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Abstract. Recently, stacked networks show powerful performance in
Image Restoration, such as challenging motion deblurring problems. How-
ever, the number of stacking levels is a hyper-parameter fine-tuned man-
ually, making the stacking levels static during training without theo-
retical explanations for optimal settings. To address this challenge, we
leverage the iterative process of the traditional plug-and-play method to
provide a dynamic stacked network for Image Restoration. Specifically,
a new degradation model with a novel update scheme is designed to in-
tegrate the deep neural network as the prior within the plug-and-play
model. Compared with static stacked networks, our models are stacked
dynamically during training via iterations, guided by a solid mathemat-
ical explanation. Theoretical proof on the convergence of the dynamic
stacking process is provided. Experiments on the noise dataset BSD68,
Set12, and motion blur dataset GoPro demonstrate that our framework
outperforms the state-of-the-art in terms of PSNR and SSIM score with-
out extra training process.
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1 Introduction

Image Restoration (IR) is a classic yet hot task in low-level vision for its high
application value. It aims to recover the clean image x from its corrupted ob-
servation y. Classic degradation model is y = Ax+ n, where A is a degradation
matrix referred to as the identity matrix in image denoising or the blurring ma-
trix in image deblurring. n is often regarded as additive white Gaussian noise.

Solutions to this ill-posed inverse model include two main categories: model-
based and learning-based. Model-based methods estimate A and n in the degra-
dation model by a series of constraints and regularizations, and then iteratively
solve for the latent clean image supported with strong mathematical theory. But
they rely heavily on fixed and handcrafted priors that certainly are insufficient
in characterizing clean images. Learning-based methods gradually show superi-
ority to learn the regression between the corrupted input image and the latent
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Fig. 1: The architecture of our proposed deep plug-and-play framework with dynamic
stacked networks.

clean image directly. Meanwhile, new tricks, like the network stacking diagram,
are borrowed to further improve performance. However, networks are with too
many static hyper-parameters, and the learning performance depends seriously
on carefully tuning of them. These facts make the training very tricky, let alone
hard process and GPU limit, but also theoretical analysis difficult.

To address this challenge, we propose to stack networks dynamically for
IR based on the plug-and-play framework. First, by plugging the pre-trained
deep prior into our framework, we can iteratively reuse the prior knowledge like
stacking deep networks without increasing parameter size. More importantly, a
new degradation model y = A(t)x+n with update scheme is designed, and solved
for the theoretical optima guided by strong explanations on the convergence.
Thus, our dynamic stacking diagram not only leverages the iterations to the
maximum extent, but also plays the role of shifting focus for better performance
level-by-level in training stacked networks.

In this paper, we solve for the latent clean image in image denoising and
extend the idea to complex motion deblurring tasks. The framework consisting
a new degradation model and pre-trained deep prior is formalized as

x∗ = x(t+1) = arg min
x(t)
||y −A(t)x(t)||2 + λf(x(t); θ) (1)

where y is the noisy or blurry image need to be restored, x is the latent clean
solution, and θ is the parameter of plugged deep denoiser or deblurrer. Unlike
the basic degradation model, A is no longer a specific degradation matrix fixed
in a specific task. We note that previous works’ results are superior level-by-
level which means more stacked sub-models after training will focus on more
blurry details spatially. But simple iterations cannot shift the focus of pre-trained
networks on more blurry cues. Based on these observations, we propose to update
A in each iteration to shift focus on more corrupted areas. Thus, in Eq. (1),
||y−A(t)x||2 represents the fidelity term, and λf(x; θ) is the regularization term
known as the prior.
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Fig. 1 shows the architecture of our novel dynamic stacked networks based on
plug-and-play framework. The key point is that our dynamic diagram can con-
verge to the optima with a firm theoretical foundation instead of tuning stacking
levels of static stacked networks. Our deep plug-and-play framework, contribut-
ing to the leverage of the new degradation model with an update scheme, applies
to image denoising and complex motion deblurring problems successfully first of
the time to our best knowledge. We conduct extensive experiments to demon-
strate the superior results of our framework, compared with the static networks
who set the state-of-the-art on famous noise dataset BSD68, Set12, and motion
blur dataset GoPro. Both objective evaluating metrics PSNR, SSIM and visu-
alization in the following section help to prove that we effectively improve the
performance in both image denoising and motion deblurring tasks.

Our contributions are summarized as follows:

1) We propose a dynamic stacked networks for IR based on the plug-and-play
framework to solve the new degradation model. Compared with static stack-
ing diagrams, our framework leverages the iteration process to dynamically
reuse the prior knowledge.

2) Theoretical analysis is provided to show that our framework with a new
degradation model inside is able to solve for the optima with fast convergence
by means of iterating the output dynamically.

3) To our best knowledge, our framework exploits both the merits of model-
based and learning-based methods for image denoising and non-uniform
blind motion deblurring for the first time.

4) Experiments on datasets BSD68, Set12, and GoPro have proven that our
framework outperforms existing methods on PSNR, SSIM, and visualization.

The remainder of the paper is organized as follows. In Section 2, we give
an overview of the related work. In Section 3, we provide a detailed descrip-
tion of the proposed method. Finally, in Section 4, we perform an evaluation of
our framework on image denoising and motion deblurring tasks, and compare
it to the state-of-the-art. Meanwhile, mathematical explanations are provided.
Section 5 concludes this paper.

2 Related Work

2.1 Plug-and-Play Methods

The plug-and-play method was first introduced to solve IR tasks in [8,27,35].
Its core idea is to decouple the fidelity term and regularization term in the en-
ergy function by splitting techniques, as well as to replace the prior associated
sub-problem by any off-the-shelf Gaussian denoiser. For its flexibility and good
performance, a set of work have been done mainly in three aspects: 1) various
priors, including conventional priors such as the well-known BM3D [7], Gaus-
sian mixture model [35] and the state-of-the-art CNN denoiser such as [34] as
well as their combination [11]; 2) various variable splitting algorithms, such as
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half-quadratic splitting (HQS) algorithm [1], alternating direction method of
multipliers (ADMM) algorithm [3] and primal-dual algorithm [19]; 3) theoret-
ical analysis on the convergence from the aspect of fixed point [5,17]. In [31],
priors have been proved not limited to Gaussian denoiser. In this paper, priors
can transfer to be image deblurrer.

2.2 Image Denoising

Image denoising is a classic low-level vision task. DNN has been exploited since
2009, which has developed the solution in two aspects: 1) learn the clean tar-
get. MLP [4] has been adopted to learn the mapping from noise patch to clean
pixel. In [6], a trainable nonlinear reaction diffusion (TNRD) model has been
proposed and it can be expressed as a feed-forward deep network by unfold-
ing a fixed number of gradient descent inference steps. Santhanam et al. [23]
introduce a recursively branched deconvolutional network (RBDN), where pool-
ing/unpooling is adopted to obtain and aggregate multi-context; 2) learn the
noise. Residual learning with batch normalization (DnCNN) was first proposed
by Zhang et al. [33] which outperforms other methods. A set of frameworks take
advantage of DnCNN as a denoising network for various applications [28]. In
[14], only noisy inputs are exploited to train in the network with L2 loss func-
tion which outputs the mean of all results. By observing the noisy inputs twice
during training on a big enough dataset, the network can estimate the noise
distribution in an unsupervised manner. Inspired by the success of DNN-based
method, many work [16,20,34] attempted to integrate the conventional method
like BM3D, wavelet transformation, including plug-and-play with DNN.

2.3 Non-uniform Blind Deblurring

The goal of non-uniform blind image deblurring is to remove the undesired blur
caused by camera motion and scene dynamics [24,32]. Conventional methods
used to employ a variety of constraints or regularizations to approximate the
motion blur filters, involving an expensive non-convex non-linear optimization.
Moreover, the commonly used assumption of spatially-uniform blur kernel is
overly restrictive, resulting in a poor deblurring of complex blur patterns.

CNN-based methods have shown a powerful ability to deal with the complex
motion blur in a time-efficient manner. They are developed in two main respects:
1) Learning the blur kernel. [29] proposed a deconvolutional CNN which removes
blur in a non-blind setting by recovering a sharp image given the estimated blur
kernel. Their network uses separable kernels which can be decomposed into a
small set of filters. [25] estimated and removed a non-uniform motion blur from
an image by learning the regression between image patches and their correspond-
ing kernels. 2) Learning the sharp Image. In [32], Recurrent Neural Network
(RNN) is applied as a deconvolutional decoder on feature maps extracted by the
first CNN module. Another CNN module learns weights for each layer of RNN.
The last CNN module reconstructs images from deblurred feature maps.
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3 Proposed Methods

3.1 Overview

As shown in Fig. 1, the pre-trained stacked network is plugged into the frame-
work dynamically in Stage 2.2 ∼ 2.3. Different from existing deep plug-and-play
methods [34], we solve our new degradation model by transforming the forward
model into a single step of gradient descent in Stage 2.1, which not only pro-
vides fast convergence but also keeps remarkable performance with theoretical
support. Ahead of the implementation, the degradation matrix A(t) and other
parameters are initialized in Stage 1. Furthermore, an optimization target is set
in Stage 2.4, which will be solved to update the variable A(t) in y = A(t)x + n
in each iteration adaptively to adjust the focus of deblurring networks.

3.2 Deep Plug-and-Play

In IR, A in the basic model is reasonably equal to the blur kernel. However,
the blur kernel is hard to know in complex application situations. Therefore,
our new degradation model is designed, in which we no longer need to know
or to estimate the blur kernel but initialize it as an identity matrix before the
adaptive updating scheme. Based on the new degradation model, we can utilize
the deep prior as denoiser for denoising tasks. Furthermore, we transfer the deep
plug-and-play framework to complex deblurring problems by the other deep
prior. Basically, to plug the deep prior into the optimization procedure of Eqn.
(1), the variable splitting technique is usually adopted to decouple the fidelity
term and regularization term. In Half Quadratic Splitting (HQS) method, by
introducing an auxiliary variable v, Eqn. (1) can be reformulated as a constrained
optimization problem which is given by

(x∗, v∗)← arg min
x,v

1

2
||y −A(t)x||2 + λf(v; θ)

s.t. x = v (2)

Then, standard optimization algorithms are able to be used to solve the problem.
The equally constrained optimization problem can be converted into a non-
constrained optimization problem,

L(x, v) =
1

2
||y −A(t)x||2 + λf(v; θ) +

µ

2
||v − x||2 (3)

where µ is a penalty parameter which varies iteratively in a non-descending
order. Eqn. (3) can be solved via the following iterative scheme,

x(t+1) = arg min
x
||y −A(t)x||2 + µ||x− v(t)||2

v(t+1) = arg min
v

µ

2
||v − x(t+1)||2 + λf(v; θ)

(4)

(5)
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The first step only depends on the choice of a forward model, while the second
step only depends on the choice of prior and can be interpreted as a denoising
operation [27]. However, it is not limited in denoiser and can be extended to be
deblurrer in our paper. Typically, Eqn. (4) is a quadratic optimization problem
that can be solved in closed-form, as x(t+1) = W−1xt , where W is a matrix
related to the degradation matrix A. It is time-consuming to compute like this
while Fast Fourier Transformation (FFT) is often applied as a feasible implemen-
tation [34]. However, FFT methods still cannot solve for answers efficiently. In
our framework, we propose to take advantage of iterative classic conjugate gra-
dient (CG) algorithm, which is a common optimization algorithm. More briefly,
we only compute with a single step of gradient descent for an inexact solution,

x(t+1) = x(t) − δ[A(t)T (A(t)x(t) − y) + µ(x(t) − v(t))]

= [(1− δµ)I − δA(t)TA(t)]x(t) + δA(t)T y + δv(t) (6)

where δ is the step size. It is proven that this single descent step is sufficient
for convergence which follows the idea of [9] shown in section 4. Eqn. (5) is
considered to be a task-dependent denoiser or deblurrer in our framework. In
this paper, inspired by the success of deep learning-based methods for IR tasks,
we plug in the pre-trained deep neural network model to replace the proximity
operator of conventional priors.

v(t+1) = f(x(t+1); θ) (7)

Eqn. (7) is just the solution of Eqn. (5). After several alternating iterations, it is
expected that the final reconstructed image attains the high-quality restoration.

3.3 Deep Prior

Denoiser In order to exploit the merits of learning-based methods, we need to
specify the denoiser network according to Eqn. (7). Inspired by [10], we only need
to modify most of the existing learning-based denoisers. The pretrained prior we
adopt is the variational denoising network (VDN), which efficiently approximates
the true posterior with the latent variables. The framework includes two subnets
standing for noise estimation and noise removal separately.

The weights of VDN are initialized according to [12]. In each epoch, we ran-
domly crop N = 64 × 5000 patches with size 128 × 128 from the images for
training. The Adam algorithm [13] is adopted to optimize the network parame-
ters through minimizing the proposed negative lower bound objective. The initial
learning rate is set as 2e-4 and linearly decayed in half every 10 epochs to 1e-6.

Deblurrer We base our deep deblurrer on DMPHN [31] including its stacked
versions which is the state-of-the-art. It processes images of different scales by
dividing into different numbers of image patches from the coarsest to the finniest
level. This end-to-end network can be stacked as a part with more stacks. Since
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the network is determined by the stacking level, this static stacking diagram is
hard to find the optimal form in two-fold: 1) It has to stack many filters since
their weights are fixed and spatially invariant; 2) A geometrically uniform re-
ceptive field without adaption is sub-optimal for the real-world scene. Therefore,
limit to the GPU memory and long training time, there exists no performance of
deeper stacked networks. After we plugging pre-trained shallow stacked models
into our framework, they can explore the solution effectively dynamically.

Inside the DMPHN, there is an encoder and decoder of each layer. The
encoder consists of 15 convolutional layers, 6 residual links, and 6 ReLU units.
The layers of decoder and encoder are identical except that two convolutional
layers are replaced by deconvolutional layers to generate images. The input of
each layer is the blurry image divided into specific image patches. The output
of both encoder and decoder from a lower level (corresponds to the finer grid)
will be added to the upper level (one level above) so that the top level contains
all information inferred in the finer levels.

3.4 Adaptive Update Scheme

Previous work has shown that the performance of stacked networks is superior
level-by-level, which means more stacked sub-models will focus on more blurry
details spatially. Since pre-trained networks focus on several severe blurriness are
constructed from coarse-to-fine, the restoration image tends to induce undesired
local blurriness after a few simple iterations especially when the motion blur
is distributed all over the image. Since simple iterations cannot shift the focus
of networks on more blurry cues, we design the adaptive update scheme in our
degradation model to shift the focus adaptively. To be specific, A will be used as
the adaptive optimized variable to complete our design. We find that networks
trained under MSE loss all try to do one thing essentially: learning the mapping
from corrupted images y to latent clean images x with a network gθ(·).

arg min
x
||gθ(y)− x||2

= arg min
x
||gθ(Ax+ n)− x||2 (8)

A precondition that cannot be ignored is that deep plug-and-play framework
should follow the basic degradation model y = Ax + n with unknown variables
in IR tasks. That means the network aims to complete the fitting task gθ(y) =
A−1[(Ax+n)−n] by training on big data. However, the network cannot fit to the
uncertain targets and may be trained as gθ(y) = H−1[(Ax+n)−ε] = H−1Ax−η
with deblurring ability to a certain extent. When we suppose A = I in a learning-
based method where H−1 may not be A−1, the final solution must be over-
blurred by an operation that is uncertain. That means that simple iterations with
pre-trained deblurrers cannot improve the deblurring performance for over-blur.

Therefore, we propose a new degradation model y = A(t)x + n with update
scheme to battle the operation H−1 fixed in the pre-trained deep prior which
may cause undesired blurriness. Our purpose is to let H−1 = A−1 and η = 0.
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This idea is equal to make the basic degradation model y = Ax + n reasonable
in each iteration. So we set the optimization target after implementing Eqn. (7).

arg min
A(t)
||A(t)x(t) + n− y||2

= arg min
A(t)
||A(t)x(t) + gθ(y)− y||2 (9)

where noise n in the optimization target is estimated by the pre-trained deep
denoiser. This optimization target will update A(t) in each iteration between
Eqn. (5) and Eqn. (4) after the end of an epoch. This step of adaption can shift
the focus of the deep deblurrer and pass the adjusted matrix A(t) to the forward
model.

As for the solution, we tackle this optimization target in the similar way of
the forward model. Hence, the matrix A(t) will be updated in a single step of
gradient descent

A(t+1) = A(t) − αx(t+1)TA(t)x(t+1) − α(gθ(y)− y) (10)

where α is the step size of gradient descent, and gθ(·) is the pre-trained deep
prior to estimate the noise. We train a common deep denoiser DnCNN [33] as
the gθ(·) due to its success. According to the deductive optimization target Eqn.
(10), we make A(t) adaptively fit to the degradation model and consequently
focus on more corrupted areas.

4 Experiments

Our deep priors are based on their released version without retraining with a
single NVIDIA Titan RTX GPU. In the alternating iterations between Eqn.(4)
and Eqn.(5), we need to tune µ and set λ to make the performances satisfying.
In addition, the step size of gradient descent δ in the forward model Eqn.(4) and
α in the update step are also needed to be set previously. Actually, the step size
varies with different datasets and different deep priors for different convergence
speed. Although setting such parameters has been considered as a non-trivial
task [21], the parameters of our framework are easy to be obtained with the
following principles . Firstly, λ is fixed associated with noise level in denoising,
we can instead multiply noise level by a scalar λ and therefore ignore the λ in
Eqn. (5). And the noise level in deblurring is 0. Secondly, the step size is tuned
from 1e-3 to 1e-5 for a total of 2 to 4 iterations.

4.1 Image Denoising

Datasets. The denoising prior is trained on the famous BSD500. We test our
framework on two widely used datasets BSD68 and Set12. BSD68 [22] contains of
68 nature images subtracted from Berkeley segmentation dataset. The common
data augmentation operations such as flip and rotations are implemented to it.
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Table 1: Average PSNR(dB)/SSIM results of the competing methods for image denois-
ing with noise levels σ = 15, 25 and 50 on datasets Set12 and BSD68. Outperforming
results are noted red bold while the second best results are blue bold.

Dataset σ DnCNN [33] IRCNN [34] MWCNN [16] NLRN [15] DPDD [9] VDN [30] Proposed

Set12
15 32.86 0.903 32.77 0.901 33.15 0.909 33.16 0.907 32.91 0.889 33.33 0.912 33.44 0.912
25 30.44 0.862 30.38 0.860 30.79 0.871 30.80 0.869 30.54 0.811 30.90 0.875 31.04 0.875
50 27.18 0.783 27.14 0.780 27.74 0.806 27.64 0.798 27.50 0.739 28.00 0.816 28.27 0.816

BSD68
15 31.73 0.891 31.63 0.888 31.86 0.895 31.88 0.893 32.29 0.888 32.22 0.917 32.42 0.918
25 29.23 0.828 29.15 0.825 29.41 0.836 29.41 0.833 29.88 0.827 30.03 0.851 30.17 0.851
50 26.23 0.719 26.19 0.717 26.53 0.737 26.47 0.730 27.02 0.754 27.18 0.754 27.64 0.754

Another famous dataset we exploit contains 12 famous gray images for Image
Processing tasks. Note that all those images are widely used for the evaluation of
Gaussian denoising methods and they are not included in the training dataset.
To evaluate our framework, we consider three common noise levels of additive
white Gaussian noise with σ = 15, 25, 50. Noise is randomly added to the image
before testing.

Baselines. We compare the proposed framework with six methods, includ-
ing four learning-based methods (i.e.,DnCNN [33], MWCNN [16], NLRN [15],
VDN [30]) as well as two methods combing conventional models and deep priors
(i.e., DPDD [9], IRCNN [34]). DnCNN consists of 17 layers of ResNet for learn-
ing the noise of the degraded images; NLRN integrates non-local self-similarity
in natural images as an effective prior into existing deep networks for end-to-
end training to capture deep feature correlation between each location and its
neighborhood. A similar method is applied in MWCNN for transforming the
convolutional neural networks in view of multi-level wavelet. VDN proposes a
new variational inference method and integrates both noise estimation and im-
age denoising into a unique Bayesian framework for blind denoising. IRCNN and
DPDD both combine the deep neural networks and conventional models, while
the former is based on a model and the latter transforms the model into several
layers in a network. Our proposed framework is fairly compared to them.

Denoising Results. The PSNR and SSIM results of different methods for
image denoising on the dataset BSD68 and Set12 are shown in Table 1, from
which we have several observations. Firstly, VDN which set the state-of-the-art
currently shows great lift with about 1.2 ∼ 2.1 dB on PSNR and 0.06 ∼ 0.11
on SSIM on Set12, about 0.2 ∼ 1.9 dB on PSNR and 0.08 ∼ 0.15 on SSIM
on BSD68, which may be attributed to simultaneously implementing both noise
estimation and blind image denoising tasks in a unique Bayesian framework.
Secondly, IRCNN and DPDD are both superior to the methods they are based
on which inspire more work to focus on deep plug-and-play methods including
us. Last, our proposed framework outperforms existing best method, VDN, 0.1
∼ 0.27 dB on PSNR on Set12 and 0.18 ∼ 0.5 dB on BSD68 but no obvious
lift on SSIM due to no difference on variance. Our framework is based on deep
priors but surpasses them for the unique combination of both the advantages of
model- and learning-based method with self-adaption.
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Fig. 2: Denoising results of one image from BSD68 with noise level 50. (a) Noisy,
14.76dB. (b) BM3D, 26.21dB. (c) WNNM, 26.51dB. (d) DnCNN-B, 26.92dB. (e) MLP,
26.54dB. (f) TNRD, 26.59dB. (g) DnCNN-S, 26.90dB. (h) Proposed, 28.47dB

Fig.2 shows the visual comparison of different methods for Gaussian denoising
with σ = 50 on dataset BSD68. Conventional model methods like BM3D, WNNM
cannot restore the latent image as clean as learning-based methods such as MLP,
TNRD and DnCNN. DnCNN S produces better results than similar methods.
However, all these methods cause the local blurriness with error, especially the
edges of the castle in Fig.2. Our proposed method shows powerful abilities to
overcome the tendency of blurriness and reduce the local error, so that the
edge of the castle can be seen clearly. As we all know, PSNR evaluates the
distance of all the pixels which stands for the error between two images. Our
proposed framework performs the best naturally for improving the quality of
reconstruction.

4.2 Image Deblurring

Datasets. GoPro dataset [18] consists of 3214 pairs of blurred and clean images
extracted from 33 sequences captured at 720 × 1280 resolution. The blurred
images are generated by averaging varying number (7–13) of successive latent
frames to produce varied blur. For a fair comparison, we follow the protocol in
[18], which uses 2103 image pairs for training and the remaining 1111 pairs for
testing. To make the fair comparison with DMPHN itself, we follow the principle
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Table 2: Quantitative analysis of our framework on the GoPro dataset compared with
baselines. PSNR and SSIM are common evaluating metrics for image restoration tasks.
Each of our proposed frameworks are based on the deep deblurreres marked in the
notation. Outperforming results in the specific stacking diagram are noted red bold
while the second best results are blue bold.

Models PSNR(dB) SSIM Size(MB)

Sun et al. [25] 24.64 0.8429 54.1
Nah et al.[18] 29.23 0.9162 303.6
Zhang et al.[32] 29.19 0.9306 37.1
Tao et al.[26] 30.10 0.9323 33.6

DMPHN(1-2) 29.77 0.9286 14.5
DMPHN(1-2-4) 30.21 0.9345 21.7
Proposed(DMPHN(1-2-4)) 30.32 0.9358 21.7
DMPHN(1-2-4-8-16) 29.87 0.9305 36.2
DMPHN(1-2-4-8) 30.25 0.9351 29.0
Proposed(DMPHN(1-2-4-8)) 30.40 0.9400 29.0

Stack(2)-DMPHN 30.71 0.9403 43.4
Proposed(Stack(2)-DMPHN) 30.92 0.9478 43.4
Stack(3)-DMPHN 31.16 0.9451 65.1
Proposed(Stack(3)-DMPHN) 31.32 0.9510 65.1
Stack(4)-DMPHN 31.20 0.9453 86.8
Proposed(Stack(4)-DMPHN) 31.44 0.9530 86.8

VMPHN 30.90 0.9419 43.4
Stack(2)-VMPHN 31.50 0.9483 86.4
Proposed(Stack(2)-VMPHN) 31.72 0.9567 86.4

that randomly crop images to 256 × 256 pixel size. The batch size is set to 6
during training and the Adam solver is used to train the model for 3000 epochs.
The initial learning rate is set to 0.0001 and the decay rate is 0.1. Then we
normalize image to range the [0, 1] and subtract 0.5. Finally, we plug the deep
prior into our framework.

Baselines. We compare our proposed framework with 5 competing motion
deblurring methods. [25] proposed to deal with the complex motion blur us-
ing CNN in an early time by learning the regression between 30 × 30 image
patches and their corresponding kernels. To exploit the deblurring cues at dif-
ferent processing levels, the “coarse-to-fine” scheme has been extended to deep
CNN scenarios by a multi-scale network architecture and a scale-recurrent archi-
tecture. For multi-scale architecture, [18] exploited a multi-scale CNN to restore
sharp images in an end-to-end fashion from images whose blur is caused by var-
ious factors. A multi-scale loss function is employed to mimic the coarse-to-fine
pipeline in conventional deblurring approaches. For RNN architecture, proposed
by [32], a network consisting of three deep CNNs and one RNN, is a prominent
example. The RNN is applied as a deconvolutional decoder on feature maps
extracted by the first CNN module. As for [31], it successfully improves the de-
blurring performance by using localization deblurring cues via a fine-to-coarse
hierarchical representation.

Deblurring Results. The PSNR and SSIM results of competing methods
for non-uniform blind motion deblurring on the dataset GoPro are shown in
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Fig. 3: Deblurring performance on the blurry images from the GoPro dataset. The first
column contains the original blurry images, the second column is the result of [26], the
third column is the result of [31]. Our results are presented in the last column which
achieve the best performance across different scenes.

Table 2, from which we have several observations. Firstly, recent studies on non-
uniform blind motion deblurring focus on deep end-to-end networks all reach
relatively excellent performance. Secondly, our proposed framework outperforms
the based deep network [31] in all of the stacking diagrams about 0.15 ∼ 0.24 dB
on PSNR without extra parameters. Furthermore, we find that our framework
based on shallow stacked networks tend to outperform deeper stacked networks
themselves (i.e.Our proposed Stack(3)-DMPHN outperforms Stack(4)-DMPHN
0.12 dB on PSNR) which shows that we successfully design the deep plug-an-play
deblurring framework with dynamic stacked networks to explore more optimal
clean images. Thirdly, since we can improve deblurring performance simply with
whatever pre-trained deep deblurrers both on PSNR and SSIM, deep plug-and-
play framework show the feasibility to combine both the advantages of model-
based and learning-based IR methods.

Besides, stacked variant Stack(4)-DMPHN (including our framework based
on deep deblurrers) outperformed shallower model DMPHN by 1 % PSNR, VM-
PHN outperformed DMPHN by 0.7% PSNR while stacked variant Stack(2)-
VMPHN outperformed shallower DMPHN by 1.3% PSNR. SSIM scores also
indicate the same trend. Part of the results are visualized in Fig. 3.

4.3 Analysis of Convergence

To evaluate the superiority of convergence, we compare our dynamic stacked
networks with three static stacked networks with the same parameters in com-
plex motion deblurring. In Fig. 4, we represent the deblurring performance of
our dynamic diagram varying with iteration numbers in solid lines and the per-
formance of simply iterating static stacked networks in dotted lines. From the
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Fig. 4: Comparison between our dynamic stacking diagrams with iterating static pre-
trained stacked networks simply. One can see that our framework reaches optimal
solution within 4 iterations.

(a) Input (b) I1(31.89) (c) I2(31.94) (d) I3(32.06) (e) I4(32.16) (f) I5(31.98)

Fig. 5: Outputs and PSNR of different iterations of our proposed framework based on
Stack(4)-DMPHN. From left to right and up to bottom are the images of different
iterations denoted by I with concrete epochs.

results we have several observations: 1) Compared to static ones whose perfor-
mance decrease gradually, our dynamic stacking diagram can leverage the prior
to improve performance by iterations effectively; 2) Our dynamic stacking di-
agram is able to solve for the optimal result with fast convergence, superior
to conventional models, which need large numbers of iterations and lack the
reasonable stop criterion [5], as well as existing deep plug-and-play methods,
which need at least 15 iterations based on Fast Fourier Transform (FFT) [34].
The visualization of the iteration process in our dynamic stacking diagram is
shown in Fig. 5, which is an instance to prove that our frameworks attain the
cleaner image gradually within 4 iterations indicated by PSNR. As far as we are
concerned, two main reasons contribute to fast convergence: 1) We exploit the
pre-trained stacked networks as the deep prior, which goes through large num-
bers of modulation on parameters to explore the latent clean images similar to
the process of iterations in conventional models; 2) We solve the forward model
with a single step of gradient descent, which improves the computation efficiency
and still attains the good results. However, the drawback of the fast convergence
is that our framework may cause over-fitting due to the gradient descent. That’s
why we can see the decrease in performance with more iterations.
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4.4 Mathematical Explanations

Compared to the static stacking diagram, dynamic stacking levels are deter-
mined by the iteration number based on deep plug-and-play model. Further-
more, the iteration convergence is supported by theoretical explanations below.
Since ∇xL(x, v) according to Eqn. (3) is Lipschitz continuous and our forward
model is a single step of gradient descent, we have the property

L(x(t), v(t))− L(x(t+1), v(t)) ≥ C1||x(t) − x(t+1)||22 (11)

where C1 is a positive constant related to Lipschitz constant and step size.
According to [2], our deep prior can be regarded as a approximately orthogonal
projection of the blurry input y to the manifold of clean images. Therefore, we
have

L(x(t+1), v(t))− L(x(t+1), v(t+1)) ≥ C2||∇̃vL(x(t+1), v(t))||22 (12)

where C2 > 0 and ∇̃vL(x(t+1), v(t)) is a continuous limiting subgradient of L.
Therefore, by adding Eqn. (11) and Eqn. (12), the sequence (x(t), v(t)) is proved
to be bounded and has a convergent subsequence to (x∗, v∗). Then, telescopic
summing over t = 0, 1, ... and by monotonicity and boundedness of L(x(t), v(t)),
we have the summability property

lim
t→∞

||x(t) − x(t+1)||2 = 0 (13)

lim
t→∞

||∇̃vL(x(t+1), v(t)||2 = 0 (14)

Thus, ∇xL(x∗, v∗) and ∇vL(x∗, v∗) all equal to 0 which makes (x∗, v∗) a sta-
tionary point standing for the optima. Above all, our framework can find for the
optimal clean restoration image.

5 Conclusion

In this paper, we have stacked networks dynamically for IR based on the plug-
and-play framework. Different from static stacked networks, our framework not
only shows the performance improvement but also finds for the optimal solution
with solid theoretic support. In addition, we have designed a new degradation
model with a novel update scheme to better integrate the model-based and
learning-based methods. We have also transformed the forward model into a
single step of gradient descent effectively for faster convergence. Simply based on
pre-trained networks, our framework can remove noise and complex motion blur
beyond networks themselves. Experiments on the noise dataset BSD68, Set12,
and motion blur dataset GoPro have proven the effectiveness of our framework.
In the future, more research on the architecture of deep end-to-end networks will
boost the use of our framework.
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