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Abstract. We address the weakly supervised video highlight detection
problem for learning to detect segments that are more attractive in train-
ing videos given their video event label but without expensive supervision
of manually annotating highlight segments. While manually averting
localizing highlight segments, weakly supervised modeling is challenging,
as a video in our daily life could contain highlight segments with multiple
event types, e.g., skiing and surfing. In this work, we propose casting
weakly supervised video highlight detection modeling for a given specific
event as a multiple instance ranking network (MINI-Net) learning. We
consider each video as a bag of segments, and therefore, the proposed
MINI-Net learns to enforce a higher highlight score for a positive bag that
contains highlight segments of a specific event than those for negative
bags that are irrelevant. In particular, we form a max-max ranking loss
to acquire a reliable relative comparison between the most likely positive
segment instance and the hardest negative segment instance. With this
max-max ranking loss, our MINI-Net effectively leverages all segment
information to acquire a more distinct video feature representation for
localizing the highlight segments of a specific event in a video. The exten-
sive experimental results on three challenging public benchmarks clearly
validate the efficacy of our multiple instance ranking approach for solving
the problem.

1 Introduction

In our daily life, people like to share their shining moments by posting videos
on social media platforms, such as YouTube and Instagram. These well-edited
videos in the social media platforms can quickly attract audience and convey an
owner’s experience. However, behind a well-credited video, there is the owner’s
heavy workload, as producing highlight clips from a lengthy video by hand is
a time-consuming and laborious task. Therefore, it would be highly demanded
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for developing an automated tool to cut out highlights from a lengthy video,
automatically generating a highlight short-form video.

Recently, video highlight detection has attracted an increasing amount of
attention. Existing methods are mainly divided into two strategies. The first
category casts the video highlight detection into a supervised learning problem
[9,31,12]. Given both unedited videos and their highlight annotations labelled
manually, a ranking net is trained to score segments in videos such that the
highlight segments have higher highlight scores than those non-highlight segments
in the video. For example, in [9], they proposed a robust deep RankNet to generate
a rank list of segments according to their suitability as graphic interchange format
(GIF) and designed an adaptive Huber loss to resist the noise effect caused by
the outlier data. However, these methods work in the supervised learning manner
and requires massive annotation on highlights in the training videos, which is
hard and costly to be collected.

The second strategy treats video highlight detection as a weakly supervised
recognition task [30,27,25]. Given certain events’ videos, they treat short-form
videos as a collection of highlights, while long-form videos contain a high propor-
tion of non-highlights. Specially, Xiong et al. [27] designed a model that learns to
predict the relations between highlight segments and non-highlight segments of
the same event such that the highlight segments would have higher scores than
non-highlight segments in the same event. Additionally, the work [30] employs
the auto-encoder structure to narrow the reconstruction error of segments in
short-form videos, which are considered as highlights. However, video highlight
detection remains as a challenging problem, as in real-world scenarios an unedited
video in social media platforms may contain highlights of more than one event,
and the above mentioned detectors that are trained on videos of target event
cannot well filter out the highlights of the other events. Without such human
annotation, it is hard and indeed challenging to locate the real highlight of a
target event in a video and perform specific learning.

In this work, we provide a new and effective approach for solving the weakly
supervised setting: even though the exact highlight annotations of a video are
not available, the label whether a video has a type of highlight is provided. In
such a weakly supervised setting, we know that there exists a segment of a video
that corresponds to a target highlight, but we also understand that there exist
other segments of the video that do not correspond to the target highlight. To
cope with this setting, we consider each video as a bag, and each bag contains a
set of segments of the video (i.e., the video segments are treated as instances
in each bag). Therefore, we cast the weakly supervised highlight detection as a
multiple instance learning problem and proposed a Multiple InstaNce rankIng
NETwork (MINI-Net) for video highlight detection. As shown in Figure 1, for
each type of highlight event, we construct positive bags using the videos that
that contain the target highlights (e.g., surfing), and the videos that contain
other irrelevant highlight events but not the target event (e.g., dog show) are
used to form the negative bags. For such bag-level classification, we introduce two
objective functions, i.e., max-max ranking loss and binary bag event classification
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Fig. 1: To train a model to detect surfing’s highlights, we can collect unannotated
videos of various events from the internet using query tags. Although the highlight
annotations (i.e., labels telling which segments are highlights) are not available, we
know that the videos with the “surfing” tag (e.g., the left video) potentially contain
“surfing” highlights, while the videos of other event tags would not have highlights about
surfing (e.g., videos of “dog show” shown on the right side would not have highlights
of surfing). We cast video highlight detection as a multiple instance learning problem,
where we can treat videos of “surfing” as positive bags as they contain highlights of
“surfing”, while videos of other events are negative bags as they do not have highlights
of “surfing”.

loss, to effectively train the MINI-Net. In particular, the max-max ranking loss
is designed to acquire a reliable relative comparison between the most likely
positive segment instance and the most hard negative segment instance. And
meanwhile, minimizing the binary bag event classification loss enforces model to
produce more informative bag representation for the specific event. To our best
knowledge, this is the first to develop a multiple instance learning approach for
weakly supervised video highlight detection.

In addition to the bag classification module, our MINI-Net also consists of
two other modules: vision-audio fusion module and highlight estimation module.
The vision-audio fusion module leverages both vision features and audio features,
which is beneficial as, inspired by [1] learning about video segments both visually
and aurally can produce more informative features. The highlight estimation
module utilizes these features to estimate the highlight score for them. We
aggregate all instance features weighted by their immediate highlight scores to
generate the bag feature for the bag classification module.

In our experiments, we compared the proposed model with other related
methods for three challenging public video highlight detection benchmarks. i.e.,
YouTube Highlights dataset [21], TVSum dataset [19] and CoSum dataset [4].
Additionally, we have conducted an ablation study to investigate the effect of the
proposed max-max ranking loss and bag classification module and validate the
use of audio features and vision features. The experimental results show that our
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proposed model achieves a state-of-the-art performance for three public datasets
and verify its efficacy for video highlight detection.

2 Related Work

- Video Highlight Detection. In recent years, video highlight detection has
attracted increasing attention. Researchers have mainly developed approaches to
detect highlights of sport videos [24,29,22] in the early stage. Recently, supervised
video highlight detection has been proposed for general videos from social media
platforms [21] and first-person videos [31]. These methods require massive anno-
tations for training videos which is a time-consuming and laborious task. The
Video2GIF [9] method, learns from manually created GIF-video pairs, proposed
a robust deep RankNet to generate a ranked list of segments according to their
suitability as a GIF, and used an adaptive Huber loss to suppress the noise effect
caused by outlier data. Weakly supervised methods on video highlight detection
can effectively reduce the pressure of manual labeling. More recently, methods
that trained on a collection of videos of the same topic [30,27] gain a satisfactory
performance. They leverage category-aware reconstruction loss [30] to identify
the highlights or exploit the video duration as an implicit supervision [27].

Like these weakly supervised video highlight detection methods, our approach
also tailors highlights to the topic event. However, existing methods cannot filter
the highlights of irrelevant events as they are trained on specific event videos.
Unlike existing methods, our approach formulates a multiple instance learning
framework to tackle the video highlight detection problem. Treating videos of
other events as negative bags in our framework and using proposed max-max
ranking loss to enlarge the gap between instances of target event and those
of other events in terms of highlight scores can help to filter the segments of
irrelevant events and detect the highlights of the target event in a general video.
- Video Summarization. Video summarization [19,2,28,14], which is highly
related to video highlight detection, outputs a video summary by the estimated
importance of segments. Different from video highlight detection, video sum-
marization focuses on the integrity of the video story. Mahasseni et al. [14]
proposed an adversarial long short-term memory (LSTM) network, consisting of
a summarizer and a discriminator, to regularize the consistency between the story
of the summary and the original video. In addition, by using deep reinforcement
learning, [33] formulated video summarization as a sequential decision-making
process, rewarded by the diversity and representativeness of the generated video
summaries. Recently, [2] presented a generative modeling framework, which con-
tains two important components: a variational auto-encoder for learning the
latent semantics from web videos and an encoder-attention-decoder for saliency
estimation of the raw video and the summary generation, to learn the latent
semantic video representations to bridge the benchmark data and web data.
Different from video summarization, our approach selects the highlight segments
by comparing the instances in the training pair, which consists of one most likely
highlight an instance from the positive bag and one hard non-highlight instance
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Fig. 2: Illustration of our proposed MINI-Net. We feed two bags, positive bag and
negative bag, into vision-audio Fusion Module (Figure (a)) to encode the vision-audio
fusion feature. The highlight estimation module (Figure (b)) takes as input these
features to estimate the highlight scores. Beyond this, the immediate highlight scores
and vision-audio fusion features are fed into the bag classification module (Figure (c))
for bags’ event category classification. The max-max ranking loss is designed to ensure
that the score of the segment in the positive bag with highest score is higher than the
score of the segment in the negative bag with the highest score with a margin. Beyond
this, the binary cross entropy loss is adopted for bags’ event classification.

from the negative bag. The inherent characteristics that there is at least one
positive instance in the positive bag and instances are all negative in negative
bag improve our MINI-Net’s distinguishing power for detecting highlights.

- Multiple Instance Learning. The multiple instance learning (MIL) is a form
of weakly supervised learning in which the training instances are arranged in
sets, called bags, and a label is provided for the entire bag. The field of MIL has
generated a large amount of interest and is still growing [26,5,20,11,3,23,15]. Ilse
et al. [11] proposed a neural-network-based permutation-invariant aggregation
operator, a gated attention mechanism that provides insight into the contribution
of each instance to the bag label, to produce bag features. Considering normal and
anomalous videos as bags and video segments as instances in multiple instance
learning framework, the work in [20] develops a deep multiple instance ranking
framework to predict high anomaly scores for anomalous video segments.

In this work, the objective of multiple instance learning is different from the
above, and ours is for solving weakly supervised video highlight detection, which
has not been attempted before, and some of the above MIL methods may not be
applicable or effective for our problem. In addition, unlike the above MIL methods
that only explore the relations among instances of a bag to encode informative
bag representation and the bag classification for learning, we introduce a max-
max ranking loss to acquire a reliable relative comparison between the most
likely positive segment instance and the hardest negative segment instance. This
enables our method for more effectively distinguishing highlight from videos,
which is verified in our experiments.
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3 Approach

In this work, we explore event-specific6 video highlight detection under weakly
supervised setting; that is we trained on unannotated data samples, in each of
which the event-specific highlight exists but the annotation on its location is not
specified. In such a weakly supervised setting, we know there exists a segment of
a video corresponding to an event-specific highlight, but we also understand that
there exist other segments of the video not corresponding to the event-specific
highlight but probably others. Therefore, we cast the weakly supervised highlight
detection as a multiple instance learning problem, and develop a Multiple InstaNce
rankIng NETwork (MINI-Net) for video highlight detection. We consider each
video as a bag, and each bag contains a set of segments of the video (i.e., the
video segments are treated as instances in each bag). We denote the event of
interest as interest event and the other as non-interest events, and therefore a
video contains the event of interest is called a positive video and a video that
does not is called a negative video.

More specifically, we represent a positive video as a bag Bp = {Iip}Ni=1,

namely a positive bag. The positive bag contains N individual instances {Iip}Ni=1

(i.e., segments of the positive video). Similarly, the negative bag Bn contains N
different segments {Iin}Ni=1 from a negative video. Our model learns the highlights
of interest event through positive bag; and through the learning of negative bag,
the segments of the videos in non-interest events are treated as non-highlights
for the specific event.

Given a pair of bags (i.e., a positive bag Bp and a negative bag Bn), we
first pre-extract the vision features {f iv}Ni=1 and audio features {f ia}Ni=1 using
pretrained models. We then feed the pre-extracted features of both the positive
bag and negative bag into the proposed model to estimate the highlight scores
of instances (i.e., {E ip}Ni=1, {E in}Ni=1) and event prediction (i.e., interest event or
non-interest event) of two bags (i.e., yBp , yBn) as follows:

{f ip}Ni=1, {f in}Ni=1 = fF ({Iip}Ni=1, {Iin}Ni=1|θF ),

{E ip}Ni=1, {E in}Ni=1 = fE({f ip}Ni=1, {f in}Ni=1|θE),

yBp
, yBn

= fC({f ip}Ni=1, {f in}Ni=1, {E ip}Ni=1, {E in}Ni=1|θC),

(1)

where fF (·) is the vision-audio fusion module parameterized by θF . The vision-
audio fusion module takes each segment’s vision feature and audio feature as input
to encode the vision-audio fusion feature that contains both vision information
and audio information (i.e., {f ip}Ni=1, {f in}Ni=1 are vision-audio fusion features for
the positive bag and negative bag). The encoded fusion features are input into the
highlight estimation module fE(·) parameterized by θE to predict their highlight
scores. The bag classification module fC(·) takes as input the vision-audio fusion
features of all segments and their immediate highlight score to estimate the event
category of both the positive bag and the negative bag.

6 We use the term event-specific to mean that there is event/category of interest
specified by keyword(s) like “surfing”, following [27,30].
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Fig. 3: Illustration of the vision-audio fusion submodule. The dimension of both vision
feature f̂ iv and audio feature f ia are 128. k is the number of fusion submodule. The “FC”
and “ReLU” represent fully connection and rectified linear unit activation, respectively.

To facilitating distinguishing positive bags from negative bags, we introduce
two loss functions, i.e., the max-max ranking loss and the binary bag event clas-
sification loss, to effectively train the whole multiple instance learning framework.
The illustration shown in Figure 2 provides an overview of our proposed method.

3.1 Vision-audio Fusion Module fF (·)

Given a bag of segments, instead of using the visual information to estimate the
highlight score individually, we consider using both visual and audio information
as visual and audio events tend to occur together, and it has been shown that
audio can be adopted to assist computer vision tasks[1,10,25]. For instance,
a scene of people surfing is usually accompanied by the sound of waves. To
this end, we design a vision-audio fusion module to encode visual-audio fusion
representations for video highlight detection.

Given the pre-extracted vision feature f iv ∈ R512 and audio feature f ia ∈ R128

of a segment Ii in a bag (i.e., positive bag or negative bag), as the dimensions
of both features are not the same, we first employ two fully connected layers
to transform f iv to a 128-dimensional vector, denoted as f̂ iv. We then encode the
vision-audio relation feature f iR and employ the residual connection to merge

the vision-audio relation feature and vision feature f̂ iv, yielding the vision-audio

fusion feature f i = f̂ iv + f iR.

To encode f iR, we concatenate the vision feature f̂ iv and audio feature f ia and
feed the concatenated feature into k parallel fusion submodules to transform
the concatenated feature to k relation features f iRk

. We then concatenate the k

relation feature to form the vision-audio relation feature f iR.
We show the architecture of the submodules in Figure 3. Each fusion submod-

ule contains 3 fully connected layers and two activation operators to transform a
256-dimensional concatenated feature into a 128

k -dimensional relation feature. In
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this way, the vision-audio fusion feature can be rewritten as follows:

f i = f̂ iv + Concat[f iR1
, . . . , f iRk

], (i = 1, . . . , N). (2)

In this way, the k parallel relation submodules allow the vision-audio fusion
module to learn various types of relations between vision and audio. Additionally,
encoding two sources of features (i.e., vision and audio) enables the vision-audio
fusion module to automatically activate the audio information if the audio is
useful for the interest event and suppress the audio information if the audio is
noisy or not helpful.

3.2 Highlight Estimation Module fE(·)

To predict the highlight score, we feed the vision-audio fused feature f i into the
highlight estimation module, where we transform f i into a score value that will
be used for bag classification and computing the proposed max-max ranking loss
in later sections. More specifically, we first compute the initial highlight score by:

Ê i = WH(ReLU(WSf i)), (3)

where WS is a matrix projecting the vision-audio fusion feature into a subspace,
the ReLU activation operator activates the effective elements, and the matrix
WH is applied to measure the highlight score.

Rather than simply using Ê i as the highlight score, we consider estimating the
final highlight score using the scores of all segments in a bag since the highlight
score of one segment is related to other segments in the same video. Therefore,
we formulate the final score as:

E i =

(
N∑
t=1

exp(Êt)

)−1
exp(Ê i), (4)

In this way, E i is normalized in a bag and can be compared with the score of a
segment in another bag.

3.3 Bag Classification Module fC(·)

Apart from estimating highlight scores of individual segments, we find that
the event category can also be used as a supervision signal for training. The
event category label can be more easily collected as all videos can be collected
by specific query tags, and the tags can be used to generate the binary event
label (i.e., interest event or non-interest events). In addition, it is the fact that
a video may contain highlights of various events while we are only interested
in a specific event’s highlights. This means that correctly classifying the event
category (interest event or non-interest events) can be a useful inductive bias for
event-specific highlight detection.

More specifically, we first label positive videos (videos of interest event) as
1 and negative videos (videos of non-interest events) as 0, i.e., YBp

= 1 for Bp
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and YBn
= 0 for Bn. To classify the event category of each bag, we aggregate

the vision-audio fusion features of all instances weighted by their immediate
estimated highlight scores to generate the bag representation:

fB =

N∑
i=1

E if i. (5)

In this way, the generated bag representation could be highly informative for
the event classification of each bag, as it mainly relies on the vision-audio fusion
feature of the instance with high highlight scores.

We then feed the generated bag feature fB into an event classifier that consists
of two fully connected layers. We apply the softmax function to estimate the
event categories for both the positive bag yBp

and the negative bag yBn
.

3.4 Objective Functions

After obtaining the predicted highlight scores of segments and the estimated
event categories of the positive bag and negative bag, we introduce two objec-
tive functions (i.e., max-max ranking loss and bag event classification loss) to
effectively train our MINI-Net.
- “max-max” ranking loss (MM-RL). To learn the highlight detection model,
we expect that the highlight score of a ground-truth highlight segment is higher
than the score of a non-highlight segment:

Egt−H > Egt−N , (6)

where Egt−H is the highlight score of a ground-truth highlight segment and Egt−N
is the score of a non-highlight segment.

However, the highlight annotations are not available during training. Con-
sidering that the positive video contains at least one highlight segment, and the
negative video does not have any highlights of the interest event, we thus believe
the segment from a positive video with the highest score is the most likely to be
a highlight, and the segment from the negative bag with the highest score can be
assigned as a hardest non-highlight. We adapt Eq. 6 as follows for acquiring a
reliable relative comparison between mostly likely positive instance and hardest
negative instance:

max
Iip∈Bp

E ip > max
Iin∈Bn

E in, (7)

where max operators pick the maximum value from the highlight scores of all
segments in a bag. Here, the highlights in the non-interest events’ videos are
viewed as non-highlights for the interest event. Using the segments of the non-
interest events as a negative instance is more reliable than using the segment
from the long-form interest event’s video [27].

To instantiate Eq. 7, we introduce the max-max ranking loss (MM-RL) as:

LMM (Bp,Bn) = max(0, ε− max
Iip∈Bp

E ip + max
Iin∈Bn

E in), (8)
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where LAH is applied to ensure that maxIip∈Bp
E ip is larger than maxIin∈Bn

E in
with a margin of ε. ε is a hyperparameter and is equal to 1 in this work.
- Bag Event Classification Loss. As mentioned in Sec. 3.3, in addition to the
MM-RL loss, we expect the bag event classification loss can enforce the model to
produce more informative bag representation for the specific event. To this end,
we apply the binary cross entropy loss function to the estimated event categories
of both positive bag and negative bag for bag event classification. Finally, we add
up both the MM-RL and the bag event classification loss to form the final loss:

L = LMM (Bp,Bn) + LCE(yBp
, YBp

) + LCE(yBn
, YBn

), (9)

where LCE(·) is the binary cross entropy loss function.

4 Experiments

In this section, we conduct extensive experiments on three public datasets to
investigate the effectiveness of the proposed model. More experimental results
and details are reported and analyzed in the Supplementary Material.

4.1 Datasets and Metrics

We evaluate our method on three public benchmarks datasets, i.e., YouTube
Highlights [21], TVSum [19] and CoSum [4], for video highlight detection.
- YouTube Highlights contains six evnet-specific categories, i.e., dogs, gym-
nastics, parkour, skating, skiing and surfing, and there are approximately 100
videos in each event. The given label for YouTube highlights indicates whether a
segment is a ground-truth highlight segment.
- TVSum is an available video summarization benchmark dataset that is collected
from YouTube and crawled by an event-specific queried tag. The dataset consists
of 50 videos grouped by 10 categories (5 videos per category). We follow [2,27]
and select the top 50% shots in terms of the score provided by annotators for
each video as a human-created summary.
- CoSum has 51 videos covering 10 events. We follow [16,2] and compare each
generated highlights with three human-created summaries.

4.2 Compared Methods

To further demonstrate the capacity of our method, we compare our method
with numerous different methods on three datasets for video highlight detection.
- Weakly supervised methods. The compared methods include RRAE [30],
MBF [4], SMRS [6], Quasi [13], CVS [17], SG [14], and LIM-s [27], and two
weakly supervised methods, VESD [2] and DSN [16]. Although most of these
methods are used for video summarization, their performance is evaluated using
the same metrics as the metrics used in this study.
- Supervised methods Additionally, there are several supervised methods (i.e.,
GIFs [9],LSVM [21], KVS [18], DPP [7], sLstm [32] and SM [8]) that are applied
in video highlight detection and video summarization. We compare these methods
using the same matrices mentioned above.
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Topic
Supervised Methods Weakly supervised Methods Weakly supervised

GIFs LSVM RRAE LIM-s MINI-Netw/o audio MINI-Net
dog 0.308 0.60 0.49 0.579 0.5368 0.5816
gymnastics 0.335 0.41 0.35 0.417 0.5281 0.6165
parkour 0.540 0.61 0.50 0.670 0.6888 0.7020
skating 0.554 0.62 0.25 0.578 0.7094 0.7217
skiing 0.328 0.36 0.22 0.486 0.5834 0.5866
surfing 0.541 0.61 0.49 0.651 0.6383 0.6514
Average 0.464 0.536 0.383 0.564 0.6138 0.6436

Table 1: Experimental results (mAP) on the YouTube Highlights dataset. Our method
outperforms all of the compared methods, including the state-of-the-art weakly super-
vised ranking-based method [27].

Topic
Supervised Methods Weakly supervised/Un Methods Weakly supervised

KVS DPP sLstm SM SMRS Quasi MBF CVS SG LIM-s DSN VESD MINI-Netw/o audio MINI-Net
VT 0.353 0.399 0.411 0.415 0.272 0.336 0.295 0.328 0.423 0.559 0.373 0.447 0.8028 0.8062
VU 0.441 0.453 0.462 0.467 0.324 0.369 0.357 0.413 0.472 0.429 0.441 0.493 0.6527 0.6832
GA 0.402 0.457 0.463 0.469 0.331 0.342 0.325 0.379 0.475 0.612 0.428 0.496 0.7535 0.7821
MS 0.417 0.462 0.477 0.478 0.362 0.375 0.412 0.398 0.489 0.540 0.436 0.503 0.8128 0.8183
PK 0.382 0.437 0.448 0.445 0.289 0.324 0.318 0.354 0.456 0.604 0.411 0.478 0.7801 0.7807
PR 0.403 0.446 0.461 0.458 0.276 0.301 0.334 0.381 0.473 0.475 0.417 0.485 0.5446 0.6584
FM 0.397 0.442 0.452 0.451 0.302 0.318 0.365 0.365 0.464 0.432 0.412 0.487 0.5586 0.5780
BK 0.342 0.395 0.406 0.407 0.297 0.295 0.313 0.326 0.417 0.663 0.368 0.441 0.7174 0.7502
BT 0.419 0.464 0.471 0.473 0.314 0.327 0.365 0.402 0.483 0.691 0.435 0.492 0.7686 0.8019
DS 0.394 0.449 0.455 0.453 0.295 0.309 0.357 0.378 0.466 0.626 0.416 0.488 0.5911 0.6551
Average 0.398 0.447 0.451 0.461 0.306 0.329 0.345 0.372 0.462 0.563 0.424 0.481 0.6979 0.7324

Table 2: Experimental results (top-5 mAP score) on the TVsum dataset. Our method
outperforms all of the compared methods by a large margin.

4.3 Highlight Detection Results

- Result for the YouTube Highlights dataset: We report our results in
comparison with other researches 7. For the sake of fairness, we also reported the
results of a MINI-Net’s variant, i.e., MINI-Netw/o audio, which removes the audio
feature from the MINI-Net and replace the vision-audio fusion feature with vision
feature (more analysis about MINI-Netw/o audio is reported in Section 4.4). We
find that our method achieves the best result in terms of the average mAP over
all events. Compared to the ranking-based weakly supervised method LIM-s and
auto-encoder-based weakly supervised method RRAE, MINI-Net’s average gains
in mAP are 7.96% and 26.06%, respectively. The result strongly verifies that
our weakly supervised method based on multiple instance learning has better
capacity than the compared methods. It is noteworthy that the our result is even
better than that achieved by supervised methods, i.e., GIFs and LSVM, which
are trained with event-specific manually annotated data. These results indicate
that our MINI-Net can leverage unlabeled videos for video highlight detection
more effectively than other methods without the need to spend a lot of manual
labor on data annotation. We also find that our MINI-Netw/o audio outperforms
all compared methods without audio feature. Such results indicate that proposed
objective functions can improve the ability to distinguish of our model.

7 The compared results are from original papers.
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Topic
Supervised Methods Weakly supervised Weakly supervised

KVS DPP sLstm SM SMRS Quasi MBF CVS SG LIM-s VESD DSN MINI-Netw/o audio MINI-Net
BJ 0.662 0.672 0.683 0.692 0.504 0.561 0.631 0.658 0.698 − 0.685 0.715 0.7756 0.8450
BP 0.674 0.682 0.701 0.722 0.492 0.625 0.592 0.675 0.713 − 0.714 0.746 0.9628 0.9887
ET 0.731 0.744 0.749 0.789 0.556 0.575 0.618 0.722 0.759 − 0.783 0.813 0.7864 0.9156
ERC 0.685 0.694 0.717 0.728 0.525 0.563 0.575 0.693 0.729 − 0.721 0.756 0.9525 1.0000
KP 0.701 0.705 0.714 0.745 0.521 0.557 0.594 0.707 0.729 − 0.742 0.772 0.9585 0.9611
MLB 0.668 0.677 0.714 0.693 0.543 0.563 0.624 0.679 0.721 − 0.687 0.727 0.8686 0.9353
NFL 0.671 0.681 0.681 0.727 0.558 0.587 0.603 0.674 0.693 − 0.724 0.737 0.8972 1.0000
NDC 0.698 0.704 0.722 0.759 0.496 0.617 0.594 0.702 0.738 − 0.751 0.782 0.8901 0.9536
SL 0.713 0.722 0.721 0.766 0.525 0.551 0.624 0.715 0.743 − 0.763 0.794 0.7865 0.8896
SF 0.642 0.648 0.653 0.683 0.533 0.562 0.603 0.647 0.681 − 0.674 0.709 0.7272 0.7897
Average 0.684 0.692 0.705 0.735 0.525 0.576 0.602 0.687 0.720 − 0.721 0.755 0.8605 0.9278

Table 3: Experimental results (top-5 mAP score) on the CoSum dataset. Our method
outperforms all of the compared methods by a large margin. The entries with “-” mean
per-class results are not available for that method.

segments of 
‘Base Jump’

positive bag

…… …… …… ……

…… …… …… ……

(a) 0.012 (b) 0.050

(c) 0.340 (d) 0.450

segments of 
‘surfing’

…… ………… ……

…… …… …… ……

(h) 0.014(g) 0.013

(e) 0.011 (f) 0.010
negative bag

Fig. 4: The example of bag in our approach, and the highlight scores of each instance
estimated by our MINI-Net trained for detecting “base jump” highlight.

- Result on TVSum dataset and CoSum dataset: The experimental results
for our method on the TVSum dataset and the CoSum dataset are shown in
Table 2 and Table 3, respectively. TVsum and CoSum are more challenging
datasets as they have diverse videos. However, our method outperforms all of
the baselines by a large margin on both the TVSum dataset and the CoSum
dataset. Note that LIM-s [27], which is the most competitive ranking-based
weakly supervised method, provides the average top-5 mAP, which is 16.94%
less than the value achieved with our MINI-Net on the TVSum dataset. Our
approach achieves a significant and consistent improvement over all the events
in the two datasets. (e.g., the top-5 mAP of our MINI-Net vs. that of VESD
are 84.50% vs. 68.5% on the BJ event of CoSum dataset). These results show
that the training model based on multiple instance learning using both interest
events video data and non-interest events video data is more useful for video
highlight detection. As these two datasets consist of long-form videos crawled
from social media platforms, in addition to the highlights of the interest event,
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Dataset Gated-Attention [11] DMIL-RM [20] MINI-Net
YouTube 0.6289 0.6357 0.6436
TVSum 0.6533 0.6895 0.7324
Cosum 0.7516 0.7943 0.9278

Table 4: Comparisions with related multiple instance learning methods.

these videos inevitably contain video information of other events. Figure 4 shows
segments and their highlight scores. We can determine that the segments in
the non-interest event (i.e., negative bag) are assigned low highlight scores (the
segments (e)-(h) in Figure 4) and the highlights of the interest event achieve the
highest scores (the segment (d) in Figure 4). The performances on the TVsum
and CoSum datasets indicate that our model has the capacity to treat segments
from non-interest events as non-highlights and only detect highlights from the
interest event.
- Comparison with other multiple instance learning methods. To further
prove that our proposed multiple instance learning framework is suitable for
video highlight detection, we compare the other two multiple instance learning
frameworks, i.e., Gated-Attention [11] and DMIL-AM [20], which are adapted to
video highlight detection. It is clearly shown in Table 4 that our method performs
the best. e.g., MINI-Net outperforms Gate-Attention and DMIL-RM by 17.62%
and 13.35% on CoSum dataset, respectively. The results in Table 4 demonstrate
that the architecture of MINI-Net is more suitable for video highlight detection.

4.4 Ablation Studies

We present an ablation study to evaluate each component of our model.
- Effect of bag modeling. Firstly, we evaluate the effect of bag classification
module on the proposed model by removing the module, i.e., MINI-Netw/o BCM.
Comparing the full model and our model without bag classification module,
we clearly observe that the bag classification improves the performance (e.g.,

“MINI-Net” improves the performance of “MINI-Netw/o BCM” from 65.58% to
73.24% for TVSum dataset). This implies that our bag classification module is
able to help select as many ground-truth highlights from the video as possible,
which benefits video highlight detection.
- Effect of max-max ranking loss (MM-RL). Secondly, we evaluate the

impact of MM-RL on our approach. MINI-Netw/o MM-RL indicates that we have
removed the MM-RL from the Eq. 9. From Table 5, we also observe that adding
max-max ranking loss can consistently boost the performance (e.g., the results

of “MINI-Net” vs. those of “MINI-Netw/o MM-RL” are 92.78% vs. 77.59% for
the CoSum dataset). This result indicates that forcing the most likely highlight
segment and the hard non-highlight segment to be far apart in terms of highlight
score can help the potential ground-truth highlight segment of the interest event
obtain a relatively high score .
- Effect of audio features. Finally, to verify that audio is beneficial in our
work, we conduct an experiment that trains our model without audio features,
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Dataset MINI-Netw/o vision MINI-Netw/o audio MINI-Netw/o MM-RL MINI-Netw/o BCM MINI-Net
YouTube 0.5223 0.6138 0.6166 0.6113 0.6436
TVSum 0.5972 0.6979 0.6495 0.6558 0.7324
Cosum 0.6914 0.8605 0.7759 0.7823 0.9278

Table 5: Ablation study on three datasets.

i.e., MINI-Netw/o audio in Table. 5, and MINI-Netw/o vision indicates that we have
removed the vision feature. More specifically, we use the audio or vision features
after several layers of fully connected layers (we make the number of parameters
consistent) to replace the fused features that are input to the subsequent network.
In Table 5, we can find that our full method outperforms the alternative variants.
In particular, comparing MINI-Netw/o audio and MINI-Netw/o vision for the three
datasets, the MINI-Netw/o vision outperforms MINI-Netw/o audio by 9.15%, 10.07%
and 16.91% for YouTube Highlights dataset, TVSum dataset and CoSum dataset,
respectively. These results indicate that: 1) Even using only vision features, our
method outperforms the compared methods in Table 1, Table 2 and Table 3. 2)
Using audio alone can degrade the performance more than using video alone, as
audio is sometimes not native, and music or a voiceover is applied by the video
owner. Such audio cannot be utilized to improve the performance and introduce
noise; 3) It is also verified that the combination of audio and vision can improve
the performance of the model.

5 Conclusion

Compared to related work, to our best knowledge, this work is the first to cast
the weakly supervised video highlight detection problem as a multiple instance
ranking approach. The bag modeling in our multiple instance ranking network
(MINI-Net) particularly solves the difficulty of localization of highlight segments
of a specific event during training, because MINI-Net works on bag level, where it
is only required to ensure a positive bag having a highlight segment of that event
and a negative bag having relevant ones. Based on such bag setting, with a max-
max ranking loss, our MINI-Net is able to effectively leverage and quantify all
segment information of a video, and therefore the proposed MINI-Net manages to
acquire reliable higher highlight scores for positive bags as compared to negative
bags. The experimental results have validated the effectiveness of our approach.
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