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Appendix A: Algorithm of C

In GCT, we use a classical image processing pipeline C to calculate the ground
truth of the flaw detector F on the labeled subset by taking the task model
prediction T k(xl) and the corresponding label y as the input. C is composed of
three operations:

1. blur(inp, (height, width)): Blur inp by a Gaussian kernel of given shape.

2. dilate(inp, (height, width)): Dilate inp for each local region of given shape.

3. norm(inp): Normalize all pixels in inp to range between [0, 1].

We show the pseudo code of C in Python style as follows (assume the shape of
T k(xl) is H ×W ×O):

Algorithm 1 Image Process Pipeline C.

Require: Channel average coefficient µ ; Operations repeat times ν.
1: def C(T k(xl), y):
2: Fgt = µ

∑
o |T

k(xl)
(h,w,o) − y(h,w,o)|

3: Fgt = blur(Fgt, (H
8
, W

8
))

4: for i in range(0, ν):
5: Fgt = dilate(Fgt, (3, 3))
6: Fgt = blur(Fgt, (H

4
, W

4
))

7: Fgt = norm(Fgt)
8: return Fgt

In our experiments, we set µ = 1
2 for semantic segmentation, and we set

µ = 1
o for other three tasks. We set ν = 10 for real image denoising, ν = 5 for

night image enhancement, and ν = 1 for other two tasks.
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Appendix B: Architecture of Flaw Detector

The flaw detector F is a fully-convolutional neural network, which contains 8
convolutional layers with 4× 4 kernels. The amount of kernels is increased from
64 to 512 in the first 7 layers and then decreased to 1 in the last layer. Each of
the first 7 convolutional layers is followed by batch normalization [2] and leaky
ReLU [4] with threshold of 0.2. The convolutional layers with stride=2 reduce the
resolution of the feature maps. At the end of F , we add a bilinear interpolation
operation to rescale the output to the size of the input. In all experiments of
GCT, we optimize F by Adam [3] (with learning rate 1e−4). The architecture
of F is as follow:

Layer Details

Input concatenate T k(x) and x as the input
Conv + BN + ReLU out-channels=64, kernel-size=4, stride=2, padding=same
Conv + BN + ReLU out-channels=128, kernel-size=4, stride=2, padding=same
Conv + BN + ReLU out-channels=128, kernel-size=4, stride=1, padding=same
Conv + BN + ReLU out-channels=256, kernel-size=4, stride=2, padding=same
Conv + BN + ReLU out-channels=256, kernel-size=4, stride=1, padding=same
Conv + BN + ReLU out-channels=512, kernel-size=4, stride=2, padding=same
Conv + BN + ReLU out-channels=512, kernel-size=4, stride=1, padding=same
Conv out-channels=1, kernel-size=4, stride=2, padding=same
Interpolation out-shape=H ×W , mode=bilinear, align-corners=True

Appendix C: Training Details

We have experimented with several SSL methods, including (1) the consistent-
based Mean Teacher (MT) [5]; (2) the self-supervised SSL (S4L) [6]; (3) the
adversarial-based method proposed in [1] (AdvSSL); (4) the GCT framework
proposed by us. Here are the definitions of the hyper-parameters for SSL in
these methods:

Methods Hyper-Parameters for SSL

MT [5] λMT - coefficient for scaling the consistency constraint
ηMT - epochs for ramping up the consistency constraint
αMT - moving average coefficient for ensembling the teacher model

S4L [6] λS4L - coefficient for scaling the unsupervised rotation constraint

AdvSSL [1] λl
Adv - coefficient for scaling the labeled adversarial constraint
λu
Adv - coefficient for scaling the unlabeled adversarial constraint

GCT (Our) λfc - coefficient for scaling the flaw correction constraint
λdc - coefficient for scaling the dynamic consistency constraint
ηdc - epochs for ramping up the dynamic consistency constraint
ξ - flaw threshold for calculating the dynamic consistency

constraint and combining the two SSL constraints
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For the four validated tasks, we use grid search to find the suitable hyper-
parameters for SSL. The final settings for the experiments are as follows:

Semantic Real Image Portrait Image Night Image
Methods Segmentation Denoising Matting Enhancement

MT [5] λMT 1.00 1.00 1.00 1.00
ηMT 3 5 5 5
αMT 0.99 0.99 0.99 0.99

S4L [6] λS4L 0.10 1.00 1.00 1.00

AdvSSL [1] λl
Adv 0.01 0.001 0.01 0.001
λu
Adv 0.001 0.001 0.01 0.001

GCT (Our) λfc 1.00 0.10 1.00 0.10
λdc 100 1.00 100 1.00
ηdc 3 5 5 5
ξ 0.40 0.60 0.40 0.60

Appendix D: Visual Comparisons

Here we provide visual comparisons of the SSL results for four validated tasks.
The red bounding box in the figure highlights some main differences in the
outputs. As shown below, GCT surpasses existing SSL methods in visual effects.

Input Label MT S4L AdvSSL GCT (Our)SupOnly

Fig. 1. Semantic Segmentation. Comparisons on the PASCAL VOC dataset using
1/8 labeled data.
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Input Label MT S4L AdvSSL GCT (Our)SupOnly

Fig. 2. Real Image Denoising. Comparisons on the SIDD dataset using 1/8 labeled
data.

Input Label MT S4L AdvSSL GCT (Our)SupOnly

Fig. 3. Portrait Image Matting. Comparisons on our dataset using 100 labeled data
and 3850 unlabeled data.
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Input Label MT S4L AdvSSL GCT (Our)SupOnly

Fig. 4. Night Image Enhancement. Comparisons on our dataset using 200 labeled
data and 1500 unlabeled data.
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