.3%, 44.0%, 47.4% AP
with 22.6, 16.9, 12.4, 4.7 FPS using MobileNet-v2, ResNet-50, ResNet-101,
and ResNeXt-101-DCN backbone, respectively. Codes will be released.4

Keywords: Object detection, anchor-free, packing features, long head.

1 Introduction

Object detection is a task of simultaneously locating and recognizing objects
given an image, which serves as a very fundamental task in computer vision and
is a building block of many other tasks, e.g ., instance segmentation [7]. Due to
the advance of deep learning techniques, more finely-annotated data and stronger
computational power, object detection has achieved dramatic improvements,
both on accuracy [30, 29, 13] and speed [29].

Prevailing detection pipelines use one or more stages of localization and
classification, termed one-stage [18, 30] and multi-stage [26, 2] detectors. More
stages generally lead to better localization and recognition accuracy at the cost

4 https://github.com/kding1225/PackDet

2 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

Layer

Scale

Predictions Predictions

(a) Detectors w/o PackOp (b) Detectors with PackOp

Fig. 1: A concept figure shows how to
use PackOp to existing object detectors.
PackOp stitches multi-scale features at
spatial and performs forwarding all at
once, which is faster. However, PackOp
blends features at boundary, which will
generate noisy data.

50 100 150 200 250 300 350
GPU time (ms/img)

28

32

36

40

44

48

CO
CO

 A
P

(%
)

PackDet,MNV2
PackDet,R-50
PackDet,R-101
PackDet,X-101-64x4d-DCN
FCOS,MNV2
FCOS,R-50
FCOS,R-101
FCOS,X-101-64x4d-DCN
FSAF,X-101-64x4d

M2Det,R-101
CenterNet,HG-104
RetinaNet500,R-101
RetinaNet800,R-101
YOLOv3,DarkNet-53
TridentNet,R-101
Libra R-CNN,X-101-64x4d
Cascade R-CNN,R-101
Faster R-CNN+FPN,R-101

Fig. 2: Single-model and single-scale
performance of different detectors on
COCO test-dev set. Compared to the
state-of-the-art method FCOS, Pack-
Det that integrates PackOp in head can
not only improve accuracy, but also de-
crease inference latency.

of slower speed [2]. At different stages, currently two opposite techniques are
developed: anchor-based [26, 38] and anchor-free detectors [30, 43]. The former
pre-defines a large number of prior boxes with various sizes to cover the true
scale space of objects, while the latter does not use any prior boxes. Enumerating
all combinations results in one-stage anchor-based [16], one-stage anchor-free [30],
multi-stage anchor-based [26], and multi-stage anchor-free [37, 43] approaches.
Considering the superiority of better computational efficiency and generalization
ability, one-stage anchor-free detectors have drawn increasing attention [31, 42].

Due to large scale-variation of objects, feature pyramid networks (FPN) and
multi-branch structure have become the workhorses of state-of-the-art detec-
tors [15, 16, 37, 30]. FPN fuses and produces a series of feature maps with different
scales, whereon objects of a certain range of size are predicted. However, the frag-
mented multi-branch structure is not hardware friendly and leads to sub-optimal
computation efficiency on mainstream deep learning frameworks, e.g ., PyTorch,
despite of their intensive optimization of asynchronous computation.

To reduce the structure fragments and speed up computation, we develop
a packing operator (termed PackOp, ref. Fig. 4 for the implementation) that
combines all branches and the associated computations together, avoiding costly
for-loops over all heads one by one. A concept figure of utilizing PackOp is shown
in Fig. 1, obviously, PackOp can be easily integrated into existing FPN-based
detectors. Though PackOp is simple, it could further squeezes the power of modern
deep learning frameworks, especially for the cases of using more branches, deeper
heads, thinner feature maps and smaller input images (ref. Fig. 8). Surprisingly, it
is observed that detecting objects on packed features leads to improved accuracy.
We attribute this to the usage of cross-head GN (CH-GN) that is previously
ignored and only head-separate GN (HS-GN) is explored. CH-GN works better
than HS-GN because of more accurate mean and variance computed across all
heads. The side effects incurred by PackOp include increased runtime memory

PackDet: Packed Long-Head Object Detector 3

cost, but which is tiny and could be acceptable, and the incorporation of noisy
features, whose negative effect could be mitigated with good packing patterns.

Accordingly, we propose a new anchor-free one-stage detector, called PackDet.
Owing to PackOp, the network structure of PackDet is much simpler, as shown in
Fig. 3. PackDet first combines multi-scale feature maps into a packed feature map
by PackOp, and then feeds the packed features to a shared head, two separate
heads (localization and classification head) and the prediction layers, sequentially.
A deep but narrow structure of shared head is explored, which consists of many
times of repetition of a basic convolution block that contains one convolution,
one CH-GN and one activation.

Extensive experiments are conducted on COCO detection dataset to demon-
strate the effectiveness of PackDet. Our best models on COCO test-dev achieve
35.1%, 42.3%, 44.0%, 47.4% AP with 22.6, 16.9, 12.4, 4.7 FPS on GTX 1080Ti
GPU using MobileNet-v2, ResNet-50, ResNet-101, and ResNeXt-101-DCN back-
bone, respectively, which are better speed-accuracy balance points (ref. Fig. 2)
compared to state-of-the-art anchor-free one-stage approaches, e.g ., FCOS [30].

2 Related Work

One-stage and Multi-stage Object Detectors. Single-stage detectors use
both bounding box regression and multi-class classification once, respectively,
without further refinements in modeling. They are usually quite fast in inference
and more favorable for mobile applications. Early one-stage detectors are less
satisfactory in accuracy despite of striking FPS (frames per second) numbers,
such as YOLO [23, 24], SSD [18], DSSD [5]. Subsequent researches of one-stage
detectors focus on improving accuracy, while trying to keep the advantage of
high efficiency. Related techniques include designing better loss function to solve
class-imbalance problem (e.g ., RetinaNet [16]), enhancing the multi-scale features
(e.g ., M2Det [40]), searching network architectures (e.g ., NAS-FCOS [31] and
EfficientDet [29]). The most common multi-stage detectors use two stages, one is
region proposal network and the other is region-wise refinement network. Faster-
RCNN [26] is among the earliest methods of this category, and many successors,
e.g ., R-FCN [3], FPN [15] and TridentNet [13], further strengthen and enrich
the two-stage framework. More stages are studied in Cascade R-CNN [2], and
significantly improved accuracy is observed, but suffering from longer latency.

Anchor-based and Anchor-free Object Detectors. Anchor boxes serve
as scale prior of object distribution and are extensively adopted in both one-stage
and multi-stage detectors, such as Fast-RCNN [6], Faster-RCNN [26], YOLO [24],
SSD [18]. Anchor boxes can also be learned from data, e.g ., MetaAnchor [36],
OptAnchor [41]. Pre-defined prior boxes are suspected to have generalization
problem and are less computational efficient, thus anchor-free methods begin
to resuscitate. Based on feature pyramid networks and other novel ideas, recent
work such as FCOS [30], FSAF [43], CenterNet [4], consistently demonstrate that
it is possible to drop prior boxes while maintaining a promising result.

4 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

Multi-head Object Detectors. To tackle the large scale-variation, state-
of-the-art detectors adopt feature pyramid structure (termed neck) and detect
objects of different scales at the most suitable feature map, unanimously, such
as FPN [15], TridentNet [13], SSD [18]. For each feature map, a multi-layer sub-
network (termed head) is commonly applied to extract task-oriented object-level
features. For sake of higher FPS, heads are often limited to a shallow and wide
structure, e.g ., Faster-RCNN [26], light-head RCNN [14], RetinaNet [16]. By
contrast, this work explores deeper and narrower head structure.

Normalization Techniques in Object Detection. Normalization can
ease the deep neural networks training and has become a foundation of many
algorithms, including object detection. The most commonly-used method is batch
normalization (BN) [11], and its variants, freezing BN and synchronized BN [22].
Group norm (GN) [34] is recently proposed as an alternative for BN when
batch size is relatively small, which is very appropriate for the tasks like object
detection where only small batch is affordable subjected to high image resolution
and limited GPU memory. GN is widely adopted in newest detectors [30, 31, 37]
to normalize the layers in heads, which are newly-added and untransferable from
a pre-trained classification model. However, in these methods, mean and variance
are separately computed for different heads.

3 PackDet: Packed Long-Head Object Detector

This section elaborates the proposed packed long-head detector. We first summa-
rize the overall network architecture (Section 3.1), and then detail all parts of
PackDet, including packing operator (Section 3.2), head structure (Section 3.3),
learning targets (Section 3.4) and loss functions (Section 3.5).

3.1 Network Architecture

As shown in Fig. 3, PackDet has a concise fully convolutional structure, consisting
of a backbone, an FPN neck, a packing operator (PackOp), a shared head, a
classification head and a localization head. An input image I ∈ R3×H×W is first
fed to the backbone to extract visual features. After that, similar to existing
multi-scale detectors [16, 30], three feature maps Cl+3, l ∈ [0, 3) of strides 8, 16, 32
are combined to generate five features Pl+3 ∈ RC×hl×wl , l ∈ [0, 5) of stride
8, 16, 32, 64, 128, respectively, with hl the height and wl the width of Pl+3. Here,
we denote [a, b) as the set containing all integers no less than a and smaller than
b. P6 and P7 are obtained by consecutively applying convolution operations on
P5, and P3 ∼ P5 are generated in a top-down manner [16].

Unlike existing methods that construct a branch for per feature map, we
first stitch all features together at spatial and obtain a big feature map, denoted
as F (p), and only use one main branch subsequently. The packed feature F (p)

is passed to a shared head to generate a new feature map F (s). We explore a
deep and narrow structure for this shared head, while keeping the spatial size
unchanged. F (s) is further fed to two separate heads to generate the classification
and localization prediction, respectively.

PackDet: Packed Long-Head Object Detector 5

x8

256 256 256 256256

Backbone

FPN Pack
Op

x1
6

Shared
Head

x3
2

x6
4

x1
28

256 Cls
Head

Loc
Head

classification

location centerness

128

80

4 1

feature pyramid

packed
features

scales
map

locations
map

21

512
1024

2048

I

<latexit sha1_base64="ffR2RcYCtVgKncanUjOPQspE2ew=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqQE8S8KK3BMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2auUL+uVUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP5+9jM8=</latexit>

P3

<latexit sha1_base64="CeJ0ck5PqFW7pay9TVJ+0h64nvE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oCcpePFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD43+Zb9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5LWRdWrVS/va5X6TR5HEU7gFM7Bgyuowx00oAkMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8A0nmNfA==</latexit>

P4

<latexit sha1_base64="paOaRUgTaVmQgV70mfwxegC6i10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oCcpePFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD41+rV+uuFV3DrJKvJxUIEejX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0nrourVqpf3tUr9Jo+jCCdwCufgwRXU4Q4a0AQGQ3iGV3hzhPPivDsfi9aCk88cwx84nz/T/Y19</latexit>

P5

<latexit sha1_base64="/jxlICPso5/4uRLhl5bb95eAw0A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oicpePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPpg4PHeDDPzgkQKg6775RRWVtfWN4qbpa3tnd298v5By8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVA04S7kd0qEQoGEUr3Tf6F/1yxa26c5C/xMtJBXI0+uXP3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/NT52SE6sMSBhrWwrJXP05kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7IheMsv/yWts6pXq57f1Sr16zyOIhzBMZyCB5dQh1toQBMYDOEJXuDVkc6z8+a8L1oLTj5zCL/gfHwD1YGNfg==</latexit>

P6

<latexit sha1_base64="xtAbf9Jy25CXka7lnuHVB6Aq9j0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qCcpePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPpg4PHeDDPzgkQKg6775RRWVtfWN4qbpa3tnd298v5By8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVA04S7kd0qEQoGEUr3Tf6F/1yxa26c5C/xMtJBXI0+uXP3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/NT52SE6sMSBhrWwrJXP05kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7IheMsv/yWts6pXq57f1Sr16zyOIhzBMZyCB5dQh1toQBMYDOEJXuDVkc6z8+a8L1oLTj5zCL/gfHwD1wWNfw==</latexit>

P7

<latexit sha1_base64="Ladcs3S2EC8WZCq4t5AdWXhNF60=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UE9S8OKxorWFNpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8c3Mbz9xbUSsHnCScD+iQyVCwSha6b7Zr/fLFbfqzkFWiZeTCuRo9stfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzolZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDKz4RKUuSKLRaFqSQYk9nfZCA0ZygnllCmhb2VsBHVlKFNp2RD8JZfXiWPF1WvVr28q1Ua13kcRTiBUzgHD+rQgFtoQgsYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4A2ImNgA==</latexit>

S

<latexit sha1_base64="7Kchq/EbzcTnzQ8xjDjnRKOneDs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqQE8S8OIxQfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5YMYJ+hEdSB5yRo2V6ve9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlR9irly3qlVL3J4sjDCZzCOXhwBVW4gxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD67ljNk=</latexit>

L

<latexit sha1_base64="7XEmaCsWP6t3+7a9X/3gD7fiQ4g=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe40oJUEbCwsEjAfkBxhbzOXrNnbO3b3hBDyC2wsFLH1J9n5b9wkV2jig4HHezPMzAsSwbVx3W8nt7a+sbmV3y7s7O7tHxQPj5o6ThXDBotFrNoB1Si4xIbhRmA7UUijQGArGN3O/NYTKs1j+WDGCfoRHUgeckaNler3vWLJLbtzkFXiZaQEGWq94le3H7M0QmmYoFp3PDcx/oQqw5nAaaGbakwoG9EBdiyVNELtT+aHTsmZVfokjJUtachc/T0xoZHW4yiwnRE1Q73szcT/vE5qwmt/wmWSGpRssShMBTExmX1N+lwhM2JsCWWK21sJG1JFmbHZFGwI3vLLq6R5UfYq5ct6pVS9yeLIwwmcwjl4cAVVuIMaNIABwjO8wpvz6Lw4787HojXnZDPH8AfO5w+kSYzS</latexit>

F (p)

<latexit sha1_base64="uhZzuytkc3f51VBQd4gr1gPRYxc=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquFvRYEMRjBfsB7VqyabYNzWZDkhXK0h/hxYMiXv093vw3Zts9aOuDgcd7M8zMCyRn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0nitAWiXmsugHWlDNBW4YZTrtSURwFnHaCyU3md56o0iwWD2YqqR/hkWAhI9hYqXP7mFbl+WxQrrg1dw60SrycVCBHc1D+6g9jkkRUGMKx1j3PlcZPsTKMcDor9RNNJSYTPKI9SwWOqPbT+bkzdGaVIQpjZUsYNFd/T6Q40noaBbYzwmasl71M/M/rJSa89lMmZGKoIItFYcKRiVH2OxoyRYnhU0swUczeisgYK0yMTahkQ/CWX14l7YuaV69d3tcrjUYeRxFO4BSq4MEVNOAOmtACAhN4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/q0CPIQ==</latexit>

F (s)

<latexit sha1_base64="BI3ZLo/Al5u+SN1VyjSZw1UkrI4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXA3oMCOIxgnlAsobZySQZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbEUBl3328mtrW9sbuW3Czu7e/sHxcOjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDPzW09cGxGpB5zE3A/pUImBYBSt1Lp9TMvmfNorltyKOwdZJV5GSpCh3it+dfsRS0KukElqTMdzY/RTqlEwyaeFbmJ4TNmYDnnHUkVDbvx0fu6UnFmlTwaRtqWQzNXfEykNjZmEge0MKY7MsjcT//M6CQ6u/VSoOEGu2GLRIJEEIzL7nfSF5gzlxBLKtLC3EjaimjK0CRVsCN7yy6ukeVHxqpXL+2qpVsviyMMJnEIZPLiCGtxBHRrAYAzP8ApvTuy8OO/Ox6I152Qzx/AHzucPr9KPJA==</latexit>

x8

x16

x32

C3

<latexit sha1_base64="cYI/5TyKHh+ZCXmMjX4pZYNr2wk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyagJ4kkIvHiOYByRJmJ73JkNnZZWZWCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwrs/99hMqzWP5aCYJ+hEdSh5yRo2VHur9Sr9YcsvuAmSdeBkpQYZGv/jVG8QsjVAaJqjWXc9NjD+lynAmcFbopRoTysZ0iF1LJY1Q+9PFqTNyYZUBCWNlSxqyUH9PTGmk9SQKbGdEzUivenPxP6+bmvDGn3KZpAYlWy4KU0FMTOZ/kwFXyIyYWEKZ4vZWwkZUUWZsOgUbgrf68jppXZW9arlyXy3VbrM48nAG53AJHlxDDe6gAU1gMIRneIU3RzgvzrvzsWzNOdnMKfyB8/kDvquNbw==</latexit>

C4

<latexit sha1_base64="oxRBTE/6TfUF/fnipvCw1hm36Do=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oCcp9OKxov2ANpTNdtIu3WzC7kYowZ/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNMGjO/84hK81g+mGmCfkRHkoecUWOl+8agNihX3Ko7B1klXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4EPpX6qcaEsgkdYc9SSSPUfjY/9YmcWWVIwljZkobM1d8TGY20nkaB7YyoGetlbyb+5/VSE177GZdJalCyxaIwFcTEZPY3GXKFzIipJZQpbm8lbEwVZcamU7IheMsvr5L2RdWrVS/vapX6TR5HEU7gFM7Bgyuowy00oQUMRvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8AwC+NcA==</latexit>

C5

<latexit sha1_base64="maQPM75SKax4/QPWzN7LSb1mYwk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqRE8SyMVjRPOAZAmzk9lkyOzsMtMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChIpDLrut5NbW9/Y3MpvF3Z29/YPiodHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvBqDbzW09cGxGrRxwn3I/oQIlQMIpWeqj1rnrFklt25yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMbfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippXpS9SvnyvlKq3mZx5OEETuEcPLiGKtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MHwbONcQ==</latexit>

Detection Head

Fig. 3: Overview of PackDet with ResNet-50 as the backbone. PackOp stitches
multiple feature maps (P3 ∼ P7) into a patchwork (F (p)), see Fig. 4 for more
details; shared head and separate heads: Fig. 6; loss computation: Section 3.5.

P4

P3

P5

Conv
block

P5’

P7

P7’

Conv
block

P6

P6’

Conv
block

l = 0
<latexit sha1_base64="jqIQYEGA4DOT9OgTeOGbsGtMJj0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8NOME/YgOJA85o8ZKD+La7ZXKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdKsVrzzSvX+oly7yeMowDGcwBl4cAk1uIM6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx/FeY11</latexit>

l = 1
<latexit sha1_base64="F/kfo/UIglmcV1ETURBgX2LlVjw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWepDXXq9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdKsVrzzSvX+oly7yeMowDGcwBl4cAk1uIM6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx/G/Y12</latexit>

l = 2
<latexit sha1_base64="ywQ57wl3aKX9feteHlIR0lsV2W4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWepDX1V6p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezUyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTpFG0I3uLLy6RZrXjnler9Rbl2k8dRgGM4gTPw4BJqcAd1aACDATzDK7w50nlx3p2PeeuKk88cwR84nz/IgY13</latexit>

l = 3
<latexit sha1_base64="fdSAHWijjeCeig6qYDPUvaVZ8vI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewmgl6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00oO8rvaKJbfszkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYZX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSrJS9arlyf1Gq3WRx5OEETuEcPLiEGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MHygWNeA==</latexit>

l = 4
<latexit sha1_base64="8XK2RU9TgpnVtiD48U1JRswqk1I=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00oO8rvaKJbfszkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYZX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSrJS9i3Llvlqq3WRx5OEETuEcPLiEGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MHy4mNeQ==</latexit>

w0
<latexit sha1_base64="XEjhaazMB5rKa52fRebnM/0JdIw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEJ9I2i</latexit>

h0
<latexit sha1_base64="dxR1q4FeOmmzi2DaPrP43MJCT14=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0MOq7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzC42T</latexit>

h1
<latexit sha1_base64="yiZQYYYwO+F5pP+nrgz81eCgwJQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0MOp7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AH0j42U</latexit>

w1
<latexit sha1_base64="BGIvv1Que1aISVw+1pGEuT4uC1M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AELeI2j</latexit>

w2
<latexit sha1_base64="k9TH6JRVGzznxlg0BHK2AhK6Dh8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMM/I2k</latexit>

h2
<latexit sha1_base64="bp6t7iIR0UjPyg0dB3e9yeQtzcI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0MOrX+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QP2E42V</latexit> h3

<latexit sha1_base64="1rokIfWEaaDwRR1ewq684sFr0TQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+1G/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/3l42W</latexit>

w3
<latexit sha1_base64="Jqap7piIcWW5up2+v3ATn2Y9lBE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADoCNpQ==</latexit> w4

<latexit sha1_base64="Z4Vsfm+PU1V5LIAy0eW8WRtO420=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfuqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEASNpg==</latexit>

h4
<latexit sha1_base64="2SzwZJyzeeQegux1pbu+eY7/ZZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6GPVr/VLZrbhzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SlrVindZqd7XyvWbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AH5G42X</latexit>

P3

P4
P5

P6
P7

P6’’
P7’

P5’

Wp = w0

<latexit sha1_base64="Bgda7FS+sX/O61ILoAVMnlumAfs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokW9CIUvXisYJtCG8Jmu2mXbjbL7kYpoT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMiyRn2rjut7Oyura+sVnaKm/v7O7tVw4O2zrNFKEtkvJUdSKsKWeCtgwznHakojiJOPWj0e3U9x+p0iwVD2YsaZDggWAxI9hYyfdDef0UumGl6tbcGdAy8QpShQLNsPLV66ckS6gwhGOtu54rTZBjZRjhdFLuZZpKTEZ4QLuWCpxQHeSzcyfo1Cp9FKfKljBopv6eyHGi9TiJbGeCzVAvelPxP6+bmfgqyJmQmaGCzBfFGUcmRdPfUZ8pSgwfW4KJYvZWRIZYYWJsQmUbgrf48jJpn9e8eu3ivl5t3BRxlOAYTuAMPLiEBtxBE1pAYATP8ApvjnRenHfnY9664hQzR/AHzucPvsyPLw==</latexit>

H
p

=
h

0
+

h
1

<latexit sha1_base64="l2x9Cwju1mLteVA0O5nkuH865gY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBZBEEqiBb0IRS89VrAfkIaw2W6apZts2N0IJfRnePGgiFd/jTf/jds2B219MPB4b4aZeUHKmdK2/W2V1tY3NrfK25Wd3b39g+rhUVeJTBLaIYIL2Q+wopwltKOZ5rSfSorjgNNeML6f+b0nKhUTyaOepNSL8ShhISNYG8lt+elt5NsXke/41Zpdt+dAq8QpSA0KtP3q12AoSBbTRBOOlXIdO9VejqVmhNNpZZApmmIyxiPqGprgmCovn588RWdGGaJQSFOJRnP190SOY6UmcWA6Y6wjtezNxP88N9PhjZezJM00TchiUZhxpAWa/Y+GTFKi+cQQTCQztyISYYmJNilVTAjO8surpHtZdxr1q4dGrXlXxFGGEziFc3DgGprQgjZ0gICAZ3iFN0tbL9a79bFoLVnFzDH8gfX5A+iukFw=</latexit>

Features from FPN

Packed feature map
Extra featuresMe = 3

<latexit sha1_base64="fIUwmxqQAdIVm/lA/E9v/DkWIU8=">AAAB7HicdVBNS8NAEN34WetX1aOXxSJ4Cps2NO1BKHjxIlQwbaENZbPdtks3m7C7EUrob/DiQRGv/iBv/hs3bQUVfTDweG+GmXlhwpnSCH1Ya+sbm1vbhZ3i7t7+wWHp6Lit4lQS6pOYx7IbYkU5E9TXTHPaTSTFUchpJ5xe5X7nnkrFYnGnZwkNIjwWbMQI1kbybwb0sjoolZFdqze8ShUi223Ua07NEIQ85LnQMSRHGazQGpTe+8OYpBEVmnCsVM9BiQ4yLDUjnM6L/VTRBJMpHtOeoQJHVAXZ4tg5PDfKEI5iaUpouFC/T2Q4UmoWhaYzwnqifnu5+JfXS/WoHmRMJKmmgiwXjVIOdQzzz+GQSUo0nxmCiWTmVkgmWGKiTT5FE8LXp/B/0q7Yjmu7t2652VzFUQCn4AxcAAd4oAmuQQv4gAAGHsATeLaE9Wi9WK/L1jVrNXMCfsB6+wSPNY6J</latexit>

Fig. 4: The procedure of PackOp. Some lines are not drawn in case of cluttering.

3.2 Packing Operator

To reduce the structure fragments in FPN-like head, a packing operator (PackOp)
is proposed, which places multi-scale feature maps into a cubic container, i.e.,
packed feature map, while avoiding overlaps between any two feature maps. This
problem is similar to the rectangle packing problem [9] that seeks an enclosing
rectangle of minimal area to contain a given set of rectangles without overlap.
Rectangle packing is proved to be a NP-completeness problem [12]. Considering
the hardness of optimization and the searched solutions may not result in high
detection accuracy, we find feasible solutions manually by exploiting the rules
found by experiments.

The general case of PackOp with extra Me (especially, Me = 3) features is
explained in Fig. 4. The new features P ′5, P

′
6, P

′
7 are generated by applying three

convolution blocks (i.e., conv-gn-relu) with different initial values to P5, P6, P7,
respectively. After that, all the Me + 5 feature maps Fl, l ∈ [0,Me + 5) are placed
into a big tensor F (p) ∈ RC×Hp×Wp according to pre-defined placing coordinates,
as listed in Table 1. Accordingly, we obtain Hp = H0 +H1 and Wp = W0. Apart
from F (p), PackOp also computes two extra tensors, a scales map S ∈ RHp×Wp

recording the associated scale information of all pixels in F (p), and a locations
map L ∈ R2×Hp×Wp recording the position of F (p)’s pixels mapped back to the
original image. S and L are necessary for computing supervision targets and
decoding predictions. PackOp can be easily implemented with a few lines of
PyTorch code, as is shown in Fig. 5.

6 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

l Fl source Wl Hl x0
l y0

l x1
l y1

l

0 F0 P3 w0 h0 0 0 w0 h0

1 F1 P4 w1 h1 0 h0 w1 h0+h1

2 F2 P5 w2 h2 w0−w2 h0+h1−h2 w0 h0+h1

3 F3 P6 w3 h3 w0−w2−w3 h0+h1−h2−h3 w0−w2 h0+h1−h2

4 F4 P7 w4 h4 w0−w2−w3−w4 h0+h1−h2−h3−h4 w0−w2−w3 h0+h1−h2−h3

5 F5 P ′
5 w2 h2 w1 h0+h1−h2 w1+w2 h0+h1

6 F6 P ′
6 w3 h3 w0−w3 h0+h1−h2−h3 w0 h0+h1−h2

7 F7 P ′
7 w4 h4 w0−w3−w4 h0+h1−h2−h3−h4 w0−w3 h0+h1−h2−h3

Table 1: Coordinates of Fl in F (p). x0l , y
0
l , x

1
l , y

1
l are top-left horizontal, top-left

vertical, bottom-right horizontal, bottom-right vertical coordinate, respectively.

def PackOp(xs, boxes, levels, locations, Hp, Wp):
xs: feature map F l, l=0,1,...,M−1, F l: (N, C, H l, W l)
boxes: positions in packed feature map, (M, 4)
levels: level l for each feature map F l, (M,)
locations: grid points per feature map, (N, 2, H l, W l)
Hp,Wp: height and width of packed feature map
N, C = xs[0].shape[:2]
pack map = xs[0].new zeros(N, C, Hp, Wp)
scales map = xs[0].new zeros(N, 1, Hp, Wp)
locations map = −xs[0].new ones(N, 2, Hp, Wp)
for x, box, l, loc in zip(xs, boxes, levels, locations):

x0, y0, x1, y1 = box
pack map[..., y0:y1, x0:x1] = x
scales map[..., y0:y1, x0:x1] = l
locations map[..., y0:y1, x0:x1] = loc

return pack map, scales map, locations map

Fig. 5: PyTorch code of PackOp.

As will be shown in our experiments (ref. Fig. 8), the proposed approach has
universality in speeding up FPN-like head structure. Although this work explores
the efficiency in object detection task, the underlying idea could also be applied
to other tasks/methods as long as FPN-like multi-branch structure is adopted.
It is worth noting that our work is quite different from architecture search [31,
33], though which could also reduce network latency, as it generally focuses
on discovering network structure automatically by optimizing accuracy-speed
trade-off. More similar work include jigsaw based unsupervised learning [32] and
mixup-based data augmentation [39], but they have distinct differences to our
method and are proposed in different contexts and for different applications. The
idea of packing has already appeared in earlier work, such as [21, 10]. However,
the packing operations therein are performed in image space to make convnet
feature pyramids faster to compute. Most recently, mosaic data augmentation is
proposed in YOLOv4 [1], which combines 4 training images into one in certain
ratios. The underlying idea also shares some similarities to ours, but also being
performed in image space.

3.3 Packed Long Head

The overall head structure excluding PackOp is shown in Fig. 6. It contains three
parts: shared head, classification head and localization head.

PackDet: Packed Long-Head Object Detector 7

, 256

3x3 conv, 128

G
N

, 32

R
eLU

1x1 conv, 128

G
N

, 32

R
eLU +

3x3 conv, 128

G
N

, 32

R
eLU +…

R
eLU

G
N

, 32

3x3 conv, 128

R
eLU

G
N

, 32

3x3 conv, 128

…

R
eLU

G
N

, 32

3x3 conv, 128

R
eLU

G
N

, 32

3x3 conv, 128

…

1x1 conv, 80

Class

1x1 conv, 1

1x1 conv, 4

LocationCenter-
ness

F (p)

<latexit sha1_base64="uhZzuytkc3f51VBQd4gr1gPRYxc=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquFvRYEMRjBfsB7VqyabYNzWZDkhXK0h/hxYMiXv093vw3Zts9aOuDgcd7M8zMCyRn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0nitAWiXmsugHWlDNBW4YZTrtSURwFnHaCyU3md56o0iwWD2YqqR/hkWAhI9hYqXP7mFbl+WxQrrg1dw60SrycVCBHc1D+6g9jkkRUGMKx1j3PlcZPsTKMcDor9RNNJSYTPKI9SwWOqPbT+bkzdGaVIQpjZUsYNFd/T6Q40noaBbYzwmasl71M/M/rJSa89lMmZGKoIItFYcKRiVH2OxoyRYnhU0swUczeisgYK0yMTahkQ/CWX14l7YuaV69d3tcrjUYeRxFO4BSq4MEVNOAOmtACAhN4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/q0CPIQ==</latexit>

F (s)

<latexit sha1_base64="BI3ZLo/Al5u+SN1VyjSZw1UkrI4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXA3oMCOIxgnlAsobZySQZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbEUBl3328mtrW9sbuW3Czu7e/sHxcOjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDPzW09cGxGpB5zE3A/pUImBYBSt1Lp9TMvmfNorltyKOwdZJV5GSpCh3it+dfsRS0KukElqTMdzY/RTqlEwyaeFbmJ4TNmYDnnHUkVDbvx0fu6UnFmlTwaRtqWQzNXfEykNjZmEge0MKY7MsjcT//M6CQ6u/VSoOEGu2GLRIJEEIzL7nfSF5gzlxBLKtLC3EjaimjK0CRVsCN7yy6ukeVHxqpXL+2qpVsviyMMJnEIZPLiCGtxBHRrAYAzP8ApvTuy8OO/Ox6I152Qzx/AHzucPr9KPJA==</latexit>

, 128

Skip connectionShared Head

Cls Head

Loc Head

Fig. 6: The head architecture of PackDet (PackOp is not shown).

The shared head takes as an input F (p) ∈ RC×Hp×Wp and outputs F (s) ∈
RCs×Hp×Wp with Cs the channel number of the output feature map. A dimension
reduction block R(·) (1x1conv-gn-relu) is first applied to reduce the dimension,
and then T1 convolution blocks with 3 × 3 convolution CB1

i (·), i ∈ [0, T1) are
performed sequentially, i.e. F (s) = CB1

T1−1(· · · (CB1
0(F (d)), F (d)), F (d)), where

F (d) , R(F (p)) is the dimension reduced feature map. Therein, a skip connection
from F (d) at each block is adopted. In all blocks, the spatial dimension is kept
fixed, as objects should be detected at every positions determined by the locations
map L that is intuitively unsuitable for interpolation.

Generally speaking, detection and classification are two quite different tasks
and need task-specific features. To this end, two separate heads are stacked on
top of the shared head: classification head and localization head. The structure
of these two heads are identical to that of the shared head besides removed
skip connections and fewer convolution blocks. We perform classification on the
output of classification head and regression+centerness prediction on localization
head (ref. Section 3.4). For convenience, let T2 denote the number of convolution
blocks used in classification/localization head.

PackDet uses deeper while narrower head structure, that is to say, T1 + T2
is relatively large, e.g ., 14, and Cs is relatively small, e.g ., 128. By contrast,
existing methods like FCOS [30] and RetinaNet [16] use shallow and wide
heads. For instance, FCOS uses 4 convolution blocks (denoted as T) for both
classification and localization head, the channel size (denoted as C) is set to be
256. The number of convolution parameters (excluding the last prediction layers)
in PackDet’s heads is CCs + (9T1 + 18T2)C2

s , and 18TC2 in FCOS’s heads. The
convolution FLOP count of PackDet’s and FCOS’s heads are proportional to
[CCs + (9T1 + 18T2)C2

s]HpWp and 18TC2
∑4

l=0HlWl, respectively. Considering∑4
l=0HlWl/HpWp ≈ 0.89, under the settings T = 4, T1 = 12, T2 = 2, C =

256, Cs = 128, PackDet’s heads should have fewer parameters and FLOPs

Compared to processing all heads separately, PackOp slightly increases run-
time memory cost by β = 1−

∑M−1
l=0 HlWl/HpWp, relatively. For the case Me = 0,

β is about 11.2%; for the case Me = 3, it is about 5.7%. While considering back-

8 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

N

C

H
1,W

1

H
2,W

2

C

N

level = 0 level = 1

(a) CH-GN: cross-head GN

N

C

H
1,W

1

H
2,W

2

C

N

level = 0 level = 1

(b) HS-GN: head-separate GN

Fig. 7: Comparison between cross-head and head-separate normalization methods
with group normalization (GN) taken as an example. Pixels with same color are
normalized by the same statistics computed on the values of these pixels.

bone, neck and head as a whole, the relative increment might be smaller. For
example, when ResNet-50 serves as the backbone and Me is 3, the GPU memory
cost is only increased by 5.5%, relatively.

PackDet’s heads perform convolution operations on packed feature maps,
which inevitably incorporates some noisy features by mixing up spatially close
features. The noisy data may mess the training procedure, and finally lead to
worse performance. However, as will be demonstrated in the experiments, by
carefully designing the packing pattern, this side-effect can be largely mitigated.

Due to the usage of packed features, feature normalization at each convolution
block is performed across different heads. Fig. 7 compares the differences between
cross-head GN (CH-GN) and the common head-separate GN (HS-GN). In CH-
GN, the statistics are computed based on values from all scales, which are more
accurate and facilitate to get better accuracy (ref. Fig. 9).

3.4 Learning Targets

Considering the ij-th element of L, the associated feature stride is 2Si,j+3 and the
corresponding space location mapped back to the original image is (L0,i,j , L1,i,j)
= (2Si,j+3(j+0.5), 2Si,j+3(i+0.5)). Following the improved version of FCOS [30],
box shrinking strategy is adopted to reduce noisy positive samples. For this end,
let B = (c, x, y, w, h) be a ground-truth box, and Bs = (c, x, y, w′, h′) be a central
shrunk version of B, where c is the class id, (x, y) is box center, w and h are the
width and height of B, w′ and h′ are the width and height of Bs, respectively.
Pixel (i, j) denotes a positive sample when x−w′/2 ≤ L0,i,j ≤ x+w′/2, y−h′/2 ≤
L1,i,j ≤ y+h′/2 holds, otherwise denotes a negative sample. For a positive sample,
let c∗i,j = c be the classification target and o∗i,j = (ol, ot, or, ob) be the regression
target, where

ol =
1

2Si,j+3
[L0,i,j − (x− w/2)], ot =

1

2Si,j+3
[L1,i,j − (y − h/2)],

or =
1

2Si,j+3
[(x+ w/2)− L0,i,j], ob =

1

2Si,j+3
[(y + h/2)− L1,i,j]. (1)

PackDet: Packed Long-Head Object Detector 9

ol, ot, or, ob are the stride-normalized distances between (L0,i,j , L1,i,j) and the
left, top, right, bottom boundaries of B, respectively. Like [30], centerness is
also predicted to filter out low-quality boxes. For a position (i, j) that associates
to a positive sample, the ground-truth centerness target is defined as t∗ij =√

min(ol, or)/max(ol, or) ·min(ot, ob)/max(ot, ob). At test stage, centerness is
used for down-weighting the scores of boxes that are far away from center.

3.5 Loss Functions

Assume that at location (i, j) the predicted class distribution vector is pi,j , the
predicted class-agnostic bounding box offset vector is oi,j and the predicted
centerness is ti,j , the following multi-task loss is adopted:

L({pi,j}, {oi,j}, {ti,j}) =
1

Npos

∑
ij
Lcls(pi,j , c

∗
i,j)

+
1

Npos

∑
ij
Ic∗i,j>0Lreg(oi,j ,o

∗
i,j) +

1

Npos

∑
ij
Ic∗i,j>0Lcen(ti,j , t

∗
i,j), (2)

where Lcls, Lreg, Lcen, Npos denote classification loss, regression loss, centerness
loss and the number of positive samples, respectively. Focal loss [16], GIoU
loss [27], and binary cross entropy loss are used for Lcls, Lreg, Lcen, respectively.

3.6 Implementation Details

Training Details The network initialization follows the tradition in [30, 16].
Please refer to these work for more details. PackDet is trained with stochastic
gradient descent (SGD) algorithm. Unless specified, all models are trained use a
batch size of 16 and the 1x training strategy:5 1) use 90K iterations and initial
learning rate of 0.01; 2) reduce learning rate by a factor 10 at iterations 60K and
80K, respectively. Unless otherwise specified, images are resized to have shorter
side being 800 and longer size no more than 1333, meanwhile, only horizontal
image flipping is applied. By default, we use T1 = 12, T2 = 2 and Cs = 128,
which results in a long head with narrow feature maps.

Inference Details At testing time, an image is fed to the network to get three
tensors: a class score map (K × Hp ×Wp, K = 80 for COCO), a box offset
map (4 × Hp ×Wp) and a centerness map (Hp ×Wp). We first threshold the
element-wise product of class score map and centerness map by 0.05 to obtain
some candidate objects. After that, predictions of the same scale are filtered to
keep only top-1000 most confidential results. Finally, the predictions from all
scales are merged followed by non-maximum suppression (NMS) with a threshold
of 0.5 to generate the final results.

5 https://github.com/facebookresearch/maskrcnn-benchmark

10 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

4 6 8 10 12 14 16 18
T

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(a) varying T

100 200 300 400 500
C

0
20
40
60
80

100
120

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(b) varying C

0.5 1.0 1.5 2.0
scale

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(c) varying scale

Fig. 8: GPU time comparison with varying T , C and scale s. The scales
{2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4} are used to resize input tensors. The default
value of T,C, s are 10, 128, 1.0, respectively.

4 Experiments

We conduct experiments on COCO detection benchmark [17]. The trainval35k

set is used for training, and the minival set is used for ablation study. For
state-of-the-art comparison, we report COCO AP on the test-dev split.

4.1 Ablation Study

Benchmark PackOp’s Speed To validate the effectiveness of PackOp as
a universal speeder for multi-branch structure, we benchmark the latency of
forwarding on a multi-branch network. The network consists of 8 branches and
each is a sequence of T convolution blocks (conv-gn-relu). The input tensors for
all branches have the same batch size of 2 and channel number C. Their spatial
dimensions are (100, 100), (50, 50), (25, 25), (13, 13), (7, 7), (25, 25), (13, 13), and
(7, 7), respectively. All convolutions have the same kernel size of 3×3×C, padding
of 1, and stride of 1. We consider two methods for forwarding: 1) loop over the
branches one by one; 2) pack all branches and run forwarding only once.

We use PyTorch-1.1.0, CUDA-9.0, cuDNN-7.3.0, and perform forwarding on
a single GTX 1080Ti GPU. Elapsed time is recorded by torch.cuda.Event()

and the average time over 30 trials is reported. The results are shown in Fig. 8,
where pack wo PackOp denotes the packing method excluding the PackOp time,
pack is the same method counts this time, and forloop denotes the branch-
by-branch method. Multiple CUDA streams are also tried for forloop and the
corresponding method is called forloop mul-stream. Specifically, two CUDA
streams are used as more streams do not make distinct difference. From Fig. 8,
the following conclusions can be drawn: 1) PackOp is quite efficient to execute;
2) using multiple CUDA streams takes no effect on speed; 3) the speedup effect
is more considerable for deeper but narrower network and smaller spatial size.
We have also tried two other deep learning frameworks, TensorFlow and MXNet,
and similar results are obtained. Please refer to supplementary for more details.

PackDet: Packed Long-Head Object Detector 11

Me tr-pack ts-pack ch-gn time AP AP50 AP75 No.

0 67.4 38.9 56.7 42.2 ¬

0 X 63.1 22.9 35.9 24.5 ­

0 X 68.9 39.5 57.2 42.7 ®

0 X X X 64.4 39.7 57.5 43.1 ¯

3 75.0 39.4 56.8 42.9 °

3 X 65.2 25.9 39.7 28.1 ±

3 X 74.0 39.7 57.4 43.0 ²

3 X X X 65.3 40.1 57.5 43.3 ³

Table 2: The effectiveness of
packed head in PackDet for
speeding up inference and im-
proving accuracy.

0 20000 40000 60000 80000
Iterations

0.2

0.3

0.4

0.5

0.6

M
et

ric
s

CH-GN: AP
HS-GN: AP
CH-GN: AP50

HS-GN: AP50
CH-GN: AP75
HS-GN: AP75

Fig. 9: Validation accuracy comparison
between the methods using CH-GN and
HS-GN. Me is set to be 0.

Speeding up PackDet by PackOp To validate the effect of PackOp in
speeding up forward computation, we slightly modify the packed head structure
as shown in Fig. 6: PackOp is dropped and all the convolution blocks are computed
using nested two-level for-loops over layers and branches. The results are listed
in Table 2, where tr-pack and ts-pack denote whether PackOp is used in train
and test stage, respectively. When ch-gn is checked, it means CH-GN is used,
otherwise HS-GN is used. Me means how many extra feature maps are added, it
should be 0 or 3 (ref. Fig. 4). The listed times denote the inference time (in ms).
By comparing line 1 to line 4, the relative reduction of inference time is 4.5%.
With more branches, this number is larger, i.e., 12.9% for Me = 3 (ref. line 5
and 8 in Table 2). More results with varying input and channel size are given in
the supplementary material. As a result, PackOp is indeed capable to speed up
the network inference, and the more branches used the larger gain obtained.

The Usefulness of Test Time Packing It is possible to train a multi-branch
detector in a traditional manner without using PackOp but use it in test stage.
Nevertheless, our experimental results demonstrate that this strategy is sub-
optimal. By comparing the results of line 1 and 2 (or line 5 and 6) in Table 2,
we see that AP degrades significantly even though testing time also has a large
drop, which could be attributed to the bias between training and testing.

Effect of Packed Convolution and Normalization In Table 2, line 3 and
7 correspond to the method without using PackOp, while CH-GN is adopted.
This is implemented by first concatenating the spatially flattened feature maps
from all scales of the same layer and then applying the naive GN, followed by a
split operation. By comparing line 1 to line 3 (or line 5 to line 7), we find that
CH-GN improves AP visibly. As the main difference between PackDet and the
detectors using multi-branch structure lies in whether packed convolution and
normalization are utilized or not, we believe that CH-GN does contribute to
the accuracy improvement. However, there is still a small AP margin between
the results of line 3 and line 4 (or line 7 and line 8). We conjecture that the

12 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

(d) stair_P5-P7

(a) stair_P5/stair_P6

(e) sbs_P5-P7

(b) sbs_P5/stair_P6 (c) grid_P5/grid_P6

(f) another pattern using P3~P7

Fig. 10: Different packing patterns being compared. (f) uses P3 ∼ P7 for packing.
Different colors denote feature map of different scales. sbs: side-by-side.

correlation between the highest three scales are captured, at least in some degree,
which are helpful for detecting large objects.

Packing Extra Features In Table 2, by comparing the results in line 4 and 8,
using extra three features increases 0.4% absolute AP. Thus, we conclude that
the prediction results from different feature maps of the same scale should have
some complementarity. How to use more feature maps and if extra improvements
can be obtained are two open questions, we leave these for future work.

Packing Patterns Comparison Different packing patterns may lead to differ-
ent results. For example, to pack feature maps P3 ∼ P7, the pattern shown in
Fig. 10(f) is also valid. However, when it is used in PackDet’s head, the resultant
AP is 39.3%, which is lower than the number 39.7% given in Table 2 (line 4).
Thus, it is necessary to study what kind of rules should be followed to design
good packing patterns. For this aim, we manually design five patterns for the
following experiments, as shown in Fig. 10 (a)-(e). (a)-(c) use features of same
scale for packing. Feature map P5 (or P6) and its processed versions by different
convolution blocks are used. (d) and (e) use P5, P6, P7 for packing.

The results of same scale packing are shown in Table 3(a) and Table 3(b),
where pack means if all branches are merged for forwarding in both train and test
stage, and ch-gn denotes if CH-GN is adopted. For separate branches, CH-GN
is performed as the manner mentioned before. Table 3(a) uses P5-series features,
corresponding to a stride of 32. The results with different packing patterns are
similar and only slightly worse than those without packing operator, implying the
introduced noisy samples are unable to degenerate the accuracy a lot. Table 3(b)
uses P6-series features, corresponding to relatively large objects. From the results,
we find that different packing patterns have different effect on accuracy. The
grid pattern leads to more mixed samples at packing boundaries, thus, it gets

PackDet: Packed Long-Head Object Detector 13

the worst result. As for the stair pattern, it often acquires the best result.
Table 3(c) gives the packing results using P3 ∼ P7. The results of sbs P5-P7 and
stair P5-P7 are similar, and both of them are better than those without PackOp,
which could be attributed to the learned correlation between the three feature
maps. It is indeed possible as the receptive field is large enough to cover all these
feature maps and convolution networks have strong representative ability.

pattern pack ch-gn AP AP50 AP75

stair P5 X X 14.6 22.3 15.5
sbs P5 X X 14.2 22.0 15.0
grid P5 X X 14.1 21.8 14.8
grid P5 14.7 22.5 15.6
grid P5 X 14.8 22.9 15.6

(a)

pattern pack ch-gn AP AP50 AP75

stair P6 X X 12.6 17.9 13.2
sbs P6 X X 9.3 13.3 10.0
grid P6 X X 4.1 6.6 4.2
grid P6 12.7 18.2 13.4
grid P6 X 12.8 18.4 13.5

(b)

pattern pack ch-gn AP AP50 AP75

sbs P5-P7 X X 24.7 34.4 26.6

stair P5-P7 24.4 34.2 26.3

stair P5-P7 X 24.4 34.3 26.4

stair P5-P7 X X 24.6 34.5 26.4

(c)

Table 3: Results of different packing patterns using (a) P5 and its variants, (b)
P6 and its variants, and (c) P5 ∼ P7. sbs: side-by-side.

We summarize the rules of thumb for designing good packing patterns as
follows: 1) It is not a good idea to put feature maps with the same high scale
together; 2) Putting feature maps with the same low scale is feasible; 3) Putting
several large-stride feature maps of different scales is helpful for improving
accuracy. Reviewing Fig. 4 again, the designed packing pattern uses stair-like
structure as much as possible and no feature maps of the same high scale are put
near each other. As a result, PackDet could not only enjoy the speedup brought
from PackOp, but also minimize its side effects.

4.2 Comparison to State of the Art

We further compare PackDet to state-of-the-art multi-stage and single-stage
methods on COCO test-dev set. Following previous work, PackDet uses the
2x learning schedule, which runs 180K iterations with the learning rate change
points tuned proportionally w.r.t. the 1x schedule. In addition, the shorter side
of input images are randomly re-scaled to the range [640, 800]. Note that, when
MobileNet-v2 [28] is used as the backbone, synchronous BN will be adopted as it
boosts accuracy remarkably. Unless otherwise specified, Me is set to be 3, train
packing, test packing and CH-GN are all adopted.

The numerical results of different methods are shown in Table 4 and the
speed-accuracy curves are plotted in Fig. 2. We can see that PackDet achieves
better speed-accuracy trade-offs compared to the state-of-the-art anchor-free one-
stage method FCOS. For example, when X-101-64x4d-DCN backbone is adopted,
PackDet acquires 47.4% AP with 4.7 FPS, which outperforms FCOS notably,
i.e., 46.5% AP with 4.4 FPS. The speed and accuracy superiority of PackDet is
more considerable for small backbones. For example, with MobileNet-v2 as the
backbone, PackDet improves the baseline FCOS by a large margin, i.e., 4.7%
absolute AP and 2.8 FPS increase. These results imply that a single packed deep

14 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

Method Input Size Backbone Anchor Free MS Train FPS AP AP50 AP75 APS APM APL

Multi-Stage:
Faster R-CNN+FPN [15] ∼1000×600 R-101 10.0 36.2 59.1 39.0 18.2 39.0 48.2
Cascade R-CNN [2] ∼1300×800 R-101 7.8 42.8 62.1 46.3 23.7 45.5 55.2
TridentNet [13] ∼1200×800 R-101 X 2.7 42.7 63.6 46.5 23.9 46.6 56.6
TridentNet [13] ∼1200×800 R-101-DCN X 1.3 46.8 67.6 51.5 28.0 51.2 60.5
Libra R-CNN [20] ∼1300×800 X-101-64x4d 5.4 43.0 64.0 47.0 25.3 45.6 54.6

One-Stage:
YOLOv3 [25] 608×608 DarkNet-53 X 27.3 33.0 57.9 34.4 18.3 35.4 41.9
RetinaNet500 [16] ∼832×500 R-101 X 15.4 34.4 53.1 36.8 14.7 38.5 49.1
RetinaNet800 [16] ∼1300×800 R-101 X 9.5 39.1 59.1 42.3 21.8 42.7 50.2
CenterNet [4] 511×511 HG-104 X X 3.6 44.9 62.4 48.1 25.6 47.4 57.4
M2Det [40] 512×512 R-101 X 9.2 38.8 59.4 41.7 20.5 43.9 53.4
FSAF [43] ∼1300×800 X-101-64x4d X X 4.2 42.9 63.8 46.3 26.6 46.2 52.7
FCOS [30] ∼1300×800 MNV2 X X 19.8 30.4 47.5 32.2 19.1 34.3 33.7
FCOS [30] ∼1300×800 R-50 X X 15.0 41.4 60.2 44.7 24.8 44.2 50.6
FCOS [30] ∼1300×800 R-101 X X 11.3 43.2 62.2 46.9 26.1 46.2 53.6
FCOS [30] ∼1300×800 X-101-64x4d-DCN X X 4.4 46.5 65.7 50.5 28.9 49.2 58.1
PackDet ∼1300×800 MNV2 X X 22.6 35.1 51.6 38.1 19.1 37.0 44.0
PackDet ∼1300×800 R-50 X X 16.9 42.3 60.3 45.9 24.7 45.0 53.7

PackDet♦� ∼1300×800 R-101 X X 12.0 43.5 61.9 47.3 26.4 46.4 53.7

PackDet� ∼1300×800 R-101 X X 11.2 43.7 61.9 47.6 25.8 46.9 55.3
PackDet ∼1300×800 R-101 X X 12.4 44.0 62.3 47.8 25.6 47.3 55.7
PackDet ∼1300×800 X-101-64x4d-DCN X X 4.7 47.4 66.3 51.5 28.9 50.5 60.1

♦: Me = 0; �: without train/test packing or CH-GN; R: ResNet [8]; X: ResNeXt [35]; MNV2: MobileNet-v2 [28]; HG: Hourglass [19];
DCN: Deformable Convolutional Network [44]; Input Size: input image size; Anchor Free: whether no anchors are used; MS Train:
whether multi-scale training is used.

Table 4: Single-model and single-scale results vs. state of the arts on COCO
test-dev set. FPS is measured on a single GTX 1080Ti GPU card with a batch
size of 1.

and narrow head is competitive to multiple shallow and wide heads in terms
of both accuracy and speed. Finally, we will argue the accuracy improvements
of PackDet are not caused by more model parameters as PackDet has fewer
parameters than FCOS. Actually, PackDet could reduce about 0.7M parameters
with the same backbone.

5 Conclusions

In this paper, we presented a packing operator called PackOp that puts a group
of feature maps into a cubic container. With PackOp, a new detector PackDet
was proposed, which packs all branches together for fast forwarding. Beside the
speed advantage, the parallized structure is also favorable for handy cross-head
normalization that facilitates to get better accuracy. Extensive experiments
demonstrated PackOp is effective in speedup and PackDet could get better
accuracy-speed trade-off against state of the arts. Future work include searching
the packing pattern and applying PackOp to other tasks, such as instance
segmentation and keypoints detection.

Acknowledgement

This research was financially supported by National Natural Science Foundation
of China (61731022, 91646207) and the Strategic Priority Research Program of
the Chinese Academy of Sciences (XDA19090300). We would like to thank Rui
Yang and Chaoyi Liu from EvaVisdom Tech for the inspiring discussions. We
also thank the anonymous reviewers for their valuable suggestions.

PackDet: Packed Long-Head Object Detector 15

References

1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.: YOLOv4: Optimal speed and accuracy
of object detection. arXiv: 2004.10934 (2020)

2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: Delving into high quality object detection.
In: CVPR (2018)

3. Dai, J., Li, Y., He, K., et al.: R-FCN: Object detection via region-based fully
convolutional networks. In: NeurIPS (2016)

4. Duan, K., Bai, S., Xie, L., et al.: Centernet: Keypoint triplets for object detection.
arXiv: 1904.08189 (2019)

5. Fu, C., Liu, W., Ranga, A., et al.: DSSD: Deconvolutional single shot detector.
arXiv: 1701.06659 (2017)

6. Girshick, R.B.: Fast R-CNN. In: ICCV (2015)

7. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: ICCV (2017)

8. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
CVPR (2016)

9. Huang, E., Korf, R.E.: New improvements in optimal rectangle packing. In: IJCAI
(2009)

10. Iandola, F., Moskewicz, M., Karayev, S., et al.: DenseNet: Implementing efficient
convnet descriptor pyramids. arXiv: 1404.1869 (2014)

11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

12. Korf, R.E.: Optimal rectangle packing: Initial results. In: ICAPS (2003)

13. Li, Y., Chen, Y., Wang, N., et al.: Scale-aware trident networks for object detection.
In: ICCV (2019)

14. Li, Z., Peng, C., Yu, G., et al.: Light-head R-CNN: In defense of two-stage object
detector. arXiv: 1711.07264 (2017)

15. Lin, T., Dollár, P., Girshick, R.B., et al.: Feature pyramid networks for object
detection. In: CVPR (2017)

16. Lin, T., Goyal, P., Girshick, R.B., et al.: Focal loss for dense object detection. In:
ICCV (2017)

17. Lin, T., Maire, M., Belongie, S.J., et al.: Microsoft COCO: Common objects in
context. In: ECCV (2014)

18. Liu, W., Anguelov, D., Erhan, D., et al.: SSD: Single shot multibox detector. In:
ECCV (2016)

19. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estima-
tion. In: ECCV (2016)

20. Pang, J., Chen, K., Shi, J., et al.: Libra R-CNN: Towards balanced learning for
object detection. In: CVPR (2019)

21. Papandreou, G., Kokkinos, I., Savalle, P.A.: Untangling local and global deforma-
tions in deep convolutional networks for image classification and sliding window
detection. arXiv: 1412.0296 (2014)

22. Peng, C., Xiao, T., Li, Z., et al.: MegDet: A large mini-batch object detector. In:
CVPR (2018)

23. Redmon, J., Divvala, S.K., Girshick, R.B., et al.: You only look once: Unified,
real-time object detection. In: CVPR (2016)

24. Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. In: CVPR (2017)

25. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv: 1804.02767
(2018)

16 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

26. Ren, S., He, K., Girshick, R.B., et al.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: NeurIPS (2015)

27. Rezatofighi, H., Tsoi, N., Gwak, J., et al.: Generalized intersection over union: A
metric and a loss for bounding box regression. In: CVPR (2019)

28. Sandler, M., Howard, A.G., Zhu, M., et al.: MobileNetV2: Inverted residuals and
linear bottlenecks. In: CVPR (2018)

29. Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection.
arXiv: 1911.09070 (2019)

30. Tian, Z., Shen, C., Chen, H., et al.: FCOS: Fully convolutional one-stage object
detection. arXiv: 1904.01355 (2019)

31. Wang, N., Gao, Y., Chen, H., et al.: NAS-FCOS: Fast neural architecture search
for object detection. arXiv: 1906.04423 (2019)

32. Wei, C., Xie, L., Ren, X., et al.: Iterative reorganization with weak spatial constraints:
Solving arbitrary jigsaw puzzles for unsupervised representation learning. In: CVPR
(2019)

33. Wu, B., Dai, X., Zhang, P., et al.: FBNet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In: CVPR (2019)

34. Wu, Y., He, K.: Group normalization. In: ECCV (2018)
35. Xie, S., Girshick, R.B., Dollár, P., et al.: Aggregated residual transformations for

deep neural networks. In: CVPR (2017)
36. Yang, T., Zhang, X., Li, Z., et al.: MetaAnchor: Learning to detect objects with

customized anchors. In: NeurIPS (2018)
37. Yang, Z., Liu, S., Hu, H., et al.: RepPoints: Point set representation for object

detection. arXiv: 1904.11490 (2019)
38. Zhang, S., Wen, L., Bian, X., et al.: Single-shot refinement neural network for object

detection. In: CVPR (2018)
39. Zhang, Z., He, T., Zhang, H., et al.: Bag of freebies for training object detection

neural networks. arXiv: 1902.04103 (2019)
40. Zhao, Q., Sheng, T., Wang, Y., et al.: M2Det: A single-shot object detector based

on multi-level feature pyramid network. In: AAAI (2019)
41. Zhong, Y., Wang, J., Peng, J., et al.: Anchor box optimization for object detection.

arXiv: 1812.00469 (2018)
42. Zhu, C., Chen, F., Shen, Z., et al.: Soft anchor-point object detection. arXiv:

1911.12448 (2019)
43. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot

object detection. In: CVPR (2019)
44. Zhu, X., Hu, H., Lin, S., et al.: Deformable convnets V2: More deformable, better

results. In: CVPR (2019)

