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In the supplementary material, we provide a more detailed description of
interactive segmentation training and the mask decoder’s structure. We also show
additional qualitative results, and provide an overview of our annotation tool
when used in practice.
1 Interactive Segmentation Training Details
Multi-Stage Training For Mask Propagation Module: The mask propa-
gation module is trained in two stages. We pretrain the module on synthetic video
clips. Each clip includes a pair of reference and target frame, and is generated by
applying random affine transformation and object composition following [4]. We
expect this to make the network more robust to variations in object appearance.
We then fine-tune it on video segmentation datasets. For each training video clip,
we randomly sample 3 ordered frames and apply data augmentation including
random flipping, 10% bounding box noise and affine transformation. The two-
stage training takes about 1 day on synthetic video clips, 3 days on DAVIS2017
and 5 days on YoutubeVOS using 4 NVIDIA Tesla P100 GPUs.

Batch Hard Triplet Loss For Scribble Propagation Module: We uti-
lize the batch hard triplet loss from [1] to supervise the embedding head in
the scribble propagation network. First, we use fc ∈ RD to denote the feature
vector at each location in the feature map Fc. Similarly, for each location in
the image feature Fr of frame r, we have a feature vector fr. For each fr ∈ Fr,
if it corresponds to fc, we define it as positive/true sample with respect to fc,
denoted by f+

r , otherwise it is negative/false sample, denoted as f−r . We denote
the set of f+

r as {f+
r } and the set of f−r as {f−r }. Then the batch hard triplet

loss can be written as:

LBHTriplet(Fc, Fr) =
∑

fc∈Fc

l(fc, {f+
r }, {f−r }), (1)

where
l(fc, {f+

r }, {f−r }) = min
f+

r ∈{f+
r }
‖emb(fc)− emb(f+

r )‖2
2−

min
f−

r ∈{f−
r }
‖emb(fc)− emb(f−r )‖2

2 + α
(2)
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Here, α is the minimal margin between positive and negative samples, and emb(·)
is the embedding function. This loss is able to push two samples that do not
correspond to each other away even if they have similar semantic information.

Implementation Details: We always crop the input images, masks (and
scribbles) based on the input bounding box and resize them to 512 × 512 (or
256× 256 when specifing). We use SGD optimizer with momentum of 0.9 and a
cyclical learning rate policy [3] to speed up the training process. The minimum and
maximum learning rate is set to 1e-5 and 1e-3, respectively. We use triangular2
CLR policy and 4 cycles throughout training. Once mask propagation module is
trained, we freeze the image encoder and train interactive segmentation module
and scribble propagation module.

Refinement layer 1 and 2 Refinement layer 3

Fig. 1: Structure of three refinement layers in the decoder. Note that the skip
connection in the refinement layer 3 is removed.

2 Mask Decoder’s Structure
There are two decoders in our framework. Interactive decoder is used to produce
a refined mask of a single frame based on the human-in-the-loop interaction. We
also have a propagation decoder which is shared by both the mask and scribble
propagation networks.

In particular, we combine three refinement modules [4] as our decoder. Dif-
ferent from the original structure, we remove the first refinement module and
add an additional refinement module without skip connection before the last
convolution layer. Three refinement modules produce feature maps with 224, 224,
128 channels, respectively, and the last convolution layer produces the final mask.
The size of the output mask is half the size of the input image.

The detailed structures of our refinement modules are shown in Figure 1.
3 Qualitative Results
We illustrate an example Curve-VOT result in Fig. 2. In Figure 3 we provide
a qualitative comparison for our interactive segmentation network trained with
and without the scribble consistency loss. The user input scribble is typically
ignored without this loss.

We show additional annotation examples on the EPIC-Kitchen dataset [2]
using our annotation tool in Figure 4.

4 Annotation Tool

We demonstrate the step-by-step usage of our annotation tool in Fig 5. Please
refer to demo video from 00:47s.
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Auto 1 Corrections

2 Corrections Box Refinement

Fig. 2: This plot shows
an example of how a
box track gets refined
with user’s corrections.
Results are reported on
KITTI. Blue & green
are ground-truth trajec-
tories of the center and
top-left box coordinate.
Orange & red is the
track from Curve-VOT.
Only 2 corrections are
required to produce an
accurate track.

W/O Scribble Consistency W/ Scribble Consistency

Fig. 3: Qualitative examples demonstrate the effectiveness of our scribble consis-
tency loss. The second and third rows show neighbour frames propagated from t
with and without scribble consistency loss respectively.
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Fig. 4: Example annotations using our annotation tool in practice on the EPIC-Kitchen
dataset. Each object in a 100-frame video requiring on average 67.1s of annotation time
(including inference time). The first column in each two rows indicates target objects.
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Step1: User draws a box at the first
frame.

Step2: Auto tracking and pop out
key frames (nearest frames to control
points).

Step3: User spots a mistake in one of
the keyframes and corrects it by drawing
a new box. We then re-run the tracker
and re-fit the curve.

Step4: User corrects the mask with
scribbles, which are propagated to other
frames.

Step5: Done!

Fig. 5: Step-by-step overview of Scribble-Box annotation tool. See video for seeing the
tool being used in practice.
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