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Abstract. Adversarial examples are inputs with imperceptible pertur-
bations that easily misleading deep neural networks (DNNs). Recently,
adversarial patch, with noise confined to a small and localized patch, has
emerged for its easy feasibility in real-world scenarios. However, existing
strategies failed to generate adversarial patches with strong generaliza-
tion ability. In other words, the adversarial patches were input-specific
and failed to attack images from all classes, especially unseen ones during
training. To address the problem, this paper proposes a bias-based frame-
work to generate class-agnostic universal adversarial patches with strong
generalization ability, which exploits both the perceptual and semantic
bias of models. Regarding the perceptual bias, since DNNs are strong-
ly biased towards textures, we exploit the hard examples which convey
strong model uncertainties and extract a textural patch prior from them
by adopting the style similarities. The patch prior is more close to de-
cision boundaries and would promote attacks. To further alleviate the
heavy dependency on large amounts of data in training universal attacks,
we further exploit the semantic bias. As the class-wise preference, proto-
types are introduced and pursued by maximizing the multi-class margin
to help universal training. Taking Automatic Check-out (ACO) as the
typical scenario, extensive experiments including white-box/black-box
settings in both digital-world (RPC, the largest ACO related dataset)
and physical-world scenario (Taobao and JD, the worlds largest online
shopping platforms) are conducted. Experimental results demonstrate
that our proposed framework outperforms state-of-the-art adversarial
patch attack methods. ‡

Keywords: Universal Adversarial Patch, Automatic Check-out, Bias-
based Attack

1 Introduction

Deep learning has demonstrated remarkable performance in a wide spectrum of
areas, including computer vision [14], speech recognition [21] and natural lan-

∗ These authors contributed equally to this work.
† Corresponding author.
‡ Our code can be found at https://github.com/liuaishan/ModelBiasedAttack.

https://github.com/liuaishan/ModelBiasedAttack


2 Liu et al.

Fig. 1. In the real-world scenario like Automatic Check-Out, items (e.g., fruits and
chocolates) are often tied with patch-like stickers or tags.

guage processing [27]. Recently, deep learning strategies have been introduced
into the check-out scenario in supermarkets and grocery stores to revolution-
ize the way people shopping (e.g., Amazon Go). Automatic Check-Out (ACO)
[30,16,4] is a visual item counting system that takes images of shopping items
as input and generates output as a tally of different categories. Customers are
not required to put items on the conveyer belt and wait for salesclerks to scan
them. Instead, they can simply collect the chosen items and a deep learning
based visual recognition system will classify them and automatically process the
purchase.

Though showing signi?cant achievements in our daily lives, unfortunately,
deep learning is vulnerable to adversarial examples [11,28]. These small perturba-
tions are imperceptible to human but easily misleading DNNs, which creates po-
tential security threats to practical deep learning applications, e.g., auto-driving
and face recognition systems [18]. In the past years, different types of techniques
have been developed to attack deep learning systems [11,28,9,2,7]. Though chal-
lenging deep learning, adversarial examples are also valuable for understanding
the behaviors of DNNs, which could provide insights into the blind-spots and
help to build robust models [32,31,19].

Besides the well-designed perturbations, the adversarial patch serves as an
alternative way to generate adversarial examples and enjoy the advantages of be-
ing input-independent and scene-independent. [1,12,18]. In real-world scenarios,
patches could be often observed which are quasi-imperceptible to humans. For
example, as shown in Fig.1, the tags and brand marks on items in the supermar-
ket. Thus, it is convenient for an adversary to attack a real-world deep learning
system by simply generate and stick adversarial patches on the items. However,
existing strategies [1,6] generate adversarial patches with weak generalization
abilities and are not able to perform universal attacks [22]. In other words, these
adversarial patches are input-specific and fail to attack images from all classes,
especially unseen ones during training.

To address the problem, this paper proposes a bias-based framework to gener-
ate class-agnostic universal adversarial patches with strong generalization ability,
which exploits both the perceptual and semantic bias. Regarding the percep-
tual bias, motivated by the studies [32,10] that DNNs are more perceptually
biased towards texture information than shape when making predictions, we first
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generate textural priors by extracting textural information from multiple hard
examples with style similarities. Our priors contain plenty of textural informa-
tion from hard examples, thus they are more likely to reveal model uncertainties
since DNNs are perceptually biased towards textures. By exploiting perceptual
biases of a model, our textural prior is more close to decision boundaries which
would promote the universal attack to different classes. As for the semantic
bias, since models have semantic preference and bias for different classes, e.g.,
model prefers wheel for car and fur for dog, we then generate prototypes to help
training. A prototype is considered to contain the most representative semantics
for a class. Thus, we generate a small number of prototypes by maximizing the
corresponding model logits for each class to represent the original images. By
exploiting the semantic bias of a model for each class, the prototypes contain
more representative features. Thus, training with prototypes will alleviate the
heavy dependency on large amounts of data in training universal attacks[24].
Extensive experiments including both the white-box and black-box settings in
both the digital-world (RPC, the largest ACO related dataset) and physical-
world scenario (Taobao and JD, the worlds largest online shopping platforms)
are conducted. Experimental results demonstrate that our proposed framework
outperforms state-of-the-art adversarial patch attack methods.

To the best of our knowledge, we are the first to generate class-agnostic
universal adversarial patches by exploiting the perceptual and semantic biases of
models. With strong generalization ability, our adversarial patches could attack
images from unseen classes of the adversarial patch training process or target
models. To validate the effectiveness, we choose the automatic check-out scenario
and successfully attack the Taobao and JD platform, which are among the
world’s largest e-commerce platforms and the ACO-like scenarios.

2 Related work

2.1 Adversarial Attacks

Adversarial examples, which are intentionally designed inputs misleading deep
neural networks, have attracted research focus in many scenarios [11,28,15,17].
Szegedy et al. [28] first introduced adversarial examples and used the L-BFGS
method to generate them. By leveraging the gradients of the target model, Good-
fellow et al. [11] proposed the Fast Gradient Sign Method (FGSM) which could
generate adversarial examples quickly. To improve the generalization ability to
different classes, Moosavi et al. [22] first proposed an algorithm to compute
universal adversarial perturbations for DNNs for object recognition tasks. Mop-
uri et al. [23] proposed a data-free objectives to generate universal adversarial
perturbations by maximizing the neuron activation. Further, Reddy et al. [24]
generated data-free universal adversarial perturbations using class impressions.

Besides, adversarial patch [1], with noise confined to a small and localized
patch, emerged for its easy accessibility in real-world scenarios. Karmon et al.
[12] created adversarial patches using an optimization-based approach with a
modified loss function. In contrast to the prior research, they concentrated on
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investigating the blind-spots of state-of-the-art image classifiers. Eykholt et al.
[6] adopted the traditional perturbation techniques to generate attacking noises,
which can be mixed into the black and white stickers to attack the recognition
of the stop sign. To improve visual fidelity, Liu et al. [18] proposed the PS-GAN
framework to generate scrawl-like adversarial patches to fool autonomous-driving
systems. Recently, adversarial patches have been used to attack person detection
systems and fool automated surveillance cameras [29].

2.2 Automatic Check-out

The bedrock of an Automatic Check-out system is visual item counting that
takes images of shopping items as input and generates output as a tally of
different categories [30]. However, different from other computer vision tasks
such as object detection and recognition, the training of deep neural networks
for visual item counting faces a special challenge of domain shift. Wei et al.
[30] first tried to solve the problem using the data argumentation strategy. To
improve the realism of the target images, through a CycleGAN framework [33],
images of collections of objects are generated by overlaying images of individual
objects randomly. Recently, Li et al. [16] developed a data priming network by
collaborative learning to determine the reliability of testing data.

3 Proposed Framework

In this section, we will first give the definition of the problem and then elaborate
on our proposed framework.

3.1 Problem Definition

Assuming X ⊆ Rn is the feature space with n the number of features. Supposing
(xi ,yi) is the i-th instance in the data with feature vector xi ∈ X and yi ∈
Y the corresponding class label. The deep learning classifier attempts to learn
a classification function F : X → Y. Specifically, in this paper we consider the
visual recognition problem.

An adversarial patch δ is a localized patch that is trained to fool the target
model F to wrong predictions. Given an benign image x with its ground truth
label y, we form an adversarial example x′ which is composed of the original
image x, an additive adversarial patch δ ∈ Rz and a location mask M ∈ {0,1}n
:

x′ = (1−M)� x+M � δ, (1)

where � is the element-wise multiplication.
The prediction result of x′δ by model F is y′ = F (x′δ). The adversarial patch

makes the model predict the incorrect label, namely y′ 6= y.
To perform universal attacks, we generate a universal adversarial patch δ that

could fool the classifier F on items sampled from distribution µ from almost all
classes:

F (x) 6= F (x+ δ) for almost all x ∼ µ. (2)
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3.2 The Framework

We propose a bias-based attack framework to generate universal adversarial
patches with strong generalization ability. The overall framework can be found
in Fig.2.
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Fig. 2. Our bias-based framework to generate universal adversarial patches. We first
generate a perceptually biased prior by fusing textural features from multiple hard
examples. Then, we generate semantically biased prototypes to help training universal
adversarial patches with a target model F

Recent studies have revealed that DNNs are strongly biased towards texture
features when making predictions [10]. Deep learning models are still perform-
ing well on patch-shuffled images where local object textures are not destroyed
drastically [32].

Thus, we first exploit the perceptual bias of deep models by generating per-
ceptually biased priors from multiple hard example set X h= {xhi |i=1, ...r}.
Textural features are extracted by an attention module A to fuse a more pow-
erful prior δ∗. We believe the fused prior are more close to decision boundaries
of different classes and would boost universal attacks.

Meanwhile, as models have preferences and impressions for different classes,
we further exploit the semantic bias of models for each class. To alleviate the
heavy dependency on a large amount of data suffered to train universal attacks,
we generate semantically biased prototypes to help training. As the
class-wise preference, prototypes contain the most representative semantics for
a class. semantics for each class. Thus, prototypes are generated by maximizing
the multi-class margin and used to represent instances from each class. Training
with prototypes would reduce the amount of training data required. Thus, we
generate prototypes {I1, I2, ..., In} and use them as training data to learn our
final adversarial patch δadv from δ∗.

3.3 Perceptually Biased Prior Generation

Motivated by the fact that deep learning models are strongly biased towards
textural features, we first proposed to extract textural features as priors. To
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fully exploit the statistic uncertainty of models, we borrow textural features
from hard examples.

Hard examples appear as instances that are difficult for models to classify
correctly. Techniques like hard example mining are used to improve training [8],
in which “hard” hence informative examples are spotted and mined. Given a
hard example xh with ground truth label y, assuming that yh = F (xh) is the
prediction of the model F . The hard example suffices the constraint that yh 6= y
or with relatively low classification confidence. Obviously, a hard example is an
instance lying closely to model decision boundaries, and are more likely to cross
the prediction surfaces. Thus, using the features from a hard example xh to train
adversarial patches is like “standing on the shoulders of a giant”, which would
be beneficial to overcome local-optima and gain strong attacking abilities.

To further motivate universal attacks, we extract textural features from mul-
tiple hard examples with different labels and fuse them together into a stronger
prior. Intuitively, by studying features from multiple hard examples with dif-
ferent labels, our prior would contain more uncertainties for different classes.
However, simply learning at pixel-level makes it difficult to extract and fuse tex-
tural features. Thus, we introduce the style loss which specifically measures the
style differences and encourages the reproduction of texture details:

Ls = Ek
[∣∣∣∣G(x∗)−G(xhk)

∣∣∣∣2
F

]
,

Gij(x) =
∑
k

F lik(x) · F ljk(x),
(3)

where G is the Gram matrix of the features extracted from certain layers of the
network. F l·k is the activation of a specific filter at position k in the layer l. x∗

is the fused example, and xhk is the hard example where k= 1, 2, ..., r.
Besides, entropy has been widely used to depict the uncertainty of a sys-

tem or distribution. To further improve universal attacks to different classes, we
introduce the class-wise uncertainty loss. we increase model prediction uncer-
tainties by minimizing the negative of entropy. Thus, the fused example would
be much closer to decision boundaries and obtain low confidence for different
classes. It can be written as:

Lu = Ei
[
log yh,i

]
, (4)

where yh,i denotes the model confidence of the i-th class with the fused input
x∗.

Thus, to fully exploit the perceptual bias, we optimize the fusion loss function
Lf as follows:

Lf = Ls + λ · Lu, (5)

where λ controls the balance between the two terms.
However, the fused example x∗ has a different size with our patches. Thus,

an attention module has been introduced to eliminate redundant pixels and
generate a textural prior δ∗ from the fused example x∗.

δ∗ = A(x∗;F ), (6)
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where A(·) is a visual attention module that selects a set of suitable visual pixels
from the fused sample. These pixels contain the highest stimuli towards model
predictions and would be used as textural priors.

Inspired by [25], given a hard example xh, we compute the gradient of nor-
malized feature maps Z of a specific hidden layer in the model w.r.t. yh. These
gradients are global-average-pooled to get the weight matrix which is a weighted
combination of feature maps to the hard example xh :

aij =

w∑
k=1

∂yh

∂Zkij
Zkij , (7)

where aij represents the weight at position (i, j), Zkij is the pixel value in position
(i, j) of k-th feature map, and w represents the total feature map number. Note
that i ∈ [0, u − 1] and j ∈ [0, v − 1] where u, v are the width and height of Z,
respectively. Then, we can combine the pixels with the highest weight to get our
textural prior δ∗.

3.4 Training with Semantically Biased Prototypes

With the textural priors generated at the previous stage, we continue to optimize
and generate our adversarial patch. To generate universal adversarial perturba-
tions, most of the strategies require a lot of training data [24]. To alleviate the
heavy dependency on large amounts of training data, we further exploit the
semantic bias.

A prototype is an instance that contains the most representative semantics
for a class [13]. Prototypes have provided quantitative benefits to interpret and
improve deep learning models. Thus, we further exploit the semantic bias of
models (i.e., prototypes)for each class. In this stage, we generate class prototypes
and use them during training to effectively reduce the amount of training data
required.

Thus, inspired by [26], to generate prototypes I representing the semantic
preference of a model for each class, we maximize the logits of one specific class.
Formally, let St(I) denote the logits of class t, computed by the classification
layer of the target model. By optimizing the MultiMarginLoss, the prototype It
of class t is obtained:

It = argmax
x

1

C

∑
c 6=t

max(0,margin− St(x) + Sc(x))p, (8)

where x is the input and satisfies the constraint of an RGB image, C denotes the
total number of classes and margin is a threshold that controls the multi-class
margin. In practice, Adam optimizer is applied to find the optimal prototype of
class c with p = 1 and margin = 10.

To generate adversarial patches misleading to deep models, we introduce the
adversarial attack loss. Specifically, we push the prediction label y′ of the adver-
sarial example x′ (i.e., a clean prototype I appended with the adversarial patch
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δadv) away from its original prediction label y. Therefore, adversarial attack loss
can be defined as:

Lt = EI,δadv [P (c = t|I ′)−max(P (c 6= t|I ′))], (9)

where δadv is the adversarial patch which is initialized as the textural prior δ∗,
P (·) is the prediction of the target model to the input, I ′ is the adversarial
example which is composed of the prototype I and adversarial patch δadv, c
means the class, and t denotes the class label of I.

Moreover, recent studies showed that adversarial examples are ineffective to
environmental conditions, e.g., different views, illuminations, etc. In the ACO
scenario, the items are often scanned from different views with different lighting
conditions, which would impair the attack ability of our patches. Thus, we fur-
ther introduce the idea of expectation of transformations to enhance the attack
success rate of our adversarial patches in different conditions, as shown in the
expectation of conditions c in Eqn (9).

In conclusion, we first exploit the perceptual bias of models and extract a
textural prior from hard examples by adopting the style similarities. To further
alleviate the heavy dependency on large amounts of data in training universal
attacks, we further exploit the semantic bias to alleviate the heavy dependency
on data. As the class-wise preference, prototypes are introduced and pursued
by maximizing the multi-class margin. Using the textural prior as initialization,
we train our adversarial patches using the prototypes as training data. The
illustration of our two-staged adversarial patch attack algorithm can be found
in supplementary.

4 Experiments

In this section, we will illustrate the attack effectiveness of our proposed method
in different settings in the ACO scenario.

4.1 Dataset and Evaluation Metrics

As for the dataset, we use RPC [30], which is the largest grocery product dataset
so far for the retail ACO task. It contains 200 product categories and 83,739
images, including 53,739 single-product exemplary images. Each image is a par-
ticular instance of a type of product, which is then divided into 17 sub-categories
(e.g., puffed food, instant drink, dessert, gum, milk, personal hygiene, etc.).

To evaluate our proposed method, we choose classification accuracy as the
metric. Specifically, we further report top-1, top-3 and top-5 accuracy in our
experiments. Note that the goal of adversarial attacks is compromising the per-
formance of the model, i.e., leading to worse values of the evaluation metrics
above.
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4.2 Experimental Settings

The input image is resized to 512×512 and the patch size is fixed at 32×32. The
size of patches only accounts for 0.38% of the size of images. To optimize the loss,
we use Adam optimizer with a learning rate of 0.01, a weight decay of 10−4, and
a maximum of 50 epochs. To get hard examples, we first run the target model
over the training set once to get model predictions for each instance. Then, we
select 200 images that are misclassified by the model with the lowest confidence
as our hard examples. All of our code is implemented in Pytorch. The training
and inference processes are finished on an NVIDIA Tesla k80 GPU cluster.

As for the compared methods, we choose the state-of-art adversarial patch
attack methods including AdvPatch [1], RP2 [5], and PSGAN [18]. We follow
their implementations and parameter settings. To conduct fair comparisons, we
adopt the same backbone models for our method and the compared ones in our
experiments. Similar to [22], we use 50 item samples per class (10,000 in total) as
the training data for the compared methods. We also extract 15 prototypes for
each class (3,000 in total) as the training data for our method. With respect to
the models, we follow [16] for the ACO task and use ResNet-152 as the backbone.
As for the margin, we set the it as 10 since we found the model is insensitive
to it (we tested 2, 4, 6, 8, 10, and 12 for margin and found similar results). To
further improve the attack success rate of adversarial patches against different
environments, we introduce transformations as follows:

- Rotation. The rotation angle is limited in [−30◦, 30◦].
- Distortion. The distortion rate, i.e., the control argument, moves in [0, 0.1].
- Affine Transformation. The affine rate changes between 0 and 4.

4.3 Digital-world Attack

In this section, we evaluate the performance of our generated adversarial patches
on the ACO task in the digital-world in both white-box and black-box settings.
We also use a white patch to test the effectiveness of the adversarial attack
(denoted as “White”).

As for the white-box attack, we generate adversarial patches based on a
ResNet-152 model and then attack it. As shown in Fig.3(a), our method out-
performs other compared strategies with large margins. In other words, our
adversarial patches obtain stronger attacking abilities with lower classification
accuracy contrast to others, i.e., 5.42% to 21.10%, 19.78%, and 38.89% in top-1
accuracy.

As for the black-box attack, we generate adversarial patches based on
ResNet-152, then use them to attack other models with different architectures
and unknown parameters (i.e., VGG-16, AlexNet, and ResNet-101). As illus-
trated in Table 1, our generated adversarial patches enjoy stronger attacking
abilities in the black-box setting with lower classification accuracy for different
models.

Besides the classification accuracy, Fig.3(b) shows the training process of
adversarial patches using different methods. After several training epochs, the
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(a) White-box Attack (b) Training Process

Fig. 3. (a) shows the White-box attack experiment in the digital-world with ResNet-
152. Our method generates the strongest adversarial patches with the lowest classifi-
cation accuracy. (b) denotes the training process of different methods

attacking performance of our generated patches becomes stable and keeps the
best among all. However, the performance of other methods still vibrates sharply.
It is mainly due to the weak generalization ability of other methods. Thus,
they achieve different accuracy when attacking different classes showing sharp
vibrations.

4.4 Real-world Attack

To further validate the practical effectiveness of our generated adversarial patch-
es, a real-world attack experiment is conducted on several online shopping plat-
forms to simulate the ACO scenario. We use Taobao and JD, which are among
the biggest e-commerce platforms in the world. We take 80 pictures of 4 dif-
ferent real-world products with different environmental conditions (i.e., angles

Table 1. Black-box attack experiment in the digital-world with VGG-16, AlexNet,
and ResNet-101. Our method generates adversarial patches with strong transferability
among different models

Model Method top-1 top-3 top-5

VGG-16

AdvPatch 73.82 90.73 94.99

RP2 81.25 94.65 97.10

PSGAN 74.69 91.25 96.12

Ours 73.72 91.53 95.43

AlexNet

AdvPatch 51.11 72.37 79.79

RP2 68.27 86.49 91.08

PSGAN 49.39 72.85 82.94

Ours 31.68 50.92 60.19

ResNet-101

AdvPatch 56.19 80.99 91.52

RP2 73.52 93.75 98.13

PSGAN 51.26 79.22 90.47

Ours 22.24 51.32 60.28

https://market.m.taobao.com/
https://app.jd.com/
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(a) Taobao (b) JD

Fig. 4. Attack Taobao and JD platform with our adversarial patches. The milk in (a)
and the plastic cup in (b) are recognised as the decorations and the aluminum foil

when we stick our adversarial patches, respectively

{-30◦, -15◦, 0◦, 15◦, 30◦} and distances {0.3m, 0.5m, 0.7m, 1m}). The top-1
classification accuracy of these images is 100% on Taobao and 95.00% on JD,
respectively. Then, we print our adversarial patches by an HP Color LaserJet
Pro MFP M281fdw printer, stick them on the products and take photos with
the combination of different distances and angles using a Canon D60 camera. A
significant drop in accuracy on both platforms can be witnessed with low clas-
sification accuracy (i.e., 56.25% on Taobao, 55.00% on JD), which is much
lower than the compared methods, concretely 66.25%, 61.25%, and 66.25% on
Taobao, 72.50%, 68.75%, and 63.75% on JD (the results of compared methods
are in following orders: AdvPatch, RP2, and PSGAN). The results demonstrate
the strong attacking ability of our adversarial patches in real-world scenarios on
practical applications. Visualizations can be found in Fig.4.

4.5 Generalization Ability

In this section, we further evaluate the generalization ability of adversarial patch-
es on unseen classes. We perform two experiments using the backbone model
(ResNet-152), including attacking unseen item classes of adversarial patch train-
ing process and target models. For attacking unseen classes of the patch training
process, we first train patches on a subset of the dataset, i.e., only images from
100 classes are used w.r.t. 200 classes (we use prototypes for our method and
item images for compared methods). According to the results in Table 2, our
framework generates adversarial patches with strong generalization ability and
outperforms other compared methods with huge margins (i.e., 7.23% to 40.28%,
31.62%, and 60.87%).

Meanwhile, we also tested the generalization ability on classes that have
never been “seen” by the target model. Specifically, we train our patches on
the RPC dataset and test them on the Taobao platform. We select 4 items and
stick adversarial patches on them and take 64 pictures. The categories of the
items are unseen to target models (not in the 200 classes for ResNet-152), but
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(a) Different Priors (b) Boundary Distance

Fig. 5. (a) shows different priors used to generate adversarial patches. They are white
patch, Gaussian noise, hard example, PD-UA, simple fusion, and textural prior re-
spectively, from up to down, left to right. (b) is the decision boundary distance analysis,
where fused prior achieves the smallest decision boundary distances for each class.

known to the Taobao platform. Interestingly, after attacks, the top-1 accuracy on
Taobao is 65.63%. Though our patches are not trained to attack some specified
classes, they still generalize well to these unseen classes. Thus, we can draw
the conclusion that our framework generates universal adversarial patches with
strong generalization abilities to even unseen classes.

4.6 Analysis of Textural Priors

Since textural priors have improved universal attacks, a question emerges: “Why
and how the textural priors are beneficial to universal adversarial attacks?” Thus,
in this section, we further study the effectiveness of our textural priors.

Training from Different Priors To demonstrate the effectiveness of our tex-
tural priors, we begin to study by initializing patches through different priors,
e.g., white patch, Gaussian noise, hard example, PD-UA [20], simple fusion, and
our textural prior (denoted as “ours”). In contrast to our textual prior, we use
the same amount of simple examples to generate the simple version of fused
prior (denoted as “simple fusion”). Other experimental settings are the same as
the settings of the digital-world attack. The visualization of them can be found
in Fig.5(a). We train 6 adversarial patches with all the same experimental set-
tings except for the initialization. The corresponding accuracy after attacking are

Table 2. Attack on unseen classes. Our method generates adversarial patches with
the strongest generalization abilities showing lowest accuracy compared with other
methods

Method AdvPatch RP2 PSGAN Ours

top-1 40.28 60.87 31.62 7.23
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17.67% (white patch), 18.96% (Gaussian noise), 16.11% (hard example), 21.10%
(PD-UA), 24.09% (simple fusion), 5.42% (ours). It shows that our fused priors
offer adversarial patches the strongest attacking ability.

Decision Boundary Distance Analysis The minimum distance to the de-
cision boundary among the data points reflects the model robustness to small
noises [3]. Similarly, the distance to decision boundaries for an instance charac-
terizes the feasibility performing attack from it. Due to the computation difficulty
of decision boundary distance for deep models, we calculate the distance of an
instance x to specified classes w.r.t. the model prediction to represent the deci-
sion boundary distance. Given a learnt model F and point xi with class label yi
(i = 1, . . . , N), for each direction (yj ,i 6= j) we estimate the smallest step num-
bers moved as the distance. We use the L2 norm Projected Gradient Descent
(PGD) until the model’s prediction changes, i.e., F (xi) 6= yi.

As shown in Fig.5(b), our textural priors obtain the minimum distance in
each direction compared to other initialization strategies. It explains the reason
that our textural prior performs stronger adversarial attacks because it is more
close to the decision boundaries.

4.7 Ablation Study

In this section, we investigate our method through ablation study. Due to the
limitation of paper length, we put more ablations in the supplementary.

The Effectiveness of Class Prototypes We first investigate the amount of
data required with our framework to train adversarial patches by solely using
prototypes or item images, respectively. Specifically, we first train adversarial
patches with 1000 prototypes as OursP1000. Then, we randomly select 1000,
2000, 4000, 10000 item images from the RPC dataset to train adversarial patch-
es, respectively (denoted by OursI1000, OursI2000, OursI4000, and OursI10000).
The results in Table 3 show that to achieve the approximate attacking ability in
OursP1000 setting, twice more items images are required. It indicates the repre-
sentative ability of class prototypes for different classes. Besides, we also study
the time efficiency of generating prototypes. In our practice, it takes 1.8 hours to
generate 1000 prototypes, and another 3.3 hours to train the model (5.1 hours
in total). To achieve similar performance, it takes 6.6 hours to train a model using
2000 original images, which indeed spends more time. Also, it’s time-consuming
to collect original images in practice, let alone the cost of preprocessing, etc.

Table 3. The top-1 accuracy of the adversarial patches obtained using different amount
of training data. Our prototypes need only half the data to achieve a similar perfor-
mance compared to original method.

Settings OursP1000 OursI1000 OursI2000 OursI4000 OursI10000

top-1 6.51 12.43 6.57 6.10 5.40
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The Effectiveness of Fusion Loss We further analyze the effectiveness of
fusion loss by using Lu only or Ls only respectively for the fusion loss Lf in 5.
As shown in Table 4, the original Lf achieves better performance in both white-
box (ResNet-152) and black-box (VGG-16, AlexNet, ResNet-101) settings. We
believe that the adversarial patch benefits both attacking ability and generaliza-
tion ability from the Lf loss. As for λ, we achieve the best performance when
it is around 1. The accuracy with different λ values (0.1, 1, and 10) are 5.47%,
5.42%, and 12.01% respectively.

Table 4. Ablation study on fusion loss. The original Lf achieves the best results.

Method
White-box Black-box

ResNet-152 VGG-16 AlexNet ResNet-101

Luonly 5.47% 75.21% 49.42% 61.82%

Lsonly 15.73% 77.05% 72.65% 72.55%

Lf 5.42% 73.72% 31.68% 22.24%

5 Conclusions

In this paper, we proposed a bias-based attack framework to generate class-
agnostic universal adversarial patches, which exploits both the perceptual and
semantic bias of models. Regarding the perceptual bias, since DNNs are strongly
biased towards textures, we exploit the hard examples which convey strong mod-
el uncertainties and extract a textural patch prior from them by adopting the
style similarities. The patch prior is more close to decision boundaries and would
promote attacks. To further alleviate the heavy dependency on large amounts
of data in training universal attacks, we further exploit the semantic bias. As
the class-wise preference, prototypes are introduced and pursued by maximizing
the multi-class margin to help universal training. Taking ACO as the typical
scenario, extensive experiments are conducted which demonstrate that our pro-
posed framework outperforms state-of-the-art adversarial patch attack methods.

Model biases, especially texture-based features, has been used to perform
adversarial attacks. In contrast, can we improve model robustness by eliminating
the textural features from the training data? We leave it as future work.
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29. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras:
adversarial patches to attack person detection. In: CVPRW (2019)

30. Wei, X.S., Cui, Q., Yang, L., Wang, P., Liu, L.: Rpc: A large-scale retail product
checkout dataset. arXiv preprint arXiv:1901.07249 (2019)

31. Zhang, C., Liu, A., Liu, X., Xu, Y., Yu, H., Ma, Y., Li, T.: Interpreting and
improving adversarial robustness of deep neural networks with neuron sensitivity.
arXiv preprint arXiv:1909.06978 (2019)

32. Zhang, T., Zhu, Z.: Interpreting adversarially trained convolutional neural net-
works. arXiv preprint arXiv:1905.09797 (2019)

33. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV (2017)


	Bias-based Universal Adversarial Patch Attack for Automatic Check-out

