
Appendices: A Generic Graph-based Neural
Architecture Encoding Scheme for

Predictor-based NAS

Xuefei Ning1, Yin Zheng2, Tianchen Zhao3, Yu Wang1, and Huazhong Yang1

1 Department of Electronic Engineering, Tsinghua University
2 Weixin Group, Tencent

3 Department of Electronic Engineering, Beihang University
foxdoraame@gmail.com, yu-wang@tsinghua.edu.cn

1 Implementation of GATES

In practice, to calculate the information propagation following the topological
order of different graphs in a batched manner, we use a stack of GATES layers.
In the forward process of each GATES layer, one step of information propagation
is taken place at every node. The detailed formulas and implementations of one
GATES layer for “operation on node” and “operation on edge” search spaces
are shown as follows, and the notations are summarized in Table. 1.

Operation On Node (OON) Search Space For the OON case, we take
the NAS-Bench-101 search space as an example. In the cell architecture, there
is ni = 1 input node, and at most V = 7 nodes. For batch computation, we
pad zero columns and rows into the adjacent matrix to ensure that all adjacent
matrices are of size 7× 7, and also add none operations into the corresponding
positions in the operation list. The calculation of the k-th GATES layer could
be written as

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1)

X(k) = σ(EMB(o)W (k)
o)� (AX(k−1)W (k)

x)
(1)

where Ẽ = repeat(E, [b, 1, 1]) ∈ Rb×ni×h(0)
i , and E,EMB,W

(k)
o ,W

(k)
x are train-

able parameters.

In practice, we found that for the OON search space, adding a self-loop of
the information propagation would lead to slightly better performance.

X(k) = σ(EMB(o)W (k)
o)� (ÃX(k−1)W (k)

x)

Ã = A+ I
(2)

2 X. Ning et al.

Table 1. Notations used in the batched computation of the GATES encoder

V
maximum number of nodes: 7, 4, 6 for NAS-Bench-
101 [14], NAS-Bench-201 [3] and ENAS [8], respectively

ni
number of input nodes: 1, 1, 2 for NAS-Bench-101, NAS-
Bench-201 and ENAS, respectively

No number of operation primitives

ho embedding size of operation

h
(k)
i embedding size of information in the k-th layer

E ∈ Rni×h
(0)
i the embedding of the information at the input nodes

EMB ∈ RNo×ho the operation embeddings

W
(k)
o ∈ Rho×h

(k)
i

the transformation matrix on the operation embedding
(the k-th layer)

W
(k)
x ∈ Rh

(k−1)
i ×h

(k)
i

the transformation matrix on previous layer’s output in-
formation (the k-th layer)

b batch size

A ∈ Rb×V×V adjacency matrix

X(k) ∈ Rb×V×h
(k)
i the output virtual information of the k-th layer

EMB(o) ∈ Rb×V×ho
(NAS-Bench-101) the embeddings of the operations on
nodes

EMB(o) ∈ Rb×V×V×ho
(NAS-Bench-201) the embeddings of the operations on
edges

nd (ENAS) maximum input degree of nodes

EMB(od) ∈ Rb×V×V×ho
(ENAS) the embeddings of operations on the d-th input
edge for nodes

Operation On Edge (OOE) Search Space For the OOE search spaces, the
calculation of a GATES layer could be written as

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1)

S = EXPAND(X(k−1)W (k)
x , 1)

X(k) = SUM(

nd∑
d=1

EXPAND(A, 3)� σ(EMB(od)W (k)
o)� S, dim=2)

(3)

where Ẽ = repeat(E, [b, 1, 1]) ∈ Rb×ni×h(0)
i , and EXPAND(A,dim) denotes the

operation to insert a new dimension as dimension dim.

Appendices of GATES 3

For the search spaces where there is at most one edge between each pair of
nodes (e.g., NAS-Bench-201), the above calculation could be simplified to

X(0) = CONCAT(Ẽ,0
b×V−ni×h(0)

i
,dim=1)

S = EXPAND(X(k−1)W (k)
x , 1)

X(k) = SUM(EXPAND(A, 3)� σ(EMB(o)W (k)
o)� S,dim=2)

(4)

2 Discussion on Isomorphism

GATES maps ismorphic architectures to the same representation The
encoding process of GATES mimics the actual computation flow: GATES uses
multiplicative transforms to mimic the forward process of operations (e.g., Conv3x3),
and uses commutative aggregation to mimic actual commutative aggregation of
the feature maps. Naturally, GATES would encode two architectures that give
out the same feature map results into the same representation. That is to say, the
embedding space of GATES is more meaningful. However, GATES might fail to
map non-isomorphic architectures to different representations. And we leave it
to future work to ameliorate this problem to further increase the discriminative
power of GATES.

In the search spaces which we have experimented with (i.e., NAS-Bench-
101, NAS-Bench-201, and ENAS), the combination of feature maps at internal
nodes is done via addition operation, which is commutative. Therefore, for en-
coding the architecture, GATES also uses commutative addition to combine the
“virtual information”. Note that if the feature map aggregation at some internal
node is not commutative (e.g., concatenation), we should use a non-commutative
aggregation of the virtual information too.

Another thing to note is that, in the NAS-Bench-101 and ENAS search
spaces, the tensors going to the final output node in the cell are concatenated
instead of being added together. Since the concatenation operation is not com-
mutative, different concatenation orders result in different architectures. Nev-
ertheless, in these two search spaces, these models are equivalent through the
rearrangement of channels in the following operations. Therefore, we use addi-
tion to aggregate the information at the output node, too. We emphasize that
this is a search space specific discussion.

We conduct a simple experiment to verify GATES’s ability to map isomor-
phic architectures to the same representation on NAS-Bench-101. After splitting
the train and test sets, there are 36064, 6037, 256, 5 testing architectures with
7, 6, 5, 4 vertices, and 323018, 55973, 2185, 79, 6, 1 training architectures with
7 6, 5, 4, 3, 2 vertices respectively. Since all isomorphic cell architectures are
already removed in NAS-Bench-101, we generate the isomorphic architectures
for the 36064 unique testing architectures with 7 vertices, and get 116102 archi-
tectures. Among the 36064 architectures, there are 20994 architectures that have
isomorphic counterparts. We test different predictors trained with 0.1% train-
ing samples on these 116k architectures and show the results in Table. 2. Since

4 X. Ning et al.

Table 2. The Kendall’s Tau τ on 1) NAS-Bench-101 test set 2) the 7-vertex subset
of the test set 3) all the isomorphic counterparts of the 7-vertex subset (without de-
duplication). The last column shows the sum of the variances of the predicted scores in
every isomorphic architectures group, and there are negligible numerical errors in the
variance results of GATES and GCN. All the predictors are trained using the hinge
pairwise ranking loss on 0.1% of the training data.

Encoders
test set 7-vertex test set 7-vertex test set w.o. de-dup.
(42362) (36064) (116102)

τ τ τ Total Var.

MLP [12] 0.5272 0.5143 0.4729 43.58
LSTM [12] 0.5993 0.5877 0.5656 18.80
GCN [11] 0.5790 0.5876 0.6169 1.16E-11

GATES 0.7789 0.7724 0.7758 9.24E-12

the sequence-based encoding schemes cannot map isomorphic architectures to
the same representation, the ranking correlation decreases if no de-duplication
procedure is carried out. The last column shows the sum of the variances of
the predicted scores in every isomorphic architecture group. We can see that
GATES and GCN can map isomorphic architectures to the same representation
(a variance of 0 with negligible numeric errors), since only isomorphism-invariant
aggregation operations are used in the encoding process.

Two counter examples of the ad-hoc solution [4] Since GCN cannot be
directly applied to encoding architectures from the OOE search spaces, a recent
study [4] proposes an ad-hoc solution for the ENAS search space. They represent
each node by the concatenation of the operation embeddings on the input edges.
This solution cannot generalize to search spaces where nodes could have different
input degrees. What’s more, since the concatenation operation is not commuta-
tive, this encoding scheme could not map isomorphic architectures to the same
representation correctly. Fig. 1 illustrates two minimal counterexamples.

3 Setup and Additional Results

Setup and Results on NAS-Bench-101 The setup of all the experiments on
NAS-Bench-101 goes as follows. An ADAM optimizer [5] with learning rate 1e-3
is used to optimize the performance predictors for 200 epochs. And the average
of the ranking correlations in the last 5 epochs is reported. The batch size is
set to 512. And a hinge pairwise ranking loss with margin 0.1 is used. For the
construction of the MLP and LSTM encoder, we follow the serialization method
and the model settings in [12]. The MLP is constructed by 4 fully-connected
layers with 512, 2048, 2048, and 512 nodes, and the output of dimension 512
is used as the cell’s embedding. The embedding and hidden sizes of the LSTM

Appendices of GATES 5

1

0

Conv3x3 Conv1x1

[EMB(Conv3x3), EMB(Conv1x1)]

1

0

Conv3x3Conv1x1

[EMB(Conv1x1), EMB(Conv3x3)]

1

0
Conv1x1

Conv1x1

2

Conv3x3

Conv3x3

3

Conv1x1 Conv3x3

[EMB(Conv1x1), EMB(Conv3x3)]

2

0
Conv1x1

Conv1x1

1

Conv3x3

Conv3x3

3

Conv1x1 Conv3x3

[EMB(Conv3x3), EMB(Conv1x1)]

4

0

2

Fig. 1. An ad-hoc graph-based solution [4] for encoding the architecture in the ENAS
search space (an OOE search space) fails to map isomorphic architectures to the same
representation. In the upper case, the two architectures are the same graph, but the
embeddings of Node 1 differ. This case could be solved by imposing an order of the
operations when the two incoming edges come from the same previous node. In the
lower case, these two architecture are isomorphic, since the feature map aggregation at
Node 3 is a commutative element-wise addition. However, this encoding scheme cannot
guarantee to map these two architectures to the same representation, since the original
node embeddings already differ at Node 3. The failure to handle the isomorphism is
due to the non-commutative characteristics of the concatenation operation.

are both set to 100, and the final hidden state is used as the cell’s embedding.
For the GCN and GATES encoders, we construct the encoder by stacking five
128-dim GCN or GATES layers. All the embedding sizes are set to 48, including
the operation embedding in GCN, and the operation and information embedding
in GATES. For GCN, the average of all the nodes’ features is used as the cell’s
embedding. In GCN with global node [11], the features of the global node are
used as the cell’s embedding.

Fig. 2 shows the prediction results on the 42362 testing architectures with
different encoders trained on 0.1% training data. As can be seen, compared with
the GCN and MLP encoders, the predictions of GATES are much more accurate
in the sense of ranking correlation.

Setup and Results on NAS-Bench-201 The setup of all the experiments
on NAS-Bench-201 goes as follows. An ADAM optimizer with learning rate 1e-3
and batch size 512 is used to train the predictors for 200 epochs, and the average
of testing Kendall’s Taus in the last 5 epochs is reported.

6 X. Ning et al.

0 10k 20k 30k 40k
GATES + Rank Loss

 (kendall's tau=0.7789)

10k

20k

30k

40k

0 10k 20k 30k 40k
GCN + Rank Loss

 (kendall's tau=0.5790)

10k

20k

30k

40k

0 10k 20k 30k 40k
MLP + Rank Loss

 (kendall's tau=0.5272)

10k

20k

30k

40k

Fig. 2. NAS-Bench-101: The true rankings (y-axis) and predicted rankings (x-axis) of
2000 architectures among the 42362 testing architectures. 0.1% training data are used
to train these encoders.

For the sequence-based baselines (MLP and LSTM), we use the 6 elements
of the lower triangular portion, excluding the diagonal ones. We use 4 fully-
connected layers with 512, 2048, 2048, 512 nodes for the MLP encoder. The
embedding size and hidden size of the 1-layer LSTM is set to 100, and the final
hidden stage is used as the embedding of the cell architecture. As for GATES,
we use a 5-layer GATES encoder without self-loop.

Since GCN encoders could not be directly applied to the OOE search spaces,
we implement a line graph solution for applying GCNto encode OOE architec-
tures following these three steps: 1) convert the graph to a line graph; 2) apply
an 5-layer GCN; 3) concatenate the node embeddings as the graph representa-
tion. The results of this “Line Graph GCN” solution are listed in Tab. 5, and
are not satisfying enough. We suppose that it is due to that the power of GNN
cannot be fully utilized as converting to line graph results in identical adjacent
matrices for all NAS-Bench-201 architectures.

Ablation Study: GATES Layer Number We show the ablation study of the
layer number in the GATES encoders in Fig. 3. We can see that the regression
loss fails to instruct the learning of deep GCN and GATES encoders. Even with
the ranking loss, the GCN’s performance degrades as the layer number increases,
while the GATES encoder is more robust.

Another interesting fact is that a GATES layer number larger than or equal 3
is a good choice on NAS-Bench-201, and as we know, the most common longest
path length is 3 too. As for NAS-Bench-101, a GATES layer number larger than
or equal 4 is a good choice. The longest possible path length on NAS-Bench-101
is 6, but only in a small portion of architectures. The ablation results match with
the “virtual information flow” intuition of the GATES design and give evidence
of the rationality of using GATES for neural architecture encoding.

Neural Architecture Search in the ENAS Search Space The setup of the
predictor training goes as follows. The predictor is constructed by four 64-dim

Appendices of GATES 7

1 2 3 4 5 6 7 8
Number of layer of GATES

0.0

0.2

0.4

0.6

0.8

Ke
nd

al
l's

 T
au

GCN + Regression
GATES + Regression
GCN + Pairwise (Hinge)
GATES + Pairwise (Hinge)

(a) NAS-Bench-101

1 2 3 4 5 6 7
Number of layer of GATES

0.0

0.2

0.4

0.6

0.8

Ke
nd

al
l's

 T
au

GATES + Pairwise (Hinge)
GATES + MSE

(b) NAS-Bench-201

Fig. 3. The effect of the number of GCN or GATES layers. (a) NAS-Bench-101. The
proportion of training samples is 0.1% (381 training, 42362 testing). (b) NAS-Bench-
201. The proportion of training samples is 10% (781 training, 7812 testing)

Table 3. Comparison of NAS-discovered architectures on ImageNet

Method Top-1 Test Error (%) #Params (M)

NASNet-A [16] 26.0 5.3
AmoebaNet-B [9] 27.2 5.3

PNAS [6] 25.8 5.1

DARTS [7] 26.9 4.9
GHN [15] 27.0 6.1

Ours 24.1 5.6

GATES layers. Both the operation and information embedding sizes are set to
32. During the training of the predictor, the total epoch is set to 80, and the
batch size is set to 128, and a pairwise hinge loss with margin 0.1 and an ADAM
optimizer with learning rate 1e-3 are used.

For the true performance evaluation of the 800 architectures (600 randomly
sampled, 200 sampled utilizing the predictor), we train them for 80 epochs using
an SGD optimizer with weight decay 3e-4. The learning rate is decayed from
0.05 to 0.001 following a cosine schedule. The base channel number is 16, and
the number of layers is 8.

The discovered architecture is shown in Fig. 4. To evaluate the final perfor-
mance of the discovered cell architecture, we first apply the channel and layer
augmentation. Specifically, 20 cells are stacked to construct the network, and
the base channel number is increased from 16 to 36. The augmented model is
trained for 600 epochs on CIFAR-10 with batch size 128, and the learning rate is
decayed from 0.05 to 0.001 following a cosine schedule. The cutout data augmen-

8 X. Ning et al.

normal

c_{k-2}

0sep_conv_3x3

2avg_pool_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

c_{k}

sep_conv_3x3

(a) Normal cell

reduce

c_{k-2}

0

max_pool_3x3 2

sep_conv_3x3

c_{k-1}

skip_connect

1
avg_pool_3x3

max_pool_3x3

3avg_pool_3x3

max_pool_3x3

sep_conv_5x5
c_{k}

(b) Reduction cell

Fig. 4. Discovered cell architectures on CIFAR-10.

tation with length 16 is used. The weight decay is set to 3e-4, and the dropout
rate before the fully-connected classifier is set to 0.1. For other regularization
techniques, we follow existing studies [17, 7] to use auxiliary towers with weight
0.4 and the scheduled drop-path of probability 0.2.

For transferring the discovered architecture to ImageNet, we increase the base
channel number to 48 and stack 14 cells to construct the model. The augmented
model is trained for 300 epochs with batch size 256, and the learning rate is
decayed from 0.1 to 0 following a cosine schedule. The weight decay is set to 3e-5
and auxiliary towers with weight 0.4 is used, no dropout is used. The comparison
with a few previous methods is illustrated in Tab. 3.

4 Ranking Losses for Predictor Optimization

The ranking correlation of the performance predictor on unseen architectures is
the key to the success of predictor-based NAS. Since ranking losses are better
surrogates of the ranking measures than the regression loss [2], training the per-
formance predictor with ranking losses could lead to better ranking correlation.

Appendices of GATES 9

We utilize different pairwise and listwise ranking losses for training the pre-
dictor [1, 10, 13]. The pairwise ranking loss could be written as

Lp(S̃) =

N∑
i=1

∑
j∈{j|yi<yj}

φ(P (aj), P (ai)) (5)

We experiment with two different choices of φ. 1) The binary cross entropy
function φ(sj , si) = log(1 + e(sj−si)); 2) The hinge loss function φ(sj , si) =
max(0,m− (sj − si)), where m is a positive margin.

We also experiment with a pairwise comparator: We construct an MLP that
takes the concatenation of two architecture embeddings as input and outputs a
score: s = MLP([E(aj), E(ai)], and a positive s indicates that aj is better than
ai. Note that the total-orderness of the architectures is not guaranteed using
this comparator. So, we add a simple anti-symmetry regularization term in the
training of the comparator. The loss for training the comparator is:

Lp(S̃) =

N∑
i=1

∑
j∈{j|yi<yj}

max(0,m−MLP([E(aj), E(ai)])

+ max(0,m+ MLP([E(ai), E(aj)]))

(6)

We design the listwise ranking loss following ListMLE [13]:

Ll(S̃) =
∑
U⊂S̃

|U |∑
i=1

{−P (a(i),U) + log

|U |∑
j=i

exp(P (a(j),U))} (7)

where U are subsets of S̃, |U | denotes the size of U , a(i),U denotes the architecture
whose true performance y(i),U is the i-th best in the subset U .

4.1 Evaluation of Ranking Losses

Setup In the experiments of evaluating the ranking losses, the training settings
and the construction of the GATES model are the same as in the evaluation of
GATES. One exception is that, for the listwise ranking loss (ListMLE), we train
the predictor for 80 epochs (list length is 4), since the training converges much
faster with the listwise ranking loss. Still, the average of the ranking correlations
in the last 5 epochs is reported.

The evaluation of the comparator-based ranking loss is a little different than
other ranking losses. For other ranking losses, we can calculate the ranking cor-
relation between the predicted scores P(a) and the true accuracies. However, a
comparator trained using the comparator-based ranking loss must take a pair
of architectures as the input and output a comparison results. Therefore, for
evaluating the performance of the comparator, we run the randomized quick-
sort procedure with the comparator to get the predicted rankings of the testing
architectures. Since the comparator might not be a proper total order opera-
tor, different choices of the random pivots in randomized quick-sort could lead

10 X. Ning et al.

Table 4. The Kendall’s Tau of using different loss functions on NAS-Bench-101. The
first 90% (381262) architectures in the dataset are used as the training data, and
the other 42362 architectures are used as the testing data. All experiments except
“Regression (MSE) + GCN” are carried out with GATES encoder.

Loss
Proportions of 381262 training samples

0.05% 0.1% 0.5% 1% 5% 10% 50% 100%

Regression (MSE) + GCN† 0.4536 0.5058 0.5587 0.5699 0.5846 0.5871 0.5901 0.5941

Regression (MSE) + GATES† 0.4935 0.5425 0.5739 0.6323 0.7439 0.7849 0.8247 0.8352

Pairwise (BCE) 0.7460 0.7696 0.8352 0.8550 0.8828 0.8913 0.9006 0.9042
Pairwise (Comparator) 0.7250 0.7622 0.8367 0.8540 0.8793 0.8891 0.8987 0.9011

Pairwise (Hinge) 0.7634 0.7789 0.8434 0.8594 0.8841 0.8922 0.9001 0.9030
Listwise (ListMLE) 0.7359 0.7604 0.8312 0.8558 0.8852 0.8897 0.9003 0.9009

†: For the baseline evaluation of regression loss, we use a GCN encoder with 1 layer,
and a GATES encoder with 3 layers rather than 5 layers, since training deep GCN or
GATES encoder with MSE regression loss is unstable, and often fails to learn anything
meaningful. With MSE loss, 1 layer of GCN and 3 layers of GATES achieve the best
results among layer number configurations using 0.1% training data.

to different sorted sequences. Therefore, we run randomized quick-sort with 3
different random seeds, and report the average Kendall’s Tau. In practice, we
find that the Kendall’s Taus calculated using different random seeds are very
close. For example, three tests with random seed 1, 12 and 123 of the predictor
trained on the whole training set give the Kendall’s Taus of 0.90106, 0.90107
and 0.90113, respectively.

Results on NAS-Bench-101 We train GATES-powered predictors with four
types of ranking losses: 1) Pairwise loss with binary cross-entropy φ. 2) Pair-
wise loss with a hinge loss function φ. 3) Pairwise comparator loss. 4) Listwise
(ListMLE). Table 4 shows the comparison of using different losses to train the
predictors on NAS-Bench-101. Compared with the regression loss, ranking losses
bring consistent improvements. The performances of different ranking losses are
close, and the pairwise hinge loss is a good choice. We also find that training
with regression loss requires a smaller learning rate and longer time to converge,
and does not work well with deep GCN or GATES models.

Results on NAS-Bench-201 Table 5 shows the comparison of using regression
and ranking losses to train the predictors on NAS-Bench-201. We can see that
training using ranking losses leads to better-correlated predictors consistently.

Appendices of GATES 11

Table 5. The Kendall’s Tau of using different encoders and loss functions on NAS-
Bench-201. The first 50% (7813) architectures in the dataset are used as the training
data, and the other 7812 architectures are used as the testing data

Encoder
Proportions of 7813 training samples

1% 5% 10% 50% 100%

MLP + Regression (MSE)† 0.0646 0.1520 0.2316 0.5156 0.6089
LSTM + Regression (MSE) 0.4405 0.5435 0.6002 0.8169 0.8614

Line Graph GCN + Regression (Hinge) -0.0481 0.3376 0.4988 0.6609 0.7006
GATES + Regression (MSE) 0.6823 0.7528 0.8042 0.8950 0.9115

MLP + Pairwise (Hinge) 0.0974 0.3959 0.5388 0.8229 0.8703
LSTM + Pairwise (Hinge) 0.5550 0.6407 0.7268 0.8791 0.9002

Line Graph GCN + Pairwise (Hinge) 0.5063 0.6822 0.7567 0.8676 0.9002
GATES + Pairwise (Hinge) 0.7401 0.8628 0.8802 0.9192 0.9259

†: For the baseline evaluation of MSE regression loss with MLP and Line Graph GCN
encoders, we use a learning rate of 1e-4, since we find out that these encoders cannot
be learned with a learning rate of 1e-3.

12 X. Ning et al.

References

1. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hul-
lender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd
international conference on Machine learning. pp. 89–96 (2005)

2. Chen, W., yan Liu, T., Lan, Y., ming Ma, Z., Li, H.: Ranking measures and
loss functions in learning to rank. In: Bengio, Y., Schuurmans, D., Lafferty, J.D.,
Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing
Systems 22, pp. 315–323. Curran Associates, Inc. (2009)

3. Dong, X., Yang, Y.: Nas-bench-201: Extending the scope of reproducible neural ar-
chitecture search. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=HJxyZkBKDr

4. Guo, Y., Zheng, Y., Tan, M., Chen, Q., Chen, J., Zhao, P., Huang, J.: Nat: Neural
architecture transformer for accurate and compact architectures. In: Advances in
Neural Information Processing Systems. pp. 735–747 (2019)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 19–34 (2018)

7. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

8. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

9. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the aaai conference on artificial intel-
ligence. vol. 33, pp. 4780–4789 (2019)

10. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches. In:
Advances in neural information processing systems. pp. 961–968 (2003)

11. Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural ar-
chitecture search via predictive network performance optimization. arXiv preprint
arXiv:1911.09336 (2019)

12. Wang, L., Zhao, Y., Jinnai, Y., Fonseca, R.: Alphax: exploring neural architec-
tures with deep neural networks and monte carlo tree search. arXiv preprint
arXiv:1805.07440 (2018)

13. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to
rank: theory and algorithm. In: Proceedings of the 25th international conference
on Machine learning. pp. 1192–1199 (2008)

14. Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., Hutter, F.: Nas-
bench-101: Towards reproducible neural architecture search. arXiv preprint
arXiv:1902.09635 (2019)

15. Zhang, C., Ren, M., Urtasun, R.: Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749 (2018)

16. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR (2017), https://arxiv.org/abs/1611.01578

17. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697–8710 (2018)

