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Abstract. Continual learning from a sequential stream of data is a
crucial challenge for machine learning research. Most studies have been
conducted on this topic under the single-label classification setting along
with an assumption of balanced label distribution. This work expands this
research horizon towards multi-label classification. In doing so, we identify
unanticipated adversity innately existent in many multi-label datasets, the
long-tailed distribution. We jointly address the two independently solved
problems, Catastropic Forgetting and the long-tailed label distribution by
first empirically showing a new challenge of destructive forgetting of the
minority concepts on the tail. Then, we curate two benchmark datasets,
COCOseq and NUS-WIDEseq, that allow the study of both intra- and
inter -task imbalances. Lastly, we propose a new sampling strategy for
replay-based approach named Partitioning Reservoir Sampling (PRS),
which allows the model to maintain a balanced knowledge of both head
and tail classes. We publicly release the dataset and the code in our
project page.

Keywords: Imbalanced Learning, Continual Learning, Multi-Label Clas-
sification, Long-tailed distribution, Online Learning

1 Introduction

Sequential data streams are among the most natural forms of input for intelligent
agents abiding the law of time. Recently, there has been much effort to better
learn from these types of inputs, termed continual learning in machine learning
research. Specifically, there have been many ventures into but not limited to
single-label text classification [17], question answering [17], language instruction
and translation [39], object detection [61,41], captioning [51] and even video
representation learning [53,54]. Surprisingly, we have yet to see continual learning
for multi-label classification, a more general and practical form of classification
tasks since most real-world data are typically associated with several semantic
concepts.

In order to study continual learning for multi-label classification, the first job
would be to construct a research benchmark for it. We select two of the most
popular multi-label datasets, MSCOCO [40] and NUS-WIDE [15], and tailor
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them into a sequence of mutually exclusive tasks, COCOseq and NUS-WIDEseq.
In the process, we recognize that large-scale multi-label datasets inevitably
follow a long-tailed distribution where a small number of categories contain
a large number of samples while most have only a small amount of samples.
This naturally occurring phenomenon is widely observed in vision and language
datasets [56,50,62], with a whole other branch of machine learning that has focused
solely on this topic. Consequently, to effectively perform continual learning on
multi-label data, two major obstacles should be overcome simultaneously: (i)
the infamous catastrophic forgetting problem [49,55,23] and (ii) the long-tailed
distribution problem [14,29,66,43], which we jointly address in this work.

We adopt the replay-based approach [44,28,3,60,58,38] to tackle continual
learning, which explicitly stores the past experiences into a memory or a generative
model, and rehearses them back with the new input samples. Although there also
exists the prior-focused (i.e. regularization-based) [35,71,2] and expansion-based
methods [59,70], the replay-based approaches have often shown superior results
in terms of performance and memory efficiency. Specifically, the replay memory
with reservoir sampling [64] has been a strong baseline, especially in the task-free
continual setting [3,37] that does not require explicit task labels during the
training nor test phase. It is an optimistic avenue of continual learning that we
also undertake.

To conclude the introduction, we outline the contributions of this work:

I. To the best of our knowledge, this is the first work to tackle the continual
learning for multi-label classification. To this end, we reveal that it is critical
to correctly address the intra- and inter-task imbalances along with the
prevailing catastrophic forgetting problem of continual learning.

II. For the study of this new problem, we extend the existing multi-label datasets
into their continual versions called COCOseq and NUS-WIDEseq.

III. We propose a new replay method named Partitioning Reservoir Sampling
(PRS) for continual learning in heterogeneous and long-tailed data streams.
We discover that the key to success is to allocate a sufficient portion of
memory to the moderate and minority classes to retain a balanced knowledge
of present and past experiences.

2 Motivation: Fatal Forgetting on the Tail Classes

The long-tailed data distribution is both an enduring and pervasive problem
in machine learning [33,29], as most real-world datasets are inherently imbal-
anced [56,50,74,62,52]. Wang et al . [66], for example, stated that minimizing the
skew in the data distribution by collecting more examples in the tail classes is
an arduous task and even if one manages to balance them along one dimension,
they can become imbalanced in another.

We point out that the long-tailed distribution further aggravates the problem
in continual learning, as a destructive amount of forgetting occurs on the tail
classes. We illustrate this with experiments on two existing continual learning ap-
proaches: a prior-focused EWC [35] and a replay-based reservoir sampling [6,58,44].
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(a) replay-based continual learning (CRS) (b) prior-focused continual learning (EWC)

Fig. 1. The forgetfulness of the majority and minority classes for two popular continual
learning approaches over three sequential tasks. We test (a) EWC [35] and (b) replay-
based reservoir sampling [6,58,44] with a shared output head and a memory size of
1000. We measure the forgetfulness using the metric proposed in [10] (Higher is more
forgetful). The green line indicates the size of each class. More severe forgetting occurs
for the minority classes in each task.

The experiments are carried out in an online setting on our COCOseq dataset,
whose detail will be presented in section 5. Figure 1 shows the results. We plot
the forgetting metric proposed in [10], which measures the difference between the
peak performance and the performance at the end of the sequence. For illustrative
purposes, we sort the classes per task in decreasing order of the number of classes.
In both approaches, the minority (tail) classes experience more forgetting com-
pared to the majority (head) classes. We observe that the imbalance of sample
distribution in the memory causes this phenomenon in accordance with the input
distribution, as we will further discuss in Figure 5.

3 Approach

The goal of this work is to overcome two inevitable obstacles of multi-label
task-free continual learning: (i) catastrophic forgetting and (ii) long-tail input
data distribution. Since we adopt the replay-based approach, we focus on a new
sampling strategy to reserve past experiences into a fixed memory. We first clarify
the problem (section 3.1), and discuss conventional reservoir sampling (section
3.2) and their fundamental limitations in this context (3.3). Finally, we propose
our sampling method named Partitioning Reservoir Sampling (section 3.4).

3.1 Problem Formulation

We formulate our multi-label task-free continual learning as follows. The input is
a data stream S, which consists of an unknown set of data points (x, y), where y
is a multi-hot label vector representing k arbitrary number of classes. Except for
the datapoint (x, y) that enters in an online-manner, no other information (e.g .
the task boundaries or the number of classes) is available even during training.
Given an input stream, the goal of the model is to allocate the fixed memory M
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with a size of m:
∑u
i=1mi ≤ m, where mi denotes the partitioned memory size

for class ci, and u is the unique number of classes observed so far at time t.

3.2 Conventional Reservoir Sampling

Conventional reservoir sampling (CRS) [64] maintains a fixed memory that
uniformly samples from an input data stream. It is achieved by assigning a
sampling probability of m/n to each datapoint where m is the memory size and
n is the total number of samples seen so far. CRS is used as a standard sampling
approach for task-free continual learning [58,11,57,44], since it does not require
any prior information of the inputs but still attains an impressive performance [12].
However, its strength to uniformly represent the input distribution becomes its
Achilles-heel in a long-tailed setting as the memory distribution also becomes
long-tailed, leading to the realm of problems experienced in imbalanced training.

3.3 Fundamental Problems in Imbalanced Learning

Imbalanced data induce severe issues in learning that are primarily attributed to
gradient dominance and under-representation of the minority [36,19,74,62].

(1) Gradient dominance. The imbalance in the minibatch causes the ma-
jority classes dominating the gradient updates, which ultimately lead to the
neglect of the minority classes.

(2) Under-representation of the minority. Mainly due to the lack of
data, the minority classes are much under-represented within the learned features
relative to the majority [69,19]. We empirically confirm this in Figure 7, where
the minority classes do not formulate a discernable pattern in the feature space
but are sparsely distributed by conventional methods.

There have been data processing or algorithmic approaches to tackle these
problems by promoting balance during training. Data processing methods such
as oversampling or undersampling [5,7,52] explicitly simulate the input balance,
while cost-sensitive approaches [31,66,16] adjust the update via regularizing the
objective. More aggressively, there have also been directions that populate the
minority samples via generation to avoid overfitting in the minority [13,46,20].
Most research in imbalanced learning shares the consensus that the balance
during training is critical to success, which is the underlying emphasis on the
design of our algorithm.

3.4 Partitioning Reservoir Sampling

Since a continual replay algorithm has no information about future input, the
memory must maintain well-rounded knowledge in an online manner. To that
end, we provide an online memory maintenance algorithm called Partitioning
Reservoir Sampling (PRS) that consists of two fundamental operations: partition
and maintenance. The PRS is overviewed in Figure 2 and Algorithm 1.

The Partition. During the training phase, the model only has access to
the stream of data (x, y). While it is impractical to store all examples, caching
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Fig. 2. Overview of Partitioning Reservoir Sampling. Based on the current
data stream statistics, the target partition ratios are first obtained based on Eq. 1. We
maintain the memory by iterating between the processes of sample-in and sample-out.
The sample-in decides whether a new datapoint is stored into the memory or not, while
the sample-out selects which example is removed from the memory. If the model allows
to sample-in the datapoint, the algorithm traverses a process of candidate selection to
sample-out an example by selecting the one that advances the memory towards the
target partitions the most.

the running statistics is a more sensible alternative. Thus, the model uses the
running class frequency to set the target proportion of classes in the memory.
This is achieved by a variant of the proportional allocation [8,22,4]:

pi =
nρi∑
j n

ρ
j

, (1)

where ρ is a power of allocation, and ni is the running frequency of class i. At
ρ = 0, all classes are equally allocated, which may be the most favorable scenario
for the minority as it shares the same amount of memory with the majority. At
ρ = 1, classes are allocated proportionally to their frequencies, which is identical
to the conventional sampling in section 3.2. ρ is chosen a value between 0 and 1
to compromise between the two extremes. For a given ρ, we can define the target
partition quota for class i as mi = m ·pi where pi is defined by Eq. 1. Collectively,
the target partition is represented as a vector m = [m1, · · · ,mu], whose sum is
m. We will explore the effect of ρ in Figure 6.

The Maintenance. The goal of maintenance is to allow every class i (not
every sample as in CRS) to have a fair chance of entering the memory according
to the target partition mi. To maintain a well-rounded knowledge of the past and
present experiences, we iterate between the processes of sample-in and sample-out.
The sample-in decides whether a new input datapoint is reserved into the memory
or not, while the sample-out selects which example is removed from the memory
when it becomes full and new samples continue to enter.

1) Sample-in. For an incoming datapoint, we assign a sampling probability s
to be reserved in the memory. We compute s with two desiderata: (i) it needs
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to comply with the target partition, and (ii) for better balancing, it is biased
towards the minority classes with respect to the current running statistics.

s =
∑

i∈{i,...,u}

mi

ni
· wi, where wi =

yie
−ni∑

j=1 yje
−nj

(2)

where u is the unique number of classes observed, ni is the running frequency
of class i, and yi is the datapoint’s multi-hot vector value for class i. wi is the
normalized weight computed by the softmax of the negative running frequency
of the classes. This formulation allows to bias wi strongly towards the minority.

2) Sample-out. When the memory M is full and new samples continue to
enter, we need to sample out an example from the memory while striving towards
the target partition. The first order of matter would be to quantify the distance
from the current memory partition to our target partition. To do so, we define a
u-dimensional vector δ with each element as

δi = li − pi ·
∑
j

lj , (3)

where li is the number of examples of class i in the memory and pi is the partition
ratio from Eq. 1. Note that we multiply pi by

∑
j lj rather than the memory size

m, due to the multiple labels on each datapoint.
In order to fulfill our objective (i.e. achieve the target partitions), we greedily

select and remove the sample that best satisfies the following two desiderata: (i)
include the classes that occupy more memory than their quota, i.e. δi > 0 and
(ii) exclude the classes that under-occupy or already satisfy the target, δi ≤ 0.

To this end, we devise a two-stage candidate selection process. For desideratum
(i), we define a set of candidate sample Y ⊂ M as follows. Among the classes
with δi > 0, we randomly sample a class with a probability of softmax(δi). This
sampling is highly biased toward the class with the maximum δi value (i.e. the
class to be reduced the most). We found this to be more robust in practice
than considering multiple classes with δi > 0. Then, Y contains all samples
labeled with this selected class in the memory. For desideratum (ii), we define
a u-dimensional indicator vector q where qi = 0 if δi > 0 and qi = 1 otherwise.
That is, qi indicates the classes that do not over-occupy the memory. Finally, the
set of candidate samples K is obtained by

K = {n∗|n∗ = arg max
n∈Y

(¬yn · q)}, (4)

where ¬yn is the negation of the multi-hot label vector of sample n (i.e. 0→ 1
and 1→ 0). That is, K is a subset of Y that does not contain sample(s) for the
under-occupied (or already-satisfied) classes as possible. K may include multiple
samples while the samples with fewer labels are more likely to be selected.

Finally, amongst K, we select example z to be removed as it is the one that
advances the memory towards the target partition the most:

z = arg min
k∈K

∑
i∈{1,..,u}

∣∣∣∣∣∣Cki − pi ·
∑

l∈{1,..,u}

Ckl

∣∣∣∣∣∣ ,where Cki =
∑

n∈M\k

yni . (5)
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Algorithm 1 Partitioning Reservoir Sampling Pseudo-code

Require: (i) data (xt, yt), ..., (xT , yT ), (ii)
power param ρ, (iii) memory size m.

1: M = {} // memory
2: ψ = Ø // running statistics
3: u = 0 // number of unique classes
4: for t = 1 to T do
5: update(ψ) // update running stats
6: if t ≤ |m| then
7: // fill memory
8: Mu ←M{yt} // sub memory
9: Mu ← {xt, yt} ∪Mu

10: else

11: // Partition
12: Partitioning(M, ψ, q) // Eq. 1
13: // Maintenance
14: // class-indep reservoir sampling

15: sample in(Mu, yt,u, ψ) // Eq. 2
16: if sample-in success then
17: sample out(M, ψ, q) // Eq. 5
18: end if
19: end if
20: end for

Cki is the current number of class i in the memory after the removal of sample
k from memory M, pi is the partition ratio of class i from Eq. 1, and yni is a
binary value for class i of the label vector of sample n. Eq. 5 finds the sample z
that minimizes the distance (defined in Eq. 3) towards the target partition before
and after the removal of sample k.

4 Related Work

There have been three main branches in continual learning, which are regu-
larization, expansion and replay methods. Here we focus on the replay-based
approaches and present a more comprehensive survey in the Appendix.

Replay-based approaches. They explicitly maintain a fixed-sized memory
in the form of generative weights or explicit data to rehearse it back to the
model during training. Many recent works [32,6,58,44,11,12,57] employ a memory
that reserves the data samples of prior classes in an offline setting. For example,
GEM [44] uses the memory to constrain the gradient direction that prevents
forgetting, and this idea becomes more efficient in AGEM [11]. Chaudhry et al .
[12] explore tiny episodic memory, which shows improved overall performance
when training repetitively from only a few examples. Riemer et al . [57] introduce
a method that combines rehearsal with meta-learning to find the right balance
between transfer and interference. Since our approach uses no prior knowledge
other than the given input stream, it is orthogonally integrable with many
aforementioned methods.

Online Sequential Learning. Recently, there have been some approaches
to online continual learning where each training sample is seen only once.
ExStream [28] is an online stream clustering reservoir method, but it requires
prior knowledge about the number of classes to pre-allocate the memory. As
new samples enter, the sub-memory is filled based on a distance measure and
merged in the feature space when the memory is full. GSS [3] may be one of the
most similar works to ours. It formulates the sample selection as a constraint
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Fig. 3. Statistics of COCOseq dataset consisting of four tasks.

reduction problem, intending to select a fixed subset of constraints that best
approximate the feasible region. They perform miniaturized MNIST experiments
with different task sizes (e.g . 2000 instances for one task and 200 for the others).
However, this setting is difficult to represent practical long-tailed or imbalanced
problems, since only a single task is much larger than the other same-sized tasks.

Multi-label Classification. There have been many works handling the vital
problem of multi-label classification [47,25]. Recently, recurrent approaches [65,67]
and attention-based methods [73,26] are proposed to correlate the labels during
predictions. Wei et al . [68] employ the prior task knowledge to perform graph-
based learning that aids the correlation representation of multiple labels. While
all the works in the past have focused on the offline multi-label classification, we
take on its online task-free continual learning problem. Moreover, our approach
is orthogonally applicable to these methods as we select some of them as the
base model in our experiments.

5 The Multi-label Sequential Datasets

To study the proposed problem, we transform two multi-label classification
datasets into their continual versions: COCOseq and NUS-WIDEseq. It is a
non-trivial mission since the data must be split into tasks with exclusive class
labels where each datapoint is associated with multiple labels.



Imbalanced Continual Learning 9

5.1 The COCOseq

There have been two previous works that curate the MSCOCO dataset [40] for
continual learning. Shmelkov et al . [61] select 20 out of 80 classes to create 2
tasks, each with 10 classes by grouping them based on alphabetical ordering.
They also create an incremental version with 25 classes, where 15 classes are
used for the model to obtain the base knowledge via normal batch training, and
the other 10 classes are sequentially learned one at a time. These 10 classes are
selected so that each image has only a single class label. Nguyen et al . [51] tailor
MSCOCO for continual learning of captioning. They use 28 out of 80 classes and
discarded all the images that contain multiple class labels. Similar to [61], they
create 2 tasks where one task has 5 classes, and the other has 19 classes. Also, a
sequential version is made using the 19 classes for base knowledge learning and
the remaining 5 for incremental learning.

Different from previous works, we curate 4 tasks with multi-label images. To
accurately measure the training performance on the intra-task imbalance, we
make sure that the test set is balanced ; the test set size per class is identical
even though its training set size is imbalanced and long-tailed. This is a common
practice in imbalanced classification benchmarks, including [66] that uses 40 test
images per class in the SUN-LT dataset and the largest OLTR benchmark [43]
that assigns 50 and 100 balanced test images per class for ImageNet-LT and
Places-LT dataset, respectively. While referring to the Appendix for more details
of dataset construction, we build a 4-way split MSCOCO dataset called COCOseq
(Figure 3), consisting of 70 object classes with 35072 training and 6346 test data.
The test set contains one-hundred images per class. Note that 6346 6= 70× 100
due to the multi-label property.

To the best of our knowledge, there is no strict consensus to divide the
majority and minority classes in long-tailed datasets. For instance, Liu et al . [43]
define the classes with more than 100 training examples as many-shot, 20-100 as
medium-shot, and less than 20 as few-shot classes. Other works such as [27] and
[72] define the minority classes as less than 100 or 200 samples in the training set,
respectively. Accordingly, we define classes with less than 200 training examples
as the minority classes, 200-900 as moderate and >900 as the majority.

5.2 The NUS-WIDEseq

We further curate a sequential dataset from NUS-WIDE [15], containing 6
mutually exclusive and increasingly difficult tasks. Its novelty lies in having both
inter- and intra-task imbalance; the skewness exists not only within each task
but amongst the tasks as well. More details can be found in the Appendix.

NUS-WIDE [15] is a raw web-crawled multi-label image dataset. It provides a
human-annotated version with 150531 images of 81 labels1. However, the dataset
by nature exhibits a very severe long-tail property. For instance, MSCOCO’s top
20% classes are responsible for 50.7% of the total data, while NUS-WIDE’s top

1 The original number of images is 210832, but many URLs are no longer available.
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20% surmount to 76.3% of the whole data. Since the original test set is highly
long-tailed, we balance it for more accurate evaluation as done for COCOseq.
Finally, NUS-WIDEseq contains 49 classes with 48724 training and 2367 test
data with 50 samples per class.

6 Experiments

In our evaluation, we explore how effective our PRS is for both inter- and intra-
task imbalances in task-free multi-label continual learning tasks compared to the
state-of-the-art models. We also analyze the importance of a balanced memory
from many aspects. The task that we solve is mostly close to but more difficult
than the scenario of class-incremental learning [63] in that the task label is not
available at training as well as at test time.

6.1 Experimental Design

Previous continual learning research has shown a high amount of disparity in
evaluation. As we are the first to explore multi-label continual learning, we
explicitly ground our experimental setting based on [21,1,63] as follows:

• Cross-task resemblance: Consecutive tasks in COCOseq and NUS-WIDEseq
are partly correlated to contain neighboring domain concepts.

• Shared output heads: Since we solve multi-label classification without task
labels, the level of difficulty of our task is comparable to using a shared
output head for single-label classification.

• No test-time task labels: Our approach does not require explicit task labels
during both training and test phase, often coined as task-free continual
learning in [3,37].
• More than two tasks: COCOseq and NUS-WIDEseq contain four and six

tasks, respectively.
• Online learning : The algorithm learns from a continuous stream of data

without a separate offline batch training stage such as [3,37,28].

Base Models. In recent multi-label image classification [65,67,42,68,26], it
is a common practice to fine-tune a pre-trained model to a target dataset. We
thus employ ResNet101 [30] pre-trained on ImageNet [18] as our base classifier.
Additionally, we test two multi-label classification approaches that do not require
any prior information about the input to train: Recurrent Attention (RNN-
Attention) [67] and the more recent Attention Consistency (AC) algorithm [26].
Due to its superior performance, we choose ResNet101 as the base model for the
experiments in the main draft. We report the results of RNN-Attention and AC
methods in the Appendix.

Evaluation Metrics. Following the convention of multi-label classifica-
tion [65,73,24], we report the average overall F1 (O-F1), per-class F1 (C-F1) as
well as the mAP. Additionally, we include the forgetting metric [10] to quantify the
effectiveness of continual learning techniques. However, since this is a self-relative
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Table 1. Results on COCOseq and NUS-WIDEseq . We report accuracy metrics
for multi-label classification after the whole data stream is seen once. Similar to [43],
the majority, moderate and minority are distinguished to accurately assess the long-
tail performances. The memory size is fixed at 2000, with {0,3,1,2} task schedule
for COCOseq and {3,1,0,5,4,2} for NUS-WIDEseq. The results are the means of five
experiments except those of GSS-Greedy [3] which are the mean of three due to its
computational complexity. The best and the second best methods are respectively
marked in red and blue fonts, excluding the MULTITASK that is offline trained as the
upper-bound. FORGET refers to the normalized forgetting measure of [10].

majority moderate minority Overall
COCOseq C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP

Multitask [9] 72.9 70.9 77.3 53.2 51.4 55.0 12.7 13.6 24.2 51.2 52.1 53.9

Finetune 18.5 27.9 29.8 6.7 16.7 14.1 0.0 0.0 5.2 8.5 18.4 16.4
forget 100.0 100.0 65.8 100.0 100.0 73.5 100.0 100.0 67.4 100.0 100.0 70.1

EWC [35] 60.0 53.4 64.1 37.3 38.1 47.5 7.5 8.2 21.5 38.9 40.0 46.6
forget 24.2 24.0 0.8 35.1 33.9 3.0 56.3 56.1 9.0 32.8 32.0 3.2

CRS [64] 67.0 62.5 67.9 47.8 45.2 50.4 14.5 15.6 26.9 47.5 46.6 50.2
forget 15.0 13.6 8.9 32.8 32.0 15.6 55.58 54.92 23.2 32.2 30.1 15.3

GSS [3] 59.3 56.7 59.6 44.9 43.0 46.0 10.5 11.0 18.6 42.8 42.7 44.0
forget 20.2 18.8 10.3 36.4 35.3 13.6 67.4 68.4 26.1 35.1 35.3 13.6

ExStream [28] 58.8 52.0 62.5 49.2 47.3 52.7 26.4 26.6 36.6 47.8 43.9 51.1
forget 41.8 40.2 17.7 33.9 32.9 14.7 47.0 33.4 15.5 40.5 39.6 16.2

PRS(ours) 65.4 59.3 67.5 52.5 49.7 55.2 34.5 34.6 39.7 53.2 50.3 55.3
forget 22.0 21.7 8.5 27.2 26.8 11.5 26.2 26.3 10.5 25.6 25.2 10.2

majority moderate minority Overall
NUS-WIDEseq C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP

Multitask [9] 33.7 30.8 32.8 29.3 28.7 28.9 9.7 11.8 25.8 24.6 24.9 28.4

Finetune 0.6 4.6 4.1 2.3 2.8 6.0 5.2 7.4 9.4 4.2 5.1 7.1
forget 100.0 100.0 47.3 100.0 100.0 39.3 100.0 100.0 44.6 100.0 100.0 44.4

EWC [35] 15.7 9.9 15.8 16.3 12.6 19.4 12.3 13.9 24.1 17.1 11.4 20.7
forget 18.4 15.4 7.8 64.6 63.7 7.3 63.4 63.4 4.8 36.4 31.5 7.3

CRS [64] 28.4 17.8 21.9 13.6 14.2 18.5 10.4 11.8 20.6 16.8 15.0 20.1
forget 33.6 29.2 14.7 67.8 66.7 18.1 96.5 96.2 20.3 61.5 57.8 18.7

GSS [3] 24.6 13.5 19.0 14.8 15.5 17.9 15.9 17.6 24.5 17.9 15.3 20.9
forget 46.8 43.9 16.6 59.6 58.3 11.7 82.8 82.0 18.6 54.8 49.8 13.0

ExStream [28] 15.6 9.2 15.3 12.4 12.8 17.6 24.6 24.1 26.7 18.7 16.0 21.0
forget 80.7 77.6 24.0 81.0 80.6 23.3 77.2 76.7 21.8 81.0 79.3 23.4

PRS(ours) 26.7 17.9 21.2 19.2 19.3 21.5 27.5 26.8 31.0 24.8 21.7 25.5
forget 45.8 43.0 15.7 59.0 58.4 13.4 60.6 60.3 15.5 55.3 53.5 13.9

metric on the best past and present performance of the method, comparisons
between different methods could be misleading (e.g . if a model performs poorly
throughout training, small forgetting metric values can be observed as it has little
information to forget from the beginning). It is the reason for the absence of color
for the best models with respect to this metric in the tables. In the Appendix,
we also report the overall precision (O-P), recall (O-R), per-class precision (C-P)
and recall (C-R) metrics.

Baselines. We compare our approach with six baselines including four state-
of-the-art continual learning methods: EWC [35], CRS [64], GSS-Greedy [3]
and ExStream [28]. In addition, the Multitask [9] can be regarded as an upper-
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Table 2. Results according to memory
sizes and schedule permutations on CO-
COseq. We fix the memory size of 2000 for
schedule experiments and the schedule of
{0,3,1,2} for memory experiments. Refer to
Table 1 for the nomenclatures.

Overall Overall
COCOseq C-F1 O-F1 mAP C-F1 O-F1 mAP

Schedule: 0, 1, 3, 2 memory: 1000

CRS[64] 49.2 46.9 50.8 44.2 41.6 47.1
GSS[3] 42.1 41.4 44.0 40.6 39.0 42.1
ExStream[28] 47.3 42.9 50.5 41.6 37.6 47.0

PRS(ours) 52.6 50.5 55.2 47.4 43.4 51.2

Schedule: 2, 3, 0, 1 memory: 2000

CRS[64] 45.4 44.3 48.2 47.5 46.6 50.2
GSS[3] 33.5 33.9 38.5 43.2 43.0 44.4
ExStream[28] 41.6 35.2 45.7 47.8 43.9 51.1

PRS(ours) 50.4 47.7 53.1 53.2 50.3 55.3

Schedule: 3, 1, 0, 2 memory: 3000

CRS[64] 47.7 45.9 49.7 49.4 48.6 51.1
GSS[3] 37.8 38.8 40.2 42.2 43.0 44.3
ExStream[28] 45.4 41.8 49.2 49.7 46.8 52.2

PRS(ours) 51.4 48.9 54.1 54.9 53.4 56.7

C
R
S

G
SS

Ex
St
re
am

PR
S

0 10 20 30 40 50

CF1
OF1
MAP

Fig. 4. Inter-task imbalance anal-
ysis on NUS-WIDEseq. We compare
the performance for the smallest Task
3, for which our PRS robustly outper-
forms all the baselines.

bound performance as it is learned offline with minibatch training for a single
epoch. The Finetune performs online training without any continual learning
technique, and thus it can be regarded as a lower-bound performance. For training
EWC, we fix the ResNet up to the penultimate layer in order to obtain sensible
results; otherwise, it works poorly. More details for baselines are presented in the
Appendix.

We use a fixed online input batch size of 10 and a replay-batch size of 10 in
accordance with [3]. We use Adam [34] optimizer with β1 = 0.9, β2 = 0.999 and
ε = 1e− 4, and finetune all the layers unless stated otherwise. Furthermore, we
set ρ between the range of [-0.2, 0.2], and fix the memory size to 2000 (as done
in [48]), which are 5.7% and 4.7% of the overall training data for COCOseq and
NUS-WIDEseq, respectively.

6.2 Results

Table 1 compares continual learning performance between our PRS method and
baselines on COCOseq and NUS-WIDEseq. In all comparable metrics of C-F1,
O-F1 and mAP, PRS outperforms CRS [57], GSS [3] and even ExStream [28]
that uses prior task information to pre-allocate the memory.

Schedule and Memory Permutations. Table 2 compares the robustness of
PRS through random permutations of task schedule as well as different memory
sizes. Interestingly, the performances of CRS, GSS and ExStream fluctuates
depending on the permuted schedule, while our PRS is comparatively robust
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Fig. 5. The resulting memory distribution
of the COCOseq tests in Table 1. ExStream
[28] is the only task-aware method that
knows the task distribution beforehand.
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Fig. 6. Performance of PRS with different
ρ in the range of [-1, +1] on COCOseq.
All results are the averages of 5 different
random seeds.

thanks to the balanced emphasis on all the learned classes. Moreover, PRS
outperforms all the baselines with multiple memory sizes of 1000, 2000, 3000.

Intra- and Inter-task Imbalance. Table 1 shows that PRS is competitive
on the majority classes (e.g . marked in blue as the runner-up) and performs the
best on both moderate and minority classes, showing its compelling robustness
for the intra-task imbalances. Furthermore, Figure 4 validates the robustness of
PRS in the inter-task imbalance setting. As shown in Fig. 1 of the Appendix,
tasks of NUS-WIDEseq are imbalanced in that the smallest Task 3 is 9.6 times
smaller than that of the largest Task 1. Figure 4 compares the performances of
all methods for the minority Task 3, for which PRS performs overwhelmingly
better than the other baselines in all the metrics.

Memory Distribution After Training. Figure 5 compares the normalized
memory distribution of the experiments in Table 1. CRS dominantly uses the
memory for the majority classes while reserving only a small portion for the
minority. This explains why CRS may perform better than PRS for the majority
in Table 1, while sacrificing performance largely for the moderate and minority
classes. On the other hand, GSS saves much more samples for the moderate classes
relative to CRS, but still fails to maintain a sufficient number of samples for the
minority. Note that Exstream balances the memory using prior task information.
However, due to its clustering scheme via feature merging to maintain the memory,
it is difficult to obtain representative clusters, especially when handling complex
datasets with multi-labels. Importantly, PRS can balance the memory for all
classes without any auxiliary task information.

Power of Allocation ρ. Figure 6 shows the performance variation according
to different ρ. It confirms that a balance of memory is vital for the performance
even when the input stream is highly imbalanced. Notice, as ρ moves away from
the vicinity of balance, the performance gradually declines in all metrics.
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CRS-COCOseq(c)(a) CRS-MNIST (b) PRS-MNIST (d) PRS-COCOseq

Fig. 7. t-SNE feature projection of CNN backbones trained by CRS and PRS for
test samples of (a)–(b) MNIST and (c)–(d) COCOseq. We use the penultimate features
of a 2-layer feedforward for MNIST and ResNet101 for COCOseq. As with the single-
label experiments in the Appendix, we curate a sequential MNIST that follows a Pareto
distribution [56] with a power value α=0.6, which becomes increasingly long-tailed from
0 to 9. For COCOseq, we use the symbols of {Minority: F, Moderate: ♣, Majority: ♠}.
We emphasize that PRS represents the minority classes (in the blue box) much more
discriminatively than the corresponding class features (in the red box) for CRS.

Feature Analysis Figure 7 shows the feature projections of CNN backbones
trained by CRS and PRS for test samples of MNIST and COCOseq using t-
SNE [45]. PRS can represent the minority classes more discriminatively than
CRS on both single-label MNIST and multi-label COCOseq experiments.

In the Appendix, we include more experimental results, including analysis on
the memory gradients and performance on single-label classification and many
more.

7 Conclusion

This work explored a novel problem of multi-label continual learning, which nat-
urally requires the model to learn from imbalanced data streams. We contributed
two datasets and an effective memory maintenance algorithm, called Partitioning
Reservoir Sampling to tackle this new challenge. Our results showed the impor-
tance of maintaining a well-rounded knowledge through balanced replay memory.
As a future direction of research, the ability to learn online while automatically
tuning the target partitions would be an exciting avenue to explore.
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