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Abstract. Multi-modal image registration is a challenging problem that
is also an important clinical task for many real applications and scenarios.
As a first step in analysis, deformable registration among different image
modalities is often required in order to provide complementary visual
information. During registration, semantic information is key to match
homologous points and pixels. Nevertheless, many conventional registra-
tion methods are incapable in capturing high-level semantic anatomical
dense correspondences. In this work, we propose a novel multi-task learn-
ing system, JSSR, based on an end-to-end 3D convolutional neural net-
work that is composed of a generator, a registration and a segmentation
component. The system is optimized to satisfy the implicit constraints
between different tasks in an unsupervised manner. It first synthesizes
the source domain images into the target domain, then an intra-modal
registration is applied on the synthesized images and target images. The
segmentation module are then applied on the synthesized and target
images, providing additional cues based on semantic correspondences.
The supervision from another fully-annotated dataset is used to regu-
larize the segmentation. We extensively evaluate JSSR on a large-scale
medical image dataset containing 1,485 patient CT imaging studies of
four different contrast phases (i.e., 5,940 3D CT scans with patholog-
ical livers) on the registration, segmentation and synthesis tasks. The
performance is improved after joint training on the registration and seg-
mentation tasks by 0.9% and 1.9% respectively compared to a highly
competitive and accurate deep learning baseline. The registration also
consistently outperforms conventional state-of-the-art multi-modal reg-
istration methods.

1 Introduction

Image registration attempts to discover a spatial transformation between a pair
of images that registers the points in one of the images to the homologous points
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in the other image [37]. Within medical imaging, registration often focuses on
inter-patient/inter-study mono-modal alignment. Another important and (if not
more) frequent focal point is multi-channel imaging, e.g., dynamic-contrast com-
puted tomography (CT), multi-parametric magnetic resonance imaging (MRI),
or positron emission tomography (PET) combined with CT/MRI. In this set-
ting, the needs of intra-patient multi-modal registration are paramount, given
the unavoidable patient movements or displacements between subsequent imag-
ing scans. For scenarios where deformable misalignments are present, e.g., the
abdomen, correspondences can be highly complex. Because different modali-
ties provide complementary visual/diagnosis information, proper and precise
anatomical alignment benefits human reader’s radiological observation and is
crucial for any downstream computerized analyses. However, finding correspon-
dences between homologous points is usually not trivial because of the complex
appearance changes across modalities, which may be conditioned on anatomy,
pathology, or other complicated interactions.

Unfortunately, multi-modal registration remains a challenging task, particu-
larly since ground-truth deformations are hard or impossible to obtain. Methods
must instead learn transformations or losses that allow for easier correspon-
dences between images. Unsupervised registration methods, like [3, 9], often use
a local modality invariant feature to measure similarity. However these low-level
features may not be universally applicable and cannot always capture high level
semantic information. Other approaches use generative models to reduce the
domain shift between modalities, and then apply registration based on direct
intensity similarity [33]. A different strategy learns registrations that maximize
the overlap in segmentation labels [3, 12]. This latter approach is promising,
as it treats the registration process similarly to a segmentation task, aligning
images based on their semantic category. Yet, these approaches rely on having
supervised segmentation labels in the first place for every deployment scenario.

Both the synthesis and segmentation approaches are promising, but they are
each limited when used alone, especially when fully-supervised training data is
not available, i.e., no paired multi-modal images and segmentation labels, re-
spectively. As Fig. 1 elaborates, the synthesis, segmentation, and registration
tasks are linked together and define implicit constraints between each other.
That motivates us to develop a joint synthesis, segmentation, and registration
(JSSR) system which satisfies these implicit constraints. JSSR is composed of
a generator, a segmentation, and a registration component that performs all
three tasks simultaneously. Given a fixed image and moving image from differ-
ent modalities for registration, the generator can synthesize the moving image to
the same modality of the fixed image, conditioned on the fixed image to better
reduce the domain gap. Then the registration component accepts the synthe-
sized image from the generator and the fixed image to estimate a deformation
field. Lastly, the segmentation module estimates the segmentation map for the
moving image, fixed image and synthesized image. During the training proce-
dure, we optimize several consistency losses including (1) the similarity between
the fixed image and the warped synthesized image; (2) the similarity between
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the segmentation maps of the warped moving image and the fixed image; (3)
an adversarial loss for generating high fidelity images; and (4) a smoothness
loss to regularize the deformation field. To stop the segmentation module from
providing meaningless segmentation maps, we regularize the segmentation by
training it on fully supervised data obtained from a different source than the
target data, e.g., public data. We evaluate our system on a large-scale clinical
liver CT image dataset containing four phases per patient, for unpaired image
synthesis, multi-modal image registration, and multi-modal image segmentation
tasks. Our system outperforms the state-of-the-art conventional multi-modal
registration methods and significantly improves the baseline model we used for
the fother two tasks, validating the effectiveness of joint learning.

We summarize our main contributions as follows:

– We propose a novel joint learning approach for multi-modal image registra-
tion that incorporates the tasks of synthesis, registration and segmentation.
Each task connects to the other two tasks during training, providing mutu-
ally reinforcing supervisory signals.

– We evaluate and validate the performance improvement of baseline methods
for synthesis and segmentation after joint training by our system, demon-
strating the effectiveness of our joint training setup and revealing the possi-
bility of obtaining a better overall system by building upon and enhancing
the baseline models.

– Our system consistently and significantly outperforms state-of-the-art con-
ventional multi-modal registration approaches based on a large-scale multi-
phase CT imaging dataset of 1,485 patients (each patient under four different
intravenous contrast phases, i.e., 5,940 3D CT scans with various liver tu-
mors).

– While we use supervised data from single-phase public data to regularize
our segmentation, our method does not use or rely upon any manual seg-
mentation labels from the target multi-phase target CT imaging dataset.
Compared to approaches expecting target segmentation labels, JSSR enjoys
better scalability and generalizability for varied clinical applications.

2 Related Work

Multi-modal Image Registration Multi-modal image registration has been widely
studied and applied in medical imaging. Existing registration methods can be
based on additional information, e.g., landmarks [28, 32] or a surface [40], or
they can operate directly on voxel intensity values without any additional con-
straints introduced by the user or segmentation [23]. For voxel-based methods,
there are two typical strategies. One is to transform each image using self-
similarity measurements that are invariant across modalities. These include local
self-similarities [29] or the modality independent neighbourhood descriptor [8].
Notably the DEEDS algorithm [9, 10, 7] employed a discrete dense displacement
sampling for deformable registration using self-similarity context (SSC) [11]. The
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Fig. 1: The relationship between the synthesis, segmentation and registration
tasks. In the ideal setting, spatially transformed examples from each domain, and
their segmentation labels, are fully available. In more realistic settings, only one
example is available from each domain, each under a different spatial transform.
Moreover, segmentation labels are not available. Should segmentation, synthesis,
and spatial transform mappings be available, the constraints in the ideal case
can be mapped to analogous constraints in the real case.

other common strategy is to map both modalities into a shared space and mea-
sure the mono-modal difference. Prominent examples include mutual information
[21] and normalized mutual information [31] similarity measures that can be ap-
plied directly on cross-modal images. However, such methods can suffer from low
convergence rates and loss of spatial information. [4] employed a convolutional
neural network (CNN) to learn modality invariant features using a small amount
of supervision data. [5] used Haar-like features from paired multi-modality im-
ages to fit a random forest regression model for bi-directional image synthesis,
and [33, 22] applied CycleGANs to reduce the gap between modalities for better
alignment. Recently [1] developed a joint synthesis and registration framework
on natural 2D images.

Recently a variety of deep learning-based registration methods have been
proposed. Because ground truth deformation fields are hard to obtain, unsuper-
vised methods, like [35, 20, 34, 3], are popular. These all rely on a CNN with a
spatial transformation function [16]. These unsupervised methods mainly focus
on mono-modal image registration. Some methods make use of correspondences
between labelled anatomical structures to help the registration process [12]. [3]
also showed how the segmentation map can help registration. However, in many
cases the segmentation map is not available, which motivates us to combine the
registration and segmentation components together.
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Fig. 2: The JSSR system. We denote the generator, segmentation, registration
module and spatial transform as Syn, Seg, Reg and ST respectively.

Multi-task Learning Methods As the registration, synthesis, segmentation tasks
are all related with each other, there are already several works that explore com-
bining them together. [33, 22, 36] used CycleGANs to synthesize multi-modal
images into one modality, allowing the application of mono-modal registration
methods. [17] projected multi-modal images into a shared feature space and reg-
istered based on the features. [27] made use of a generative model to disentangle
the appearance space from the shape space. [19, 39, 26] combined a segmenta-
tion model with a registration model to let them benefit each other, but the
focus was on mono-modal registration. [43] performed supervised multi-phase
segmentation based on paired multi-phase images but did not jointly train the
registration and segmentation. [41, 42, 14] used a generative model to help guide
the segmentation model. In contrast, our work combines all three of the tasks
together to tackle multi-modal registration problem in the most general setting
where the deformation ground truth, paired multi-modal images and segmenta-
tion maps are all unavailable.

3 Methodology

Given a moving image x ∈ X and fixed image y ∈ Y from different modali-
ties, but from the same patient, we aim to find a spatial transformation function
τ that corrects for any misalignments between the two. We tackle this multi-
modal image registration problem in a fully unsupervised way to meet common
applications settings, where none of the ground truth deformation fields, seg-
mentation maps, or paired multi-modal images are available. As Fig. 1 depicts,
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Fig. 3: The model structure for each component. We use a 3D PHNN [6] for
registration and 3D VNet [25] for segmentation and the generator.

image synthesis, segmentation and registration can be related together via a
set of constraints. Motivated by this, we develop a system consisting of three
parts: a generator G, a registration module Φ and a segmentation module S. By
satisfying the constraints in Fig. 1, we can satisfy the conditions for a correct
registration, segmentation and image synthesis. During optimization, these three
tasks will benefit from each other. Refer to Fig. 2 for the overall framework of
our system.

3.1 Unpaired Image Synthesis

Although good unpaired image synthesis works exist, e.g., [13], they may gener-
ate a variety of different target domain images based on the random sampling.
However, for registration, the synthesized images should have identical anatom-
ical and other pertinent modality-invariant properties. Thus, a conditional syn-
thesis is a natural choice. Similar to [15], but without random noise, we use a
GAN with a dual-input generative model G which learns a mapping from x, y
to τ−1(y), G : {x, y} −→ τ−1(y). Here τ is the true deformation from x to y,
meaning the generator attempts to generate a version of x that looks like y, but
removing any spatial transformation between the two. In reality, τ itself must be
estimated, which we will outline in Sec. 3.2. A discriminator D is also equipped
to detect the fake images from the generator.

The objective of the conditional GAN is

LGAN (G,D) = Ey logD(y)− Ex,y logD(G(x, y)). (1)

In a classical paired GAN setup, we would use Ey logD(τ−1(y)), but this is
not available, so use unpaired synthesis, based on the assumption that spatial
transform τ does not alter the likelihood of any one sample. We also add another
appearance-based loss to benefit the GAN objective:

LsynL1 (G) = Ex,y||τ−1(y)−G(x, y)||1. (2)

The final objective for the synthesis part is

G∗ = arg min
G

max
D
LsynL1 (G) + λsynLGAN (G,D). (3)
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3.2 Multi-Modal Image Registration

For two images x and y, the registration module learns a function Φ : x, y −→ τ
where τ is a spatial transformation function [16], also called the deformation field.
For mono-modal registration, the L1 loss can be used to estimate a deformation
field that directly matches the intensities between the fixed image and warped
image. Here we are registering two images from different modalities. [3] proposed
to use a cross-modal similarity measure like cross-correlation [2]. Instead, if we
assume a generative model is available to transform x into the Y domain, then
we can use a simple mono-modal similarity measure:

LregL1 (Φ) = Ex,y||τ(G(x, y))− y||1, (4)

where τ = Φ(G(x, y), y), and G is the generator that synthesizes images from X
to Y. Another smoothness term is added to prevent non-realistic deformation:

Lsmooth(Φ) = Ex,y
∑
v∈Ω
||∇τv||2, (5)

where v represents the voxel location and ∇τv calculates the differences between
neighboring voxels of v. We use the same implementation for the smoothness
term as in [3]. The final objective is:

Φ∗ = arg min
Φ
LregL1 (Φ) + λregLsmooth(Φ). (6)

Of course, we cannot optimize this objective without a G. However, to get a
good G, we need a good Φ as discussed in Sec. 3.1, which makes this problem
a chicken-and-egg conundrum. One way is to optimize the two objectives from
the synthesis and registration modules together, which leads to

Φ∗, G∗ = arg min
Φ,G

F(Φ,G)

= arg min
Φ,G

max
D
LregL1 (Φ,G) + LsynL1 (Φ,G)

+ λregLsmooth(Φ,G) + λsynLGAN (G,D)

≈ arg min
Φ,G

max
D

2LregL1 (Φ,G)

+ λregLsmooth(Φ,G) + λsynLGAN (G,D).

(7)

However, there is no guarantee that we can get the optimal solution by
minimizing F(Φ,G). Actually there is a trivial solution that minimizes F(Φ,G),
which is when G(x, y) = y and Φ(G(x, y), y) = Φ(y, y) = I, i.e., the identity
transform. To mitigate this, we add skip connections from the source domain to
keep the spatial information in the structure of generator, as shown in Fig. 3.

3.3 Multi-Modal Image Segmentation

We enforce segmentation-based constraints for two reasons. Firstly, as noted in
[3], the additional information of segmentation maps can help guide the regis-
tration process. However, [3] assumes the segmentation maps are available for
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the target dataset, which we do not assume. Secondly, as noted by others [19, 39,
26, 41, 42], synthesis and registration can benefit segmentation, which can help
develop better segmentation models on datasets without annotation.

We denote the segmentation model as a function S : x −→ p, where p ∈
P represents the segmentation map domain. Based on the constraint between
synthesis, registration and segmentation tasks, we define the objective as:

Lregdice(S, Φ,G) = Ex,y1−Dice[τ(S(G(x, y))), S(y)], (8)

where τ = Φ(G(x, y), y) and Dice(x, y) = 2xT y
xT x+yT y

is the widely used measure-
ment for the similarity between two binary volumes. This loss term connects
three components together and in the experiments afterwards we show this cru-
cial toward the whole system’s performance.

To make (8) work properly, we need the segmentation to be as accurate as
possible. However only with the consistency loss, the segmentation module is
not able to learn meaningful semantic information. For instance, a segmentation
module that predicts all background can trivially minimize (8). To avoid this,
we use fully supervised data, e.g., from public sources, to regularize the seg-
mentation. Importantly, because (8) is only applied on the Y domain, we need
only use supervised data from one modality, e.g., if we are registering dynamic
contrast CT data, we need only fully-supervised segmentation maps from the
more ubiquitous venous-phase CTs found in public data. Thus, the supervision
loss is defined as

Lsupdice(S) = Eysup1−Dice[S(ysup), psup)], (9)

where ysup ∈ Y is in the same modality with y ∈ Y, but the two datasets do not
overlap. psup ∈ Psup is the corresponding annotation. The total loss provided by
the segmentation module is

H(S, Φ,G) = Lregdice(S, Φ,G) + Lsupdice(S). (10)

3.4 Joint Optimization Strategy

Based on previous sections, the final objective for our whole system is

Φ∗, G∗, S∗ = arg min
Φ,G,S

F(Φ,G) + λsegH(S, Φ,G). (11)

In order to provide all the components with a good initial point, we first train
S on the fully-supervised data, {ysup, psup} and also train Φ and G using (7) on
the unsupervised data. Finally, we jointly optimize all modules by (11). When
optimizing (7) and (11), we use the classic alternating strategy for training GAN
models, which alternately fixes Φ,G, S and optimizes for D and then fixes D and
optimizes for the others.
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4 Experiments

Datasets. We conduct our main experiments on a large-scale dataset of 3D dy-
namic contrast multi-phase liver CT scans, extracted from the archives of the
Chang Gung Memorial Hospital (CGMH) in Taiwan. The dataset is composed
of 1485 patient studies and each studies consists of CT volumes of four differ-
ent intravenous contrast phases: venous, arterial, delay, and non-contrast. The
studied population is composed of patients with liver tumors who underwent CT
imaging examinations prior to an interventional biopsy, liver resection, or liver
transplant. Our end goal is to develop a computer-aided diagnosis system to
identify the pathological subtype of any given liver tumor. Whether the analysis
is conducted by human readers or computers, all phases need to be precisely
pre-registered to facilitate downstream analysis, which will observe the dynamic
contrast changes within liver tumor tissues across the sequential order of non-
contrast, arterial, venous and delay CTs.

The different phases are obtained from the CT scanner at different time
points after the contrast media injection and will display different information
according to the distribution of contrast media in the human body. The intensity
value of each voxel in the CT image, measured by the Hounsfield Unit (HU), is
an integer ranging from −1000HU to 1000HU, which will also be affected by the
density of contrast media. The volume size of the CT image is 512 × 512 × L,
where L can vary based on how the image was acquired. The z-resolution is
5mm in our dataset. Since the venous phase is one of the most informative for
diagnosis, and is also ubiquitous in public data, we choose it as the anchor phase
and register images from other three phases to it. Consequently, we also synthe-
size the other three phases images to the venous phase. We divide the dataset
into 1350/45/90 patients for training, validation and testing, respectively, and
we manaully annotate the liver masks on the validation and testing sets for eval-
uation. Note that there are in total 1485×4 = 5940 3D CT scans (all containing
pathological livers) used in our work. To the best of our knowledge, this is the
largest clinically realistic study of this kind to-date. For the supervised part, we
choose a public dataset, i.e., MSD [30], that contains 131 CT images of ve-
nous phase with voxel-wise annotations of the liver and divide it into 100/31 for
training and validation. We evaluate the performance of all three registration,
synthesis and segmentation tasks to measure the impact of joint training.

4.1 Baseline

We compare with several strong baselines for all three tasks:

– For image synthesis, we choose Pix2Pix [15]. We approximately treat the
multi-phase CT scans from the same patient as paired data, so that we
can better compare to see how incorporating registration can benefit the
synthesis module when there is no paired data.

– For image registration, we first compare with Deeds [9], one of the best regis-
tration methods to date for abdominal CT [38]. The advantage of learning-
based methods compared with conventional ones is often on the speed of
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Table 1: Evaluation for the registration task on the CGMH liver dataset in terms
of Dice score, HD (mm), ASD (mm), and GPU/CPU running time (s). Standard
deviations are in parentheses.

Dice ↑ HD95 ↓
Arterial Delay Non-Contrast Arterial Delay Non-Contrast

Initial State 90.94 (7.52) 90.52 (8.08) 90.08 (6.74) 7.54 (4.89) 7.86 (5.83) 7.87 (4.37)
Affine [24] 92.01 (6.57) 91.69 (6.80) 91.52 (5.48) 6.81 (4.83) 6.95 (5.32) 6.73 (3.63)
Deeds [9] 94.73 (2.10) 94.70 (1.91) 94.73 (1.90) 4.74 (1.96) 4.76 (1.69) 4.62 (1.05)

VoxelMorph [3] 94.28 (2.53) 94.23 (3.15) 93.93 (2.58) 5.29 (2.33) 5.42 (3.25) 5.40 (2.48)

JSynR-Reg 94.81 (2.35) 94.71 (2.62) 94.57 (2.52) 4.93 (2.14) 5.07 (3.06) 4.87 (2.30)
JSegR-Reg 95.52 (1.76) 95.39 (2.14) 95.37 (1.80) 4.47 (2.21) 4.70 (3.24) 4.45 (1.85)
JSSR-Reg 95.56(1.70) 95.42(2.00) 95.41(1.72) 4.44(2.19) 4.65(3.14) 4.35(1.60)

ASD ↓ Time ↓
Arterial Delay Non-Contrast Arterial Delay Non-Contrast

Initial State 2.12 (1.86) 2.27 (2.19) 2.37 (1.77) -/- -/- -/-
Affine [24] 1.74 (1.58) 1.86 (1.89) 1.87 (1.41) -/7.77 -/7.77 -/7.77
Deeds [9] 1.01 (0.44) 1.01 (0.39) 0.99 (0.36) -/41.51 -/41.51 -/41.51

VoxelMorph [3] 1.10 (0.53) 1.12 (0.87) 1.20 (0.67) 1.71/1.76 1.71/1.76 1.71/1.76

JSynR-Reg 0.95 (0.45) 0.98 (0.72) 0.98 (0.56) 3.14/1.76 3.14/1.76 3.14/1.76
JSegR-Reg 0.80 (0.37) 0.83 (0.59) 0.83 (0.40) 3.14/1.76 3.14/1.76 3.14/1.76
JSSR-Reg 0.79(0.36) 0.83(0.56) 0.82(0.37) 1.71/1.76 1.71/1.76 1.71/1.76

inference, but we can also show performance improvement. We also com-
pare with the learning-based VoxelMorph [3] with local cross-correlation
to handle multi-modal image registration.

– For the segmentation task, we compare with VNet [25], which is a popular
framework in medical image segmentation.

4.2 Implementation Details

We conduct several preprocessing procedures. First, since the CT images from
different phases, even for the same patient, have different volume sizes, we crop
the maximum intersection of all four phases based on the physical coordinates to
make their size the same. Second, we apply rigid registration using [24] between
the four phases, using the venous phase as the anchor. Third, we window the
intensity values to −200HU to 200HU and normalize to −1 to 1, and then we
resize the CT volume to 256× 256× L to fit into GPU memory. For the public
dataset, we sample along the axial axis to make the resolution also 5mm, and
then apply the same intensity preprocessing.

The structure of each component is shown in Fig. 3. We choose 3D V-Net [25]
for the generator and segmentation module and 3D PHNN [6] for the registra-
tion. To optimize the objectives, we use the Adam solver [18] for all the modules,
setting the hyper parameters to λseg = λreg = 1, λsyn = 0.02. We choose differ-
ent learning rates for different modules in order to better balance the training:.
0.0001, 0.001, 0.1, and 0.1 for the generator, registration module, segmentation
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Fig. 4: Box-plots for the registration results (DSC). Suffixes indicate the moving
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module, and discriminator, respectively. Another way to balance the training is
to adjust the loss term weights. However, there are loss terms that relate with
multiple modules, which makes it more complex to control each component sep-
arately. We train on the Nvidia Quadro RTX 6000 GPU with 24 GB memory,
with instance normalization and batch size 1. The training process takes about
1.4 GPU days.

4.3 Main Results

Multi-modal image registration We summarize the results of registration
task in Table 1. We use the manual annotations of the test set and evaluate
the similarity between those of fixed image, which is always in the venous phase
here, and the warped labels of the moving images chosen from arterial, delay
and non-contrast. The similarity is measured using the Dice score, 95 percent
hausdorff distance (HD), and the average surface distance (ASD). We also report
the consumed time on GPU/CPU in sec for each method. We use the term “Ini-
tial State” to refer to the result before applying any registration and “Affine”
to the result after rigid registration. We denote our joint system as JSSR and
JSSR-Reg is only the registration part of JSSR. We also compare two ablations



12 F. Liu et al.

Table 2: Evaluation for the synthesis and segmentation tasks on the CGMH liver
dataset in terms of average Dice score

VNet [25]
Dice ↑ Venous Arterial Delay Non-Contrast

No-Synthesis 90.47 (6.23) 89.47 (7.05) 89.88 (6.38) 89.38 (6.38)
Pix2Pix [15] 90.47 (6.23) 76.50 (17.77) 79.60 (13.13) 67.48 (15.97)

JSynR-Syn 90.47 (6.23) 89.69 (7.09) 90.01 (6.27) 90.15 (6.21)
JSSR-Syn 90.47 (6.23) 89.44 (7.15) 89.76 (6.34) 89.31 (7.57)

JSegR-Seg
Dice ↑ Venous Arterial Delay Non-Contrast

No-Synthesis 91.88 (4.84) 90.91 (5.06) 91.18 (4.68) 91.12 (4.72)
Pix2Pix [15] 91.88 (4.84) 89.59 (5.51) 87.78 (5.78) 89.59 (5.51)

JSynR-Syn 91.88 (4.84) 91.15 (4.93) 91.37 (4.56) 91.36 (4.54)
JSSR-Syn 91.88 (4.84) 91.12 (4.99) 91.30 (4.63) 91.39 (4.53)

JSSR-Seg
Dice ↑ Venous Arterial Delay Non-Contrast

No-Synthesis 92.24 (3.88) 91.25 (4.10) 91.34 (3.76) 91.37 (3.81)
Pix2Pix [15] 92.24 (3.88) 85.30 (7.11) 84.68 (9.29) 79.89 (8.49)

JSynR-Syn 92.24 (3.88) 91.42 (4.06) 91.58 (3.64) 91.67 (3.67)
JSSR-Syn 92.24 (3.88) 91.39 (4.10) 91.51 (3.72) 91.60 (3.69)

of JSSR. JSynR, which only contains the generator and registration module, is
optimized using (7). JSegR has the segmentation and registration module in-
stead. More details will be discussed in Section 5. As can be seen, our JSSR
method outperforms Deeds by 0.83% by average Dice, while executing much
faster in terms of inference. Also by taking advantage of the joint training, JSSR
achieves significantly higher results than VoxelMorph (exceeded by 1.28%) with
comparable inference time. We can observe gradual improvements from Voxel-
Morph to JSynR to JSSR, which demonstrates the successive contributions of
joint training. Fig. 4 depicts a box plot of these results.

Multi-modal image segmentation and synthesis Table 2 presents the syn-
thesis and segmentation evaluations. Following the practice of [15], we evaluate
the synthesis model by applying the segmentation model on the synthesized im-
age. The intuition is that the better the synthesized image is, the better the
segmentation map can be estimated. We evaluate with three segmentation mod-
els. The VNet baseline is trained on the MSD dataset with full supervision.
JSegR-Seg is the segmentation part of JSegR as described in Section 5. JSSR-
Seg is the segmentation module of our JSSR system. For each segmentation
model, we test it on different synthesis model, thus comparing all possible syn-
thesis/segmentation combinations. For “No-Synthesis”, we directly apply the
segmentation model on original images. For the three synthesis models, we test
the segmentation model on the original venous image and also on the “fake”
venous images synthesized from arterial, delay, non-contrast phases. From the
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Arterial Venous Synthesized Venous Warped Arterial

Arterial Liver Venous Liver Venous Liver (Pred) Arterial Liver
（Warped ）

(a) Results on the arterial CT phase.

Non-contrast Venous Synthesized Venous Warped Non-contrast

Non-contrast Liver Venous Liver Venous Liver (Pred) Non-contrast Liver
（Warped ）

(b) Results on the non-contrast CT phase.

Fig. 5: Qualitative examples of JSSR synthesis, segmentation and registration.

No-Synthesis lines we can observe a clear performance drop when directly apply-
ing the segmentation model to arterial, delay and non-contrast phases, since the
supervised data is all from the venous phase. For Pix2Pix, the performance goes
through different levels of reduction among different segmentation algorithms
and is not as high as the Non-Synthesis. That may be caused by artifacts in-
troduced by the GAN model and the L1 term is providing less constraint since
there is no paired data. Comparing the JSynR-Syn and JSSR-Syn generators,
the performance is improved by creating true paired data via the registration
process, but even so, it is just comparable to No-Synthesis. For JSynR-Syn, the
JSynR is not jointly learned with a segmentation process, so the performance for
synthesized images does not necessarily go up. For JSSR-Syn, however, it means
the constraints we are using for optimizing the system does not bring enough
communication between the generator and segmentor to improve the former.
Even so, we can improvements from VNet to JSegR-Seg to JSSR-Seg on both
the No-Synthesis and various synthesis options, indicating that the segmentation
process can still benefit from a joint system, which includes the synthesis mod-
ule. Please refer to Fig. 5 for qualitative examples of JSSR registration, synthesis
and segmentation results.
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5 Ablation and Discussion

JSegR vs JSSR We implement JSegR as another ablation. The purpose is
to explore the importance of the synthesis module for the JSSR system. Since
JSegR does not have a generator, the registration module takes images from
different phases directly as input. The segmentation consistency term in (8) is
then replaced with

Lregdice(S, Φ) = Ex,y1−Dice[τ(S(x)), S(y)], (12)

where τ = Φ(x, y). This framework is similar to [39], which jointly learned the
registration and the segmentation module . In our case, though, x, y are in a
different domain and the annotations are unavailable. This method is expected
to struggle, since x, y are in different phases. However, as shown in Table 2, the
performance drop across phases is not too severe even for the baseline VNet.
Correspondingly, JSegR can achieve a higher result on registration than JSynR
and performs close to JSSR, which demonstrates the great importance of incor-
porating semantic information into the registration.

Extra constraints The constraints detailed in Fig. 1 are not the only possible
constraints. For instance, constraints can be added to ensure consistency between
“register first” vs “register last” pipelines:

LregL1 (Φ,G) = Ex,y||G(τ(x), y)− τ(G(x, y))||1. (13)

However, each constraint introduces additional complexity. Future work should
explore whether (13), or other constraints, can boost performance further.

6 Conclusion

In this paper, we propose a novel JSSR system for multi-modal image regis-
tration. Our system takes advantages of joint learning based on the intrinsic
connections between the synthesis, segmentation and registration tasks. The op-
timization can be conducted end-to-end with several unsupervised consistency
loss and each component benefits from the joint training process. We evaluate the
JSSR system on a large-scale multi-phase clinically realistic CT image dataset
without any segmentation annotations. After joint training, the performance of
registration and segmentation increases by 0.91% and 1.86% respectively on the
average Dice score for all the phases. Our system outperforms the recent Voxel-
Morph algorithm [3] by 1.28%, and the state-of-the-art conventional multi-modal
registration method [9] by 0.83%, but has considerably faster inference time.
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11. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, M., Schnabel, J.A.: Towards
realtime multimodal fusion for image-guided interventions using self-similarities.
In: International conference on medical image computing and computer-assisted
intervention. pp. 187–194. Springer (2013)

12. Hu, Y., Modat, M., Gibson, E., Li, W., Ghavami, N., Bonmati, E., Wang, G.,
Bandula, S., Moore, C.M., Emberton, M., et al.: Weakly-supervised convolutional
neural networks for multimodal image registration. Medical image analysis (2018)

13. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 172–189 (2018)

14. Huo, Y., Xu, Z., Moon, H., Bao, S., Assad, A., Moyo, T.K., Savona, M.R., Abram-
son, R.G., Landman, B.A.: Synseg-net: Synthetic segmentation without target
modality ground truth. IEEE transactions on medical imaging (2018)

15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)



16 F. Liu et al.

16. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: Advances in neural information processing systems. pp. 2017–2025 (2015)

17. Ketcha, M.D., De Silva, T.S., Han, R., Uneri, A., Vogt, S., Kleinszig, G., Siew-
erdsen, J.H.: Learning-based deformable image registration: effect of statistical
mismatch between train and test images. Journal of Medical Imaging (2019)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015)

19. Li, B., Niessen, W.J., Klein, S., de Groot, M., Ikram, M.A., Vernooij, M.W., Bron,
E.E.: A hybrid deep learning framework for integrated segmentation and regis-
tration: evaluation on longitudinal white matter tract changes. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
645–653. Springer (2019)

20. Li, H., Fan, Y.: Non-rigid image registration using fully convolutional networks
with deep self-supervision. arXiv preprint arXiv:1709.00799 (2017)

21. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal-
ity image registration by maximization of mutual information. IEEE transactions
on Medical Imaging 16(2), 187–198 (1997)

22. Mahapatra, D., Antony, B., Sedai, S., Garnavi, R.: Deformable medical image reg-
istration using generative adversarial networks. In: 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018). pp. 1449–1453. IEEE (2018)

23. Maintz, J.A., Viergever, M.A.: An overview of medical image registration meth-
ods. In: Symposium of the Belgian hospital physicists association (SBPH/BVZF).
vol. 12, pp. 1–22. Citeseer (1996)

24. Marstal, K., Berendsen, F., Staring, M., Klein, S.: Simpleelastix: A user-friendly,
multi-lingual library for medical image registration. In: Proceedings of the IEEE
conference on computer vision and pattern recognition workshops (2016)

25. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Confer-
ence on 3D Vision (3DV). pp. 565–571. IEEE (2016)

26. Qin, C., Bai, W., Schlemper, J., Petersen, S.E., Piechnik, S.K., Neubauer, S.,
Rueckert, D.: Joint learning of motion estimation and segmentation for cardiac
mr image sequences. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 472–480. Springer (2018)

27. Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised
deformable registration for multi-modal images via disentangled representations.
In: International Conference on Information Processing in Medical Imaging. pp.
249–261. Springer (2019)

28. Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.H.:
Landmark-based elastic registration using approximating thin-plate splines. IEEE
Transactions on Medical Imaging (2001)

29. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos.
In: 2007 IEEE Conference on Computer Vision and Pattern Recognition (2007)

30. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., et al.: A large an-
notated medical image dataset for the development and evaluation of segmentation
algorithms. arXiv preprint arXiv:1902.09063 (2019)

31. Studholme, C., Hill, D.L., Hawkes, D.J.: An overlap invariant entropy measure of
3d medical image alignment. Pattern recognition 32(1), 71–86 (1999)



JSSR System for 3D Multi-Modal Image Alignment 17

32. Sultana, S., Song, D.Y., Lee, J.: A deformable multimodal image registration us-
ing PET/CT and TRUS for intraoperative focal prostate brachytherapy. In: Fei,
B., Linte, C.A. (eds.) Medical Imaging 2019: Image-Guided Procedures, Robotic
Interventions, and Modeling. vol. 10951, pp. 383 – 388. International Society for
Optics and Photonics, SPIE (2019). https://doi.org/10.1117/12.2512996

33. Tanner, C., Ozdemir, F., Profanter, R., Vishnevsky, V., Konukoglu, E., Goksel,
O.: Generative adversarial networks for mr-ct deformable image registration. arXiv
preprint arXiv:1807.07349 (2018)

34. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum,
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