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Abstract. In this paper, we design a novel semantic neural tree for
human parsing, which uses a tree architecture to encode physiological
structure of human body, and design a coarse to fine process in a cas-
cade manner to generate accurate results. Specifically, the semantic neu-
ral tree is designed to segment human regions into multiple semantic
sub-regions (e.g., face, arms, and legs) in a hierarchical way using a
new designed attention routing module. Meanwhile, we introduce the se-
mantic aggregation module to combine multiple hierarchical features to
exploit more context information for better performance. Our semantic
neural tree can be trained in an end-to-end fashion by standard stochastic
gradient descent (SGD) with back-propagation. Several experiments con-
ducted on four challenging datasets for both single and multiple human
parsing, i.e., LIP, PASCAL-Person-Part, CIHP and MHP-v2, demon-
strate the effectiveness of the proposed method. Code can be found at
https://isrc.iscas.ac.cn/gitlab/research/sematree.
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1 Introduction

Human parsing aims to recognize each semantic part, e.g., arms, legs and clothes,
which is one of the most fundamental and critical problems in analyzing human
with various applications, such as video surveillance, human-computer interac-
tion, and person re-identification. With the development of convolutional neural
networks (CNN) on semantic segmentation task, human parsing has obtained
significant accuracy improvement recently. Most of previous algorithms [40, 9, 3,
28] attempt to assign each pixel with the predefined semantic labels, such as arm
and leg. However, each semantic label is considered independently, which fails to
consider context relations among different semantic labels, e.g., the upper-body
region is formed by the torso, upper-arms and lower-arms regions, see Fig. 1.
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Fig. 1. Category hierarchy used in the PASCAL-Person-Part dataset [4].

Thus, exploiting the intrinsic physical structure of human body is an effective
way to improve the segmentation accuracy.

Inspired from human perception [17], we argue that it is reasonable to use
the hierarchical structure network to exploit discriminative features of human
body to solve the human parsing task. Thus, we design a semantic neural tree
network to encode the physical structure of human body, and design a coarse
to fine process in a cascade manner. The coarse to fine process in a hierarchical
design is helpful to improve the performance of human parsing. As an example
in Fig. 1, we introduce a virtual category upper-body, and first distinguish the
upper-body from the head and lower-body pixels. After that, we segment the torso,
upper-arms, and lower-arms regions from the segmented upper-body region. Thus
the hierarchical design in the cascade manner can generate more accurate results.

In this paper, we design a novel semantic neural tree (SNT) for human pars-
ing, which uses a tree architecture to encode physiological structure of human
body and design a coarse to fine process in a cascade manner. According to the
topology structure of annotations in different datasets, we can design different
tree architecture in a similar spirit. For the leaf node of each path in the tree,
our goal is to distinguish just a few categories. In general, the proposed semantic
neural tree consists of four components, i.e., the backbone network for feature
extraction, attention routing modules for sub-category partition, semantic aggre-
gation modules for discriminative feature representation and prediction modules
for generating parsing results, laid in several levels. That is, we segment human
regions into multiple semantic sub-regions in a hierarchical way using the atten-
tion routing module. After that, we introduce the semantic aggregation module
to combine multiple hierarchical features to exploit more context information.
We generate the parsing result by aggregating the discriminative feature maps
from each leaf node. Our SNT is trained in an end-to-end fashion using the
standard stochastic gradient descent (SGD) with back-propagation [19].

Several experiments are conducted on four challenging datasets, i.e., LIP [22],
Pascal-Person-Part [4], CIHP [9] and MHP-v2 [41], demonstrating that our SNT
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method achieves favorable performance against the state-of-the-art methods for
both single and multiple human parsing. Meanwhile, we also carry out ablation
experiments to validate the effectiveness of the components in our SNT. The
main contributions are summarized as follows, (1)We propose a semantic neural
tree for human parsing, which integrates the physiological structure of human
body into a tree architecture, and design a coarse to fine process in a cascade
manner; (2)We introduce the semantic aggregation module to combine multiple
hierarchical features to exploit more context information; (3)The experimen-
tal results on several challenging single and multiple human parsing datasets
demonstrate that the proposed method achieves favorable performance against
the state-of-the-art methods.

2 Related Work

Semantic segmentation. Towards accurate scene understanding, many re-
searchers [40, 26, 2, 3, 1] propose semantic segmentation methods based on the
fully convolutional network (FCN) [29]. Zhao et al. [40] propose the pyramid
scene parsing network (PSPNet) to capture the capability of global context in-
formation by different-region based context aggregation. In [26], the multi-path
refinement network is developed to extract all the information available along
the down-sampling process to enable high-resolution prediction using long-range
residual connections. Besides, Chen et al. [2] introduce atrous spatial pyramid
pooling (ASPP) to segment objects at multiple scales accurately. Improved from
[2], they apply the depth-wise separable convolution to both ASPP and decoder
modules to refine the segmentation results especially along object boundaries
[3]. Recently, the meta-learning technique is applied in image prediction focused
on the tasks of scene parsing, person-part segmentation, and semantic image
segmentation, resulting in better performance [1]. However, these semantic seg-
mentation methods are constructed without considering the relations among
semantic sub-categories, leading to limited performance for human parsing with
fine-grained sub-categories.
Human parsing. Furthermore, human parsing can be regarded as a fine-grained
semantic segmentation task. To adapt to the human parsing task, more useful
modules are proposed and combined in the semantic segmentation methods.
Ruan et al. [28] improve the PSPNet [40] by using the global context embedding
module for multi-scale context information. Zhao et al. [41] employ three Genera-
tive Adversarial Network-like networks to perform semantic saliency prediction,
instance-agnostic parsing and instance-aware clustering respectively. However,
the aforementioned methods prefer to construct complex network for more dis-
criminative representation, but consider little about semantic structure of human
body when designing the network.

The semantic structure information is essential in human parsing. Gong et
al. [9] consider instance-aware edge detection to group semantic parts into dis-
tinct person instances. Liang et al. [22] propose a novel joint human parsing and
pose estimation network, which imposes human pose structures into the pars-



4 Ji and Du et al.

ing results without resorting to extra supervision. In [8], the hierarchical graph
transfer learning is incorporated upon the parsing network to encode the un-
derlying label semantic structures and propagate relevant semantic information.
Different from them without exploring human hierarchy, we take full use of the
category label hierarchy and propose a new tree architecture to learn semantic
regions in a coarse to fine process.

It is worth mentioning that some previous methods [35, 24, 33, 34] use body
physical structure information to improve the human parsing accuracy. Wang et
al. [35] introduce hierarchical poselets to represent the rigid parts, covering large
portions of the human body. Liang et al. [24] formulate the human parsing task
as the active template regression problem, which uses the linear combination of
the learned mask templates to represent each body item. The aforementioned
two methods rely on keypoints detection to exploit the intrinsic structure infor-
mation of human body, which brings extra computational overhead and relies
on additional keypoints annotations in the training phase. The method [33] uses
tree-like topology in network structure to fuse the information from three lev-
els, i.e., down-top, top-down, which assembles information from three inference
processes over the hierarchy. Wang et al. [34] explore three categories of part
relations, i.e., decomposition, composition, and dependency, to simultaneously
exploit the representation learning capacity of deep graph networks and the hi-
erarchical human structures. In contrast to the method [34] focusing on the par-
ticular relations between nodes, our method designs the neural tree to encode
the physical structure of human body in a coarse-to-fine manner. Meanwhile,
different branches in the same hierarchy focus on different subregions of human
body, and different hierarchies focus on human body with different receptive
fields.
Neural tree. The decision tree (DT) is an effective model and widely applied
in machine learning tasks. As the inherent of the interpretability, it is usually
regarded as an auxiliary tool to insight into the mechanism of neural network.
However, the simplicity of identity function used in these methods means that
input data is never transformed and thus each path from root to leaf node on
the tree does not perform representation learning, limiting their performance. To
integrate non-linear transformations into DTs, Kontschieder et al. [18] propose
the stochastic and differentiable decision tree model based neural decision forest.
Similarly, Xiao et al. [38] develop a neural decision tree with a multi-layer per-
ceptron network at the root transformer. In contrast, our model focuses on the
“topology structure” of annotations (see Fig. 1). That is, the proposed model
have a flexible semantic topology depending on certain dataset.

3 Methodology

The goal of the proposed Semantic Neural Tree (SNT) method is to classify local
parts of human along the path from root to leaf, and then fuse the feature maps
before each leaf node to form the global representation for parsing prediction.
We depart each sample x ∈ X with the parsing label y ∈ Y . Notably, our
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Fig. 2. The tree architecture of our SNT model used on the LIP dataset [22]. The blue
dashed lines indicate that the semantic aggregation module in each level merges the
features from different layers in the backbone. The purple double arrows denote the
supervision for the attention routing and prediction modules. Best view in color.

model is not a full binary tree, because the topology of model is determined by
the semantics of dataset. Based on our tree architecture, we group the parsing
labels into category label hierarchy. For example, as shown in Fig. 2(a), the
virtual category label head consists of several child category labels face, hair
and hat in the LIP dataset [22].

Our model consists of four modules, the backbone network, the attention
routing module, the semantic aggregation module, and the prediction module.
Specifically, the backbone network is used to extract features in the proposed
method. The attention routing module is designed to generate masks to deter-
mine the root-to-leaf computation paths. In this way, different branches in the
same hierarchy of the tree focus on different subregions of human body, and
different hierarchies in the tree network focus on human body with different
receptive fields. Meanwhile, the semantic aggregation module integrates ASPP
and SE modules to enforce the network to exploit discriminative features. Af-
ter that, the prediction module is used to generate the parsing results for each
category. We organize these four modules in a tree architecture and solve the
parsing task in a coarse-to-fine process for accurate results.

3.1 Architecture

Backbone network. Similar to the previous works, we rely on residual blocks
of ResNet-101 network [13] to extract discriminative features of human in each
sub-category. Our SNT can also work on other pre-trained networks, such as
DenseNet [15] and Inception [32]. Specifically, we remove the global average
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pooling and fully connected layers from the network and use the truncated
ResNet-101 network [13], i.e., Res-j, (j = 1, 2, 3, 4), as the backbone. Meanwhile,
followed by the backbone, we add one convolutional layer with the kernel size
1× 1 and stride size 1 to reduce the channels of feature maps Res-4. Notably, as
shown in Fig. 2, we employ multi-scale feature representation as a powerful tool
to improve the ResNet-101 backbone in the dense prediction task with highly
localized discriminative regions in fine-grained categories.

Attention routing module. After the backbone network, we need to solve
how to split the tree structure. Given the sample x, in each level of the tree
architecture, we employ the attention routing module to split the higher-level
category labels and output the corresponding intermediate masks. That is, the
i-th attention routing module at the k-th level Rk

i is fed with the feature maps
φk−1i (x) at the (k− 1)-th level. To this end, we supervise Rk

i based on the labels
of pre-set virtual categories.

As shown in Fig. 2(b), the attention routing module starts from one convo-
lutional layer with the kernel size 1 × 1 and one Squeeze-and-Excitation (SE)
layer [14]. Thus we can reduce the computational complexity and enforce the
model to pay more attention to discriminative regions. After that, we use one
dropout layer with the drop rate 0.5, one convolutional layer with the kernel
size 1 × 1 and one softmax layer to output the mask of the pixel-level human
parts Ψk

i (x) = {ψk
1 (x), · · · , ψk

I (x)} such that ψk
i (x) ∈ [0, 1]. Notably, the chan-

nels of the mask consists of foreground channels and background channel, where
I denotes the channel number of Ψk

i (x). The foreground channels denote the
sub-category labels at node i while background channel is defined as the other
labels excluded from the sub-category labels at node i. With supervision on the
masks, we can guide and split the feature maps at the k-th level into several
semantic sub-categories, i.e., Φk

i (x) = {φk1(x), · · · , φkI (x)}.

Semantic aggregation module. Followed by the attention routing module Rk
i ,

our goal is to extract discriminative feature representation for sub-categories. To
this end, multi-scale feature representation is an important and effective strategy,
e.g., skip-connections in the U-Net architecture [3]. Besides, the convolution
with stride larger than one and the pooling operations will shrink feature maps,
resulting in information loss in details such as the edge or small parts.

To alleviate these issues, we introduce the semantic aggregation module Ak
i

to deal with the feature maps φki (x). Specifically, we first adapt atrous spatial
pyramid pooling (ASPP) [2] to concatenate the features from multiple atrous
convolutional layers with different dilation rates arranged in parallel. Specifically,
the ASPP module is built to deal with the guided feature maps after the semantic
router with dilation rates [1, 6, 12, 18] to form multi-scale features. To aggregate
multi-scale feature, we also use the upsampling layer to increase the spatial size
of feature while halve the number of channels. After that, we use the addition
operation to fuse the multi-scale features from the ASPP module and the residual
features of the backbone Res-j at the j-th stage (see Fig. 2(c)). Thus we can

learn more discriminative feature maps φ̂ki (x) for prediction.
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Prediction module. Based on the feature maps after semantic aggregation
φ̂ki (x), we use the prediction modules Lk

i in different levels to generate the pars-
ing result for each sub-category. As shown in Fig. 2(d), the prediction module
includes one deformable convolutional layer [43] with the kernel size 3 × 3, one
SE layer [14], one batch normalization layer, one dropout layer with drop rate
0.5 and another deformable convolutional layer [43] with the kernel size 3 × 3.
Finally, the softmax layer is used to output an estimate for conditional distribu-
tion for each pixel. For each leaf node at the k-th level, we can predict the local
part parsing result ϕk

i (x).

Moreover, we combine all the feature maps of each leaf node φ̂ki (x). Specif-
ically, we remove the background channel in every leaf feature map and then
concatenate the rest foreground channels, i.e., background, head, torso, arms,
legs and shoes in Fig. 2(a), such that the overall number of channels is equal to
the number of categories. Thus we can predict the final parsing result P(x) by
using the prediction module L0.

3.2 Loss function

Class imbalance is an important issue that results in reduced performance easily.
A common solution is to perform the hard negative mining strategy that sam-
ples hard examples or more other sampling/reweighing schemes during training
phase. Since we aggregate several sub-categories into one virtual category in
coarse levels, more severe class imbalance may exist in our hierarchical tree
model. To deal with this issue, we adopt a simple category re-weighting strat-
egy. Specifically, based on the ground-truth mask, we calculate percentage of
pixels belonging to each category in every batch. Without doubt, the back-
ground is overwhelming compared with other categories. Therefore we consider
the loss of pixels belonging to each category using the corresponding weight
as WX j = 1 −

∑
i CX j

i
/
∑

j

∑
i CX j

i
, where CX j

i
indicates the i-th pixel belongs

to the j-th category in X module in the current batch. X modules consist of
the attention routing module (R), leaf node parsing (L) and final parsing (L0).
Based on the weights, we use three loss terms on the attention routing module,
each leaf node, and the final output after prediction modules to train the whole
network in an end-to-end manner, which is computed as

L =
∑
i

∑
k

LRk
i
(Ψk

i (x), ȳki ,WR) + ω1 ·
∑
i

∑
k

LLk
i
(ϕk

i (x), ẏki ,WL)

+ ω2 · LL0(P(x), y∗,WL0),

(1)

where LRk
i
(·, ·, ·) denotes the re-weighted cross-entropy loss between the masks

Ψk
i (x) generated by the attention routing module Rk

i and the corresponding
ground-truth ȳki at the k-th level. LLk

i
(·, ·, ·) denotes the re-weighted cross-

entropy loss between the output map ϕk
i (x) by the leaf node and the correspond-

ing ground-truth map ẏki at the k-th level. LL0
(·, ·, ·) denotes the re-weighted

cross-entropy loss between the final parsing result P(x) and the global parsing
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label y∗. The factors ω1 and ω2 are used to balance the attention routing module,
leaf node parsing and final parsing. WR, WL and WP are category weights on
router module, leaf node and global parsing, respectively. It is worth mentioning
that the channel number of ȳki is equal to the number of sub-category labels
of node i at the k-th level, and the channel number of y∗ is equal to the total
number of labels.

3.3 Handling multiple human parsing

To handle multiple human parsing, we integrate our method with the off-the-shelf
instance segmentation framework, as similar as that in [28]. Specifically, we first
employ the Mask R-CNN [12] pre-trained on MS-COCO dataset [27] to segment
human instances from images. Then, we train three SNT sub-models to obtain
global and local human parsing results with different size of input images, i.e.,
one global sub-model and two local sub-models. The global sub-model is trained
on the whole images without distinguishing each instance; while the other two
local sub-models are input by segmented instance patches from Mask R-CNN
[12] and ground-truth respectively. Notably, we use the same architecture for
the three sub-models. Finally, both the global and local results from these sub-
models are combined to output multiple human parsing results by late fusion.
That is, we concatenate the feature maps before leaf node on each sub-branches
in our network. Followed by the prediction module, we can estimate the category
for each pixel under the supervision of cross-entropy loss function.

4 Experiment

Following the previous works [28, 9, 42, 8], we compare our method with other
state-of-the-art methods on the validation set of two single human parsing datasets
(i.e., LIP [22] and Pascal-Person-Part [4]) and two multiple human parsing
datasets (i.e., CIHP [9] and MHP-v2 [41]). Different evaluation datasets have dif-
ferent definitions of the topology of human body. Note that the physical structure
of human body is intrinsic, such as head, arms, and legs. Thus, the annotations
of human body can be easily obtained based on the uniform definition of the
tree topology of human body.

Implementation Details. We implement the proposed framework in PyTorch.
All models are trained on a workstation with a 3.26 GHz Intel processor, 32 GB
memory, and one Nvidia V100 GPU. Following the previous works, we adopt
the ResNet-101 [13] that is pre-trained on the ImageNet dataset [5] as the back-
bone network. For a fair comparison, we set input size of images 384 × 384 for
single person parsing while 473 × 473 for multiple person parsing. For data ar-
gumentation, we adopt the strategy of random scaling (from 0.5 to 1.5), random
rotation, random cropping and left-right flipping the training data. We use the
SGD algorithm to train the network with 0.9 momentum, and 0.0005 weight de-
cay. The learning rate is initialized to 0.001 and adjusted by exponential learning
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Fig. 3. Some visualized examples of single human parsing.

rate decay policy (gamma is 0.9). Notably, the warming up policy is applied for
training. That is, we use the learning rate of 0.0001 to warm up the model in the
first 10 epochs, and then increase learning rate up to 0.001 linearly. The model
is optimized in 200 epochs. In the loss function (1), the weights ω1 and ω2 are
set as 1.5 and 2.0 empirically.

Metrics. First, we employ the mean IoU metric (mIOU) to evaluate the global-
level predictions in single human parsing datasets (i.e., LIP [22] and Pascal-
Person Part [4]). Then, we use three metrics (i.e., APr, APp and PCP) to eval-
uate the instance-level predictions in multiple human parsing. The APr score
denotes the area under the precision-recall curve based on the limitation of dif-
ferent IoU thresholds (e.g., 0.5, 0.6, 0.7) [11]. PCP elaborates how many body
parts are correctly predicted of a certain person [20]. APp computes the pixel-
level IoU of semantic part categories within a person. Similar to the previous
works, we use the metrics of mIoU and APr to evaluate the performance on
the CIHP dataset [9] while PCP and APp to evaluate the performance on the
MHP-v2 dataset [41]. APr

m denotes the mean value.

4.1 Single Human Parsing

We compare the performance of single human parsing of our proposed method
with other state-of-the-arts on the LIP [22] and Pascal-Person-Part [4] datasets.
The qualitative human parsing results are visualized in Fig. 3.

Evaluation on LIP Dataset. The LIP dataset defines 6 body parts and 13
clothes categories, including 50, 462 images with pixel-level annotations. 30, 462
training and 10, 000 validation images are provided with publicly available an-
notations. As shown in Fig. 2, we construct the tree architecture in 3-level. As
presented in Table 1, we can conclude that our method achieves the best perfor-
mance in terms of all the three metrics. Since semantic segmentation methods
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Table 1. The evaluation results on the validation set of LIP [22].

Method pixel acc. mean acc. mIoU
Attention+SSL [10] - - 44.73

DeepLab [2] 84.09 55.62 44.80
MMAN [30] - - 46.81
SS-NAN [39] 87.60 56.00 47.92
MuLA [31] 88.50 60.50 49.30

PSPNet [40] 86.23 61.33 50.56
JPPNet [21] 86.39 62.32 51.37
CE2P [28] - - 52.56

CE2P(w/ flip) [28] 87.37 63.20 53.10
Ours 88.10 70.41 54.86

Table 2. The evaluation results on the validation set of LIP [22] in each category.

Method bkg. hat hair glove glasses u-clothes dress coat socks pants

Attention+SSL [10] 84.6 59.8 67.3 29.0 21.6 65.3 29.5 51.9 38.5 68.0
DeepLab [2] 84.1 59.8 66.2 28.8 23.9 65.0 33.7 52.9 37.7 68.0
PSPNet [40] 86.1 63.5 68.0 39.1 23.8 68.1 31.7 56.2 44.5 72.7
MMAN [30] 84.8 57.7 65.6 30.1 20.0 64.2 28.4 52.0 41.5 71.0
JPPNet [21] 86.3 63.6 70.2 36.2 23.5 68.2 31.4 55.7 44.6 72.2
CE2P [28] 87.4 64.6 72.1 38.4 32.2 68.9 32.2 55.6 48.8 73.5

Ours 88.2 66.9 72.2 42.7 32.3 70.1 35.6 57.5 48.9 75.2

Method j-suit scarf skirt face l-arm r-arm l-leg r-leg l-shoe r-shoe mIoU
Attention+SSL [10] 24.5 14.9 24.3 71.0 52.6 55.8 40.2 38.8 28.1 29.0 44.7

DeepLab [2] 26.1 17.4 25.2 70.0 50.4 53.9 39.4 38.3 27.0 28.4 44.8
PSPNet [40] 28.7 15.7 25.7 70.8 59.7 62.3 54.9 54.5 42.3 42.9 50.6
MMAN [30] 23.6 9.7 23.2 69.5 55.3 58.1 51.9 52.2 38.6 39.0 46.8
JPPNet [21] 28.4 18.8 25.1 73.4 62.0 63.9 58.2 58.0 44.0 44.1 51.4
CE2P [28] 27.2 13.8 22.7 74.9 64.0 65.9 59.7 58.0 45.7 45.6 52.6

Ours 33.4 21.4 27.4 74.9 66.8 68.1 60.3 59.8 47.6 48.1 54.8

(e.g., DeepLab [2] and PSPNet [40]) consider little about fine-grained classifi-
cation in the human parsing task, they perform not well. Moreover, the CE2P
method [28] improves PSPNet [40] by adding the context embedding branch,
achieving 53.10 mIOU score. Our method exceeds CE2P by 1.76% in terms of
mIOU score. It indicates that our method can learn discriminative representa-
tion of each sub-category for human parsing. Moreover, as shown in Table 2, our
method obtain the best mIOU score in each sub-category. Notably, our method
achieves considerable accuracy improvement compared with the other methods
in some ambiguous sub-categories, e.g., glove, j-suit, and shoe.

Evaluation on Pascal-Person-Part Dataset. The PASCAL-Person-Part dataset
[4] is originally from the PASCAL VOC-2010 dataset [6], and then extended for
human parsing with 6 coarse body part labels. It consists of 1, 716 training
images and 1, 817 testing images (3, 533 images in total). As shown in Fig. 1,
we construct the tree architecture in 3-level. Specifically, the virtual category
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Table 3. The evaluation results on the validation set of Pascal-Person-Part [4].

Method head torso u-arms l-arms u-legs l-legs bkg. mIoU
HAZN [36] 80.79 80.76 45.65 43.11 41.21 37.74 93.78 57.54

Attention+SSL [10] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36
Graph LSTM [25] 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16

SE LSTM [23] 82.89 67.15 51.42 48.72 51.72 45.91 97.18 63.57
Part FCN [37] 85.50 67.87 54.72 54.30 48.25 44.76 95.32 64.39
DeepLab [2] - - - - - - - 64.94
MuLA [31] - - - - - - - 65.10
SAN [16] 86.12 73.49 59.20 56.20 51.39 49.58 96.01 64.72
WSHP [7] 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60

DeepLab v3+ [3] - - - - - - - 67.84
PGN [9] 90.89 75.12 55.83 64.61 55.42 41.57 95.33 68.40

Graphonomy [8] - - - - - - - 69.12
Compositional Fusion [33] 88.02 72.01 64.31 63.52 55.61 54.96 96.02 70.76

DPC [1] 88.81 74.54 63.85 63.73 57.24 54.55 96.66 71.34
Ours 89.01 74.63 62.90 64.70 57.53 54.62 97.74 71.59

human consists of three sub-categories, i.e., head, upper-body including torso,
upper-arms and lower-arms and lower-body including upper-legs and lower-legs.
We report the performance on the Pascal-Person-Part dataset in Table 3. Similar
to the trend in the LIP dataset [22], the semantic segmentation methods, e.g.,
DeepLab [2] and DeepLab v3+ [3], perform inferior mIoU score, i.e., less than
68.00. Moreover, the Graphonomy method [8] learns and propagates compact
high-level graph representation among the labels within one dataset, resulting
in better 69.12 mIoU score. Besides, DPC [1] achieves better performance with
71.34 mIoU score. This is because it employs meta-learning to search optimal
efficient multi-scale network for human parsing. Our SNT method obtains the
best overall mIoU score of 71.59 and best mIoU scores in terms of l-arms and
u-legs among all the compared methods, which indicates the effectiveness of our
proposed tree network.

4.2 Multiple Human Parsing

Furthermore, we evaluate the proposed method on two large-scale multiple hu-
man parsing datasets, i.e., CIHP [9] and MHP-v2 [41]. For a fair comparison, we
apply same Mask R-CNN model to output instance segmentation masks. Then,
we use the global parsing and two local parsing models for human parsing as in
[28]. Following the [28], final results are obtained by fusing the results from three
branch models with a refinement process. Some visual results are shown in Fig.
4, which indicates that our method can also generate precise and fine-grained
results in multiple human parsing scenes.
Evaluation on CIHP Dataset. The CIHP dataset [9] is the largest multi-
person human parsing dataset with 38, 280 diverse human images, i.e., 28, 280
training, 5, 000 validation and 5, 000 test images. We use the same topology
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Fig. 4. Some visualized examples of multiple human parsing.

Table 4. The evaluation results on the validation set of CIHP [9].

Method mIoU APr
0.5 APr

0.6 APr
0.7 APr

m

PGN [9] 55.89 35.80 28.60 20.50 33.60
M-CE2P [28] 59.50 48.69 40.13 29.74 42.83

Ours 60.87 49.27 41.98 33.00 43.96

(i.e., 3-level tree structure as shown in Fig. 2) in the LIP dataset [22] to perform
human parsing because the two datasets share the same sub-category semantic
annotations. As shown in Table 4, our method outperforms other compared
methods (i.e., PGN [9] and M-CE2P [28]), achieving APr

m score of 43.96. It is
worth mentioning that SNT outperforms M-CE2P [28] in terms of APr

0.7 score
by considerable improvement, i.e., 29.74 vs. 33.00. It indicates that our method
facilitates improving the segmentation accuracy of human instances.
Evaluation on MHP-v2 Dataset. The MHP-v2 dataset [41] includes 25, 403
annotated images with 58 fine-grained semantic category labels. Since this dataset
has more labels than the LIP dataset [22], we construct the tree architecture in
5-level. As shown in Table 5, the semantic segmentation method Mask R-CNN
[12] has the worst performance compared to other methods. NAN [42] achieves
the APp

m score of 42.77, but much inferior performance in both PCP0.5 and APp
0.5

scores. Our method achieves comparable state-of-the-art performance with M-
CE2P [28] in terms of three metrics. It indicates that the coarse to fine process
in a hierarchical design can facilitate improving the accuracy.

4.3 Ablation study

We study the influence of some important parameters and components of our
SNT method as follows. The experiment is conducted on the LIP dataset [22].
Height of the tree. The height of the tree k indicates the complexity of the
network. To explore the optimal height, we design five variants with different
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Table 5. The performance on the validation set of MHP-v2 [41].

Method PCP0.5 APp
0.5 APp

m

Mask R-CNN [12] 25.12 14.50 -
MH-Parser [23] 26.91 18.05 -

NAN [42] 34.37 24.87 42.77
M-CE2P [28] 43.77 34.47 42.70

Ours 43.50 34.76 43.03

Table 6. Effect of the height of the tree on the LIP dataset [22].

height of the tree pixel acc. (%) mean acc. (%) mIoU (%)
0 84.81 57.12 46.34
1 86.84 64.03 52.15
2 87.42 65.58 53.32
3 88.10 70.41 54.86
4 86.92 64.34 51.42

heights of the tree, see Fig. 2(a). If the height is equal to 0, only the ResNet-101
backbone is used for human parsing. As presented in Table 6, we can observe
there is a sharp decline in mean accuracy and mIoU score. We find that our
method with 3-level achieves the best performance, i.e., 54.86% mIoU score.
The performance of our method sharply drops, using deeper or shallower tree
architectures. If we set the tree height k ≤ 2, there are limited number of param-
eters in our model, not enough to represent the significant variations of human
body. Meanwhile, if we set k = 4, too many parameters with limited number of
training data cause overfitting.

Effectiveness of prediction module. To analyze prediction module in the
proposed network, we construct a variant of our method, i.e., “ours w/o pred”.
As shown in Fig. 2(d), the “ours w/o pred” method indicates that we combine the
prediction results of each leaf node for final parsing result without the prediction
module. If we do not use the prediction module to generate the final parsing
result, we can observe a sharp decrease in mIoU score, i.e., 50.02 vs. 54.86. It
is essential to achieve accurate parsing result based on the context information
among every sub-categories.

Effectiveness of semantic aggregation module. To verify the effectiveness
of the semantic aggregation module, we construct the “ours w/o skip” method,
which indicates that we do not combine the residual blocks from the backbone
in semantic aggregation (see Fig. 2(c)). According to Table 7, we can conclude
that the skip-connection from the backbone (see the dashed blue lines in Fig.
2(a)) can bring 1.54% mIoU improvement. This is because the skip-connection
in our network can exploit multi-scale representation for sub-categories.

Effectiveness of attention routing module. To study the effect of the atten-
tion routing module, the “ours w/o mask” indicates that we further remove the
attention mask in the attention routing module from the “ours w/o skip” method
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Table 7. Variants of the SNT method on the LIP dataset [22].

variant pixel acc. (%) mean acc. (%) mIoU (%)
Ours w/o mask 86.84 64.03 52.15
Ours w/o skip 87.42 65.58 53.32
Ours w/o pred 85.34 63.22 50.02

Ours w/o reweight 87.92 66.42 54.73
Ours w/o warming up 87.95 70.21 54.75

Ours 88.10 70.41 54.86

(see Fig. 2(b)). That is, we directly split the feature maps into several semantic
maps for the next level. As presented in Table 7, the “ours w/o skip” method
achieves 1.17% improvement in mIoU score compared with the “ours w/o mask”
method. It demonstrates the attention mask can enforce the tree network focus
on discriminative representation for specific sub-category semantic information.
Effectiveness of reweighting strategy. To verify the effect of the reweighting
strategy, we construct a variant by removing the reweighting strategy. That is, we
train the network with equal weights of different categories. As presented in Table
7, the “ours w/o reweight” method drops 3.99% mean acc. score compared with
our method, which demonstrates the effectiveness of the reweighting strategy.
Effectiveness of warming up strategy. To demonstrate the influence of the
warming up policy, we construct a variant of the proposed method by removing
the warming up policy, denoted as “ours w/o warming up”. Specifically, the
average accuracy of the “ours w/o warming up” method on the LIP dataset drops
0.2% compared to the proposed method, which demonstrates the effectiveness
of the warming up policy.

5 Conclusion

In this paper, we propose a novel semantic tree network for human parsing. Our
method can encode physiological structure of human body and segment mul-
tiple semantic sub-regions in a hierarchical way. Extensive experiments on four
challenging single and multiple human parsing datasets indicate the effectiveness
of the proposed semantic tree structure. Our method can learn discriminative
feature representation and exploit more context information for sub-categories
effectively. For future work, we plan to optimize the tree architecture for better
performance by neural architecture search techniques.
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