Efficient Transfer Learning via Joint Adaptation
of Network Architecture and Weight

1[0000—0002—5948—2708] 1[0000—0002—0237—6402]
)

Haoxuan Dou , and Junjie

Yan!

Ming Sun

SenseTime Group Limited, Beijing, China

Abstract. Transfer learning can boost the performance on the target
task by leveraging the knowledge of the source domain. Recent works
in neural architecture search (NAS), especially one-shot NAS, can aid
transfer learning by establishing sufficient network search space. How-
ever, existing NAS methods tend to approximate huge search spaces by
explicitly building giant super-networks with multiple sub-paths, and
discard super-network weights after a child structure is found. Both the
characteristics of existing approaches causes repetitive network training
on source tasks in transfer learning. To remedy the above issues, we re-
duce the super-network size by randomly dropping connection between
network blocks while embedding a larger search space. Moreover, we
reuse super-network weights to avoid redundant training by proposing
a novel framework consisting of two modules, the neural architecture
search module for architecture transfer and the neural weight search
module for weight transfer. These two modules conduct search on the
target task based on a reduced super-networks, so we only need to train
once on the source task. We experiment our framework on both MS-
COCO and CUB-200 for the object detection and fine-grained image
classification tasks, and show promising improvements with only O(C™)
super-network complexity.

Keywords: Neural architecture search, transfer learning, weight shar-
ing

1 Introduction

Deep neural networks have achieved significant successes in computer vision
tasks like image classification[18, 56, 16, 46]. However, the success of deep net-
works tend to highly depend on a large amount of training data to ensure op-
timal training[33]. Therefore, insufficient training data can be an inescapable
issue for tasks without a huge dataset, such as segmentation, object detection
or medical image analysis. Deep transfer learning was proposed to alleviate the
data insufficiency by leveraging a massive source datasets to assist training on
the target tasks[44]. Most existing deep transfer learning methods apply trans-
fer on networks of fixed architectures, with regularization on instance, feature or
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Fig. 1. The plot shows the performances on target and source tasks for models of same
size but different architectures. The numbers inside the brackets behind each ResNet-
50 in the legend are the block numbers for each of the four stages of ResNet. The five
ResNet-50 models have different block allocations but the same model size.

weight spaces[44, 35], and the result of transfer learning is reflected only through
the model weights. We argue that the architecture engineering also plays a vi-
tal role in the outcome of the knowledge transfer. We perform direct finetuning
on ImageNet[7] pre-trained ResNet-50[15] models of different architectures on a
fine-grained classification dataset CUB-200-2011[50]. We plot their performances
on source and target tasks in Fig.1. We see that far from the ideal that better
source models leads to better target models, when the model architecture is taken
into consideration we see certain architecture is related to higher performance
on target while suffering on source compared to models of different architecture,
such as the yellow triangle in Fig.1. Therefore we argue that the potential of
architecture engineering in the transfer learning process can be great, which is
also recognized and explored in recent literature [24].

For architecture engineering, neural architecture search (NAS) methods have
shown promising results. NAS methods can be roughly divided into two cate-
gories: reinforcement learning (RL) based and gradient based [61, 1,45, 27,54, 3].
RL based NAS methods tend to be computationally expensive and not naturally
fit for transfer learning, while gradient based methods, in particular single-shot
NAS methods show robust and efficient search process [2,12,24]. Single-shot
NAS methods often use a super-network structure, which is a giant network
subsuming a great collection of child network structures. These methods provide
fast architecture search and one may propose to utilize them for transfer learn-
ing. However, we argue that existing methods cause inefficient transfer due to
two reasons. First,the super-networks employed in previous literature tend to be
massive in size and result in slow training, which is insufficient since normally in
transfer learning the size of the source task dataset is also huge. Moreover, exist-
ing approaches discard super-networks after an ideal child architecture is found
and child models are used to be retrained. While in transfer learning discarding
the super-network weights is not economical since the super-network weights can
be inherited onto the child model for weight transfer.
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To amend the aforementioned issues, we propose to first reduce the super-
network size. Inspired by [24] we use the allocation of networks among stages
as our search space. But unlike the multi-path super-network utilized in [24],
we adopt a single-path super-network, which in-explicitly embeds a rich search
space by sharing blocks among potential paths. Specifically, each potential path
can be obtained by dropping blocks in different stages of the super-network.
We train it by randomly dropping connection between network blocks during
training iterations. In this way we create a super-network of reasonable size
yet with a rich search space, and therefore limit the computational expenses
for training on source. For instance, the super-network utilized in [24] is equiv-
alent to a ResNet-923 [15], while the reduced version is only equivalent to a
ResNet-182 while embedding a richer search space. Second, we aim to reuse the
super-network weight by proposing a framework consisting of two modules: the
neural architecture search module and the neural weight search module. In the
neural architecture search module, given the trained super-network we conduct
architecture transfer by greedily searching for the target structure on target. For
the neural weight search module, the target structure reuse the network weights
inherited from the super-network and fine-tune on target. By reusing weights
from the super-network, we avoid repetitive retraining. Combining these two
modules, we are able to effectively incorporate architecture engineering into the
transfer learning process.

Our contributions are as following:

— We demonstrate that the network architecture is crucial in the outcome of
transfer learning, and therefore propose to incorporate architecture engineer-
ing into the pipeline of transfer learning for modern computer vision tasks
such as image classification, object detection and instance segmentation.

— We propose a novel transfer learning framework, which adopts a single-path
super-network for fast source training and incorporates both architecture
and weight transfer for effective and fast transfer learning.

— Our experiments on various tasks including object detection and fine-grained
classification show that our framework’s robustness to diverse tasks. More-
over, our experiments on segmentation shows the good transfer ability of
target models our method generates. Our method is able to boost the model
performance on these tasks while keeping almost the same FLOPs.

2 Related work

2.1 Transfer Learning

Transfer learning addresses the problem of training with insufficient training data
on a target task, by leveraging a massive dataset from a source domain[35,44].
Transfer learning focuses on what and how to transfer between the source and
target domain, and different methods aim to address the two concerns in differ-
ent forms such as the feature space, the instance space or the model weights. In
terms of the model weights, one popular method called fine-tuning is to directly
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adapt the network pre-trained on a large scale source dataset to the target do-
main, or take the pre-trained network as backbone and add high-level layers for
different target tasks such as recognition[33, 22, 5], object detection[42,20], and
segmentation[14]. This method is shown to be more effective than a randomly
initialized networks[8]. On the hand, transfer learning methods also utilize reg-
ularization on the instance space and feature space to promote efficient transfer
from source to target, by either re-weighting or re-sampling data from source
domain to aid target domain learning [6, 36, 51, 28, 58], or by regularizing target
domain learning through minimizing distance between the feature spaces of tar-
get and source[49, 29, 30, 60]. Moreover, adversarial learning is adopted to create
domain-invariant models for robust transfer learning[10, 9, 47, 48]. Recently, [21]
propose to use meta-learning to do transfer learning between networks of het-
erogeneous structures and tasks, by learning a meta-model deciding what layer
and feature should be paired for transfer.

However, the aforementioned methods mostly care about transferring knowl-
edge between networks of fixed architectures. We instead incorporate the network
architecture as a variable in the transfer process, to allow the target model to
adapt its architecture to the target task.

2.2 Neural Architecture Search

Neural architecture search methods search network architecture on a fixed task,
normally an image classification task[62][45]. Early NAS methods often con-
duct search in a nested manner, where numerous architecture is sampled from a
large search space and trained from scratch, during which reinforcement learn-
ing[61, 1,45] or evolution[55,40, 39, 34] are used. These methods usually require
a giant amount of computational resources. Recent NAS methods adopt the
weight-sharing protocol to reduce computational intensity by leveraging a super-
network which subsume all architecture[38, 3, 54,27, 57]. In particular one-shot
NAS methods train the super-network with stochastic path[11,2,19,11], and
then search for the optimal architecture from the trained super-network in a
separate step[2,12,24]. They normally use super-network with multiple paths,
different paths consist of different kernel sizes, dilation ratios, channel numbers
and block allocations in order to achieve good adaption to fixed tasks. Even
greatly reduced in recent works[24], the search spaces of recent NAS methods
are still large and fine-grained. We instead use a single long path with skip con-
nection to in-explicitly embed a large collection of possible sub-paths, which
limits our complexity compared to existing methods.

3 Method

In this section, we first introduce our problem setting, and then describe the
super network, which provides a strong source model for later transfer. We then
introduce the neural architecture search module to optimize the structure of the
target model and the neural weight search module for weight transfer. Finally
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Architecture Transfer Weight Transfer

Fig. 2. Our transfer learning framework consists of the architecture transfer and the
weight transfer. For the architecture transfer on the left part of the figure, the super-
network is trained on source domain and passed to target domain for the greedy search,
and the searched architecture is passed back to inherit weight from the super-network.
For the weight transfer network on the right, the target architecture with inherited
weights is fine-tuned on source and target.

we demonstrate the potential of our transferred neural network to combine with
various network blocks or hand-designed modules. The overview of our method
is shown in Fig.2

3.1 Problem Setting

We consider transfer learning from the source domain and task {Ds, 75} to the
target domain and task {D;, T¢}, where the target can come from a diverse set
of domains. We follow the definitions from [44,35] and denote domain as D =
{X,P(X)} with X as the data space and P(X) as the conditional probability
where X = {x;,...,2,} € X is the domain data. We also define task as T =
{Y, f(-)} with ) as the label space and f(-) being an objective predictive function
that maps z € X to y € Y and is learnt during training. In transfer learning in
general, Dy # Dy, Ty # Ti, and the size of source data is usually much larger
than the size of the target data, that is |Ds| > |Dy|.

We define the backbone network by N (¢, wg) as a transformation from the
data space to the feature space, where ¢ € A denotes the model architecture
and wg € W4 denotes the model weight. A and W4 respectively define the ar-
chitecture search space and corresponding weight space. We aim to find a model
N (¢¢, wy,) on target to maximize performance on target domain validation set
given the source {D;, T;},

(¢taw¢t):(¢ ari?jriv )»CZ‘ZQ“(N(QZ ws)) (1)
,We Wa

where L, represents the validation loss on the target domain.
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Traditional transfer learning methods focus on optimizing the model weight
wg, With a fixed ¢, by training with constraints on feature space, instance space
or by inheriting model weights and fine-tuning, that is

min L2 (N (¢, wg,)) (2)

Wy, EWA val

Here unlike traditional transfer learning methods we incorporate neural archi-
tecture search and can turn Eq.1 into a bi-level optimization problem,

min LI N (¢, wg,))

Wy, EWA val

s.t. ¢y = argmin L,279 (N (¢, w)))
peA

3)

val

where wg is the optimized weights on source given a super-network architecture
¢. As we introduce NAS into the process of transfer learning, it becomes non-
trivial to accommodate NAS approaches for efficient transfer. In particular we
need our architecture search step to take the difference between sizes of source
and target datasets into consideration during transfer learning.

3.2 Source Super-Network Training

The ideal super-network for transfer learning should contain three qualities.
Firstly, the super-network should embed a rich search space for finding a pow-
erful network structure. Secondly, the super-network size should be small for
efficient training. Finally, the super-network should have the similar network
hierarchy as the potential child model for weight sharing. Previous NAS ap-
proaches adopting weight sharing protocols [3, 54, 27,2, 12] often establish giant
super-networks with complex structures, which violates the second quality. In
addition, the search space they embed tend to be complicated.

Inspired by recent work on single-shot NAS [24], we utilize the allocation
of network blocks among different stages as the search space for its efficacy
and simplicity. However, we find that the multi-branches of different numbers
of blocks often utilized in these one-shot NAS methods cause the model size to
significantly increase with depth. We instead just use one branch of the maxi-
mum amount of blocks, which contains all possible paths as its sub-paths. By
sharing blocks among potential paths, we reduce the super-network size while
maintaining a powerful search space.

To sufficiently train the super-network such that each child model represented
by its sub-paths can provide robust weight for neural architecture search on
target, we randomly drops networks blocks from the forward and backward pass
during training. Specifically, a stage in the super-network consists of N blocks
in a sequential order. During each iteration in training we uniformly sample S
from [1, N], and only keep the first S block for this round of training. In this
way, different combination of sub-paths are trained and excessive co-adaptation
between blocks are avoided. The super-network is able to still embed a powerful
search space while being small in size.
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3.3 Neural Architecture Search on Target

Given the super-network from the source and the required model size con-
straint C, we first fine-tune the super-network on the target task and then
search for a robust architecture. We first define our super-network and the cor-
responding search space. We can represent the super-network architecture as
¢s = [N§,--- ,N5.] where N; refers to the number of blocks at the iy, stage.
Normally the number of stages ns = 4 for most of networks. For instance, we can
define ResNet50 as ¢ress0 = [3,4, 6, 3]. With the super-network and the required
model size constraint C, we can define the architecture search space under model
size C' as,

Ac = {i|pr € I'(¢s), sum(ey) = C} (4)

where I'(¢s) = {¢y = [N}, ,NLJ|N} € [1,---, Nf]} denotes the search space
of all possible child models.

Random search or evolution are often applied for specified computation lim-
itation. However, instead of having a fixed computation limits like previous ap-
proaches often do, we aim to search for optimal allocation for all possible model
sizes. Here we make the assumption that given a model size ¢ and the correspond-
ing optimal target architecture ¢, the optimal architecture ¢, 1, corresponding
to model size ¢+ 1, contains ¢. as a sub-graph. Here we denote the search space
of ¢.41 conditional on an optimal ¢} as A%, 1,

o1 = {Pet1]0r C i1, Per1 € Actr} (5)
Based on this greedy assumption, we can inductively search for optimal target
network architecture ¢; starting from the minimal architecture ¢, = [1,--- , 1],

where ns is the number of stages. In the inductive search step, given optimal
¢c, we find ¢.1 by adding one more block that maximize the resulting model’s
performance on the target validation set, that is

brp1 = argmax Loa(N(dert, w),,)) (6)

ber1€ALL,

++1 can be found by running network evaluation for ns times, where the evalu-
ated network is obtained by appending the next block to its path at each stage.
We repeat the induction step for several times until we reach the model size con-
straint C, and we have the optimal architectures for models whose sizes ranges
from ns to C. In detail, this algorithm is shown in Alg.1 and left bottom of Fig.2.

3.4 Neural Weight Search on Target

After we have a optimized neural architecture ¢;, we focus on the transfer of
network weights. Existing NAS methods [24,2,12] often discard the network
weights after search and retrain, which is time-consuming. We reuse the weight
inherited from the super-network through the neural weight search, which save
time used in repetitive training. Specifically for the neural weight search we
apply the fine-tuning method often employed in the transfer learning. Given
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Algorithm 1: Greedy Block Search

Input : Model size constraint C' > ns, super-network N (¢s, ws)
Output : Target architecture ¢; with sum(¢p,) = C

1 initialize start network ¢ns = [1, - ,1], c=ns+ 1;
2 while ¢ < C do

3 ¢o = arg max, cax Loat(N (e, wo, ));

4 c=c+1;

5 end

6

return ¢; = ¢

the searched target network {¢y, w;t}, where wj, is directly inherited from the
source super-network, we first fine-tune it on the source domain to obtain robust
source network weights, and then we fine-tune the resulting network on the target
domain to get {¢:, we, }-

In this way, we ensure a sufficient transfer of network weight based on the
target architecture. The process is shown in the right part of Fig.2. Note that
the weight transfer step can be extended to use other knowledge transfer meth-
ods beyond weight fine-tuning, such as knowledge distillation [17] or feature
mimicking[23].

3.5 Generalization over Diverse Structures

Generalization over diverse blocks Our transfer learning framework can
generalize to a diverse collection of network blocks, hand-designed or generated
using NAS. We first experiment on blocks of the widely used hand-designed
MobileNetV2[43] and ResNet[15]. Moreover, we apply our method using blocks
of MnasNet-b0[45], which is generated through neural architecture search using
reinforcement learning on ImageNet[7]. Table.1 shows that on detection task,
our framework transfers well on all three network blocks for the object detection
task with a universal performance improvement.

Generalization over hand-designed modules Our framework also general-
izes well over network blocks enhanced by hand-designed modules. We apply our
method to two widely recognized modules. The Squeeze-Excitation module[18]
improves network performances through a channel-wise attention mechanism,
while ResNeXt[56] achieves improvements by multi-branching a ResNet block
in order to increase the computational cardinallity. We show the robustness of
our method to block enhancements by enhancing a transferred ResNet-50 model
with the two modules described above on object detection task. As is shown in
Table.1, the transferred ResNet-50 architecture still has 1 point improvement in
mAP on the basis of SE-block and ResNeXt.
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Table 1. Performance of different network configures for object detection on MS-
COCO[26] dataset using Faster-RCNN with FPN[41, 25].

lMethod [mAP[ FLOPS ‘
ResNet50 [24] 36.4 3.991G
CR-ResNet50 [24] 37.413.991G
Transfer-ResNet50 37.8|3.991G
ResNet101 38.5| 7.62G

CR-ResNet101 [24] 39.5| 7.62G

Transfer-ResNet101 39.8 | 7.62G

MobileNet V2 32.21312.34M
CR-MobileNetV2 [24] 33.5(329.21M
Transfer-MobileNetV2 34.0 |311.68M
MmnasNet-b0 34.2 |313.14M
Transfer-MnasNet-b0 34.7 |1318.37TM
SE-ResNeXt50 38.9 | 4.130G
Transfer-SE-ResNeXt50 39.9 | 4.132G
Grid-RCNN-ResNet50 39.5 | 3.991G
Gird-RCNN-Transfer-ResNet50 40.3 | 3.991G
Cascade-MaskRCNN-ResNet101 43.3 | 7.62G

Cascade-MaskRCNN-Transfer-ResNet101| 44.1 | 7.62G

4 Experiment

For all our experiments we implement our methods using the Pytorch frame-
work[37], and in this section we describe the tasks we experimented on and the
corresponding results.

4.1 Objection Detection

For the object detection task, we conduct experiments on the MS-COCO dataset
[26], which contains 118K training images and 5K validate images (minival) for
80 classes. The evaluation metric is the mean average precision (mAP).

We conduct experiments on three types of network blocks: the ResNet[15]
bottleneck block, the MobileNetV2[43] block and the MnasNet[45] block. For the
super-network consisting of ResNet bottleneck blocks[15], we set the block allo-
cation to be T = [8, 10, 36, 14], whose FLOPs is roughly equal to that of ResNet-
200. For the super-network consisting of MobileNetV2 block[43], we set the block
allocation to be Ts = [5, 6,8, 7, 7] with 5 stages. For the super-network consisting
of MnasNet blocks[45], the configuration is same to that of MobileNetV2.

We use the ImageNet dataset[7] as the source domain and train our super-
networks on it for 100 epochs with label smoothing of 0.1 and 5 epochs of
warmup. We use 32 GPU cards with a total batch size of 2048, and the base
learning rate is 0.01. For the learning rate we conduct the step decay scheme,
where we drop the learning rate by 10 at epoch of 30, 60, 80. The weight decay
is set to be 0.0001.
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For the object detection task on MS-COCO dataset, we adopt Faster-RCNN[42]
in combination with the feature pyramid network (FPN)[25]. For finetuning, the
base learning rate and weight decay are set to be 0.04 and 0.0001 respectively.
We use 32 GPU cards with a total batch size of 64. Note that different to ResNet
models, where the network blocks at the adjacent stages share the same FLOPs,
the MobileNetV2 models’ blocks need to be re-weighted during the architecture
search. Specifically, the block number at each stage is re-weighted according to
that stage’s computation FLOPs, and then we do the greedy search until the sum
of the re-weighted block numbers reaches the computational limits. We apply
the same re-weighting to the architecture search with MnasNet, too.

Results on Different Network Blocks. To demonstrate the effectiveness
of our proposed method, we conduct transfer learning on ResNet, MobileNetV2
and MnasNet-b0 with configurations described above. The results are shown
in Table.1. For ResNet, we search the best network architecture for the popular
ResNet-50, which has 16 blocks in total. The best architecture is [1, 3, 7, 5], which
get 37.8% mAP and 1.4% higher than default [3,4,6,3] configuration on MS-
COCO. We also transfer the ResNet-101 model, and our transferred model reach
39.8% mAP surpassing the default configure by 1.3%, with the optimal archi-
tecture as [2, 5,19, 7]. For the MobileNetV2 and the MnasNet-b0, their searched
best architectures are [2,2,2,3,5] and [3, 3,2, 3,4] respectively. Also, their per-
formances are better than baselines’ on MS-COCO minival while keeping almost
the same backbone FLOPs. Furthermore, we show better results compared to
[24] on all three network blocks above. We think the reason for the better re-
sults lie in the richness of our search space, as our search space contains all sub-
structures fulfilling the model size constraint. However, the search space adopted
in [24] skips certain sub-structures since paths with certain number of blocks are
not built in the super-network to prevent its size from being computationally
unbearable.

Moreover, we show that the boosted SE-ResNeXt-50, enhancing the trans-
ferred ResNet-50 blocks with multi-branching[56] and SE-module[18], also shows
solid performance improvement on MS-COCO minival, compared to the original
SE-ResNeXt-50. Furthermore, we show that our transferred ResNet backbones
also outperform their default counterparts when combined with the Grid-RCNN
framework[31] and the Cascade-MaskRCNN framework[4], with both 0.8% im-
provements in mAP on the MS-COCO minival.

These results demonstrate the robustness of our methods over various types
of network blocks with or without hand-designed module or strong frameworks
for enhancements.

Results on Different Computation Constraints. Apart from the com-
mon network architecture configures like ResNet-50, we also explore the potential
of our framework on a series of target model architectures optimized under dif-
ferent computational constraints, such as ResNet-37, ResNet-41 and so on. With
the pre-trained super-network, we can search for models of different size on the
target task by assigning different computation requirements. For example, you
can set 15 for searching a best ResNet47 network configuration. Also, thanks
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Table 2. Transferred ResNet on MS-COCO. The colored numbers indicate that adding
one block respectively in the third(red & blue) and fourth(green) stages seems to
increase performance the most on small(red), medium(blue) and large(green) objects.

[Method [mAP[ Block [FLOPS(G)] Box, [Box [ Box; |
Transfer-ResNet37| 36.4 |[1, 3, 4, 4]| 3.138  {0.2089|0.3987|0.4747
Transfer-ResNet41| 36.7 |[1, 3, 5, 4]|  3.352  [0.2178]0.4031

Transfer-ResNet44| 37.0 |[1, 3, 5, 5]| 3.565 |0.2128|0.4051

Transfer-ResNet47| 37.4 |[1, 3, 6, 5]|  3.777 |0.2153]0.4117]0.4836
Transfer-ResNet50| 37.8 |[1, 3, 7, 5]| 3.991  |0.2158|0.4180(0.4925
Transfer-ResNet53| 38.0 |[1, 3, 7, 6] 4.205 ]0.2168(0.4148(0.4958

0.1064 0.0503 0.0937 0.1403 0.0681 0.1270
0.0503 0.0261 0.0454 0.0681 0.0397 0.0638
0.0937 0.0454 0.0850 0.1270 0.0638 0.1186

0
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Fig. 3. The effective receptive fields of the baseline network and our transferred network
from the last convolution layer. The left part is the baseline and the right part is our
transferred network.

to our greedy search algorithm, we can efficiently search for models of larger
size on the basis of previously transferred smaller-sized model without starting
from scratch. On Table.2, we show some the ResNet configurations of different
computational complexity and their corresponding performances on MS-COCO
minival. For example, T, 47 = [17 3,6, 5]’ ress0 = [1’ 3,7, 5]7 res53 = [17 3,7, 6]
are generated from the super-network.

Visualization. To further understand the transferred backbone, we visualize
the backbone effective receptive filed (ERF), which is the key to the objection
detection task. Based on the method proposed in [32], the receptive fields of the
center neuron on the last convolution layer are visualized in Figure.3. In detail,
the figure is generated by setting input values to 1 and propagating using the
neuron in the center of the last convolution layer. ReLLU operations are aban-
doned to better visualize the intensity of connections. As shown in the Figure.3,
the ERF size of our transferred network is larger than that of the baseline net-
work. We also calculate the outer response number, as shown in the green box
on right top of the ERF figures. Except the stronger intensities of center region,
the intensities of outer region from the ERF of our transferred is also stronger
than that of the default baseline network. The strong intensity of ERF is impor-
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Table 3. CUB-200-2011 fine-grained classification with 5799 training images.

lMethod [ mAP [Block number[lmageNetl
ResNet50 [59] 84.05| [3, 4,6, 3] 76.72
ResNet50+NL [52] 84.79| [3, 4, 6, 3] -
ResNet50+CGNL [59] 85.14| [3, 4, 6, 3] ;
Transfer-ResNet50 84.98| [1, 6, 6, 3] 76.81
Transfer-ResNet50+NL [52]|85.42| [1, 6, 6, 3] -
Transfer-ResNet50 84.95| [2,4,7, 3] 77.06
Transfer-ResNet50 84.76| [2, 3,7, 4] 76.78
Transfer-ResNet50 84.74| [4, 4,6, 2] 76.87
Transfer-ResNet50 84.64| [1, 4,8, 3] 76.93

Table 4. CUB-200-2010 fine-grained classification with total 3000 training images.

lMethod ‘ mAP ‘Block number‘lmageNet
ResNet50 68.01] [3, 4, 6, 3] 76.72
Transfer-ResNet50|71.35| [1, 6, 6, 3] 76.81
Transfer-ResNet50( 68.02| [3, 5, 5, 3] 76.94
Transfer-ResNet50| 67.72| [2, 4, 7, 3] 77.06
Transfer-ResNet50( 67.66 | [1, 3, 7, 5] 77.13
Transfer-ResNet50( 67.23 | [1, 4, 8, 3] 76.93

tant for the object detection task which contains higher scale variance compared
with the classification task, and our transferred network manages to capture this
characteristics through the architecture engineering on the target task.

Complexity Analysis. The one-shot NAS methods often employ super-
networks made up of multi-branches while our super-network only keeps the
longest path. For our super-network architecture [8,10,36,14] with the block
sum with 68 is equal to the ResNet-206, while the equivalent one-shot super-
network using multi-branches needs to contain 862 blocks to capture all the
potential sub-paths. Since a ResNet bottleneck block contains three layers and
the network stem contains two layers, the one-shot super-network is equivalent
to a ResNet-2588. Moreover the search space of regular one-shot methods needs
to contain all combinations of block numbers of each stage such that the model
size requirement is met, leading to a space of order O(C™*). While our search
space, thanks to the greedy search algorithm, is only of order O(C X ns)

4.2 Fine-grained classification.

In the fine-grained image classification task, since the data collecting and labeling
is time-consuming, fine-grained image classification task dataset is often small.
For example, the commonly used dataset is CUB-200-2011 [50], which contains
200 classes and 5994 training images in total.
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Table 5. Instance Segmentation Results on MS-COCO. Here we show comparison
between our transferred network and baseline networks. We also demonstrate higher
performance over more complex networks such as Cascade-MaskRCNN in the object
detection task as shown in Tab.1

lBackbone [ Seg [ Segs [ Segm [ Seg; [ Box [ Box; [ Boxom [ Box; ‘
ResNet50 33.9 174 37.3 46.6 37.6 21.8 41.2 48.9
Ours 34.8(+0.9)[17.9 (40.5)|38.3(41.0) |48.1(4+1.5)|38.6(+1.0)|22.5(40.7) |42.2(+1.0)|50.6(+1.7)
ResNet101 35.6 18.6 39.2 49.5 39.7 23.4 43.9 51.7
Ours 36.4(+0.8)[ 18.7(+0.1) [40.0(+0.8) |50.6(+1.1)| 40.6(+0.9) [23.5(-+0.1) |44.5(+0.6) |53.4(+1.7)
MobileNetV2|  30.6 15.3 33.2 44.1 33.1 18.8 35.8 43.3
Ours 31.8(+1.2)[ 16.0(+0.7) |34.6(+1.4)| 43.8(-0.3) |34.8(+1.7)(19.7(40.9) |37.6(+2.8)|45.6(+2.3)

We experiment on CUB-200-2011 following [59] using the input size of 448
with ImageNet[7] dataset as the source domain. When finetuning on target, all
models are trained for 100 epochs with an initial learning rate of 0.01 and a step
decay scheme dropping the learning rate by 10 at the epoch of 30, 60, 80. We
use one GPU card with the batch size of 64 samples.

We show the performances of transferred models on both CUB-200-2011 and
ImageNet datasets in Table.3, and we can see the best transferred network archi-
tecture is [1, 6,6, 3] with more than 0.9 point higher than the baseline. We also
include the several other top performing transferred networks in Table.3. Note
that the top performing transferred network on the CUB-200-2011 task shows
worse performances on the ImageNet dataset, compared to the other transferred
model with the architecture [2,4,7, 3] that achieve 77.06 accuracy on ImageNet
while performing less optimal on target. Moreover, the rest of the transferred
models also demonstrate the inconsistency between source and target perfor-
mances when the models are of different architectures. This fact shows that
finding a suitable architecture for a target model can play a role in transfer
learning as vital as the weight transfer, if not more. In addition, we conduct
transfer experiments using ResNet-50 with the non-local module, showing bet-
ter results than both the original and compact generalized non-local baselines
[52,59)].

We also conduct experiments on CUB-200-2010 [53], which is an older and
smaller version of CUB-200-2011. We report the performances both on CUB-200-
2010 and ImageNet in Table.4. We observe that the optimal transferred network
architecture on CUB-200-2010 vary from that of CUB-200-2011, but we also
observe a 60% overlap of the top 5 performing architectures on CUB-200-2011
and CUB-200-2010.

4.3 Semantic Segmentation.

We wish to explore the potential of our transferred model to transfer further
to other target tasks without modification to the architecture. We conduct ex-
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Fig. 4. Some hard segmentation cases not handled well by baseline ResNet-50 but
fixed by our transferred ResNet-50. a). Our model shows tighter instance masks. b).
Our model shows more consistent masks. ¢). Our method successfully detects the small
person behind the surfer, missed by the regular ResNet-50. d). Our models captures
the bag on the right while the baseline misses it.

periments on the MS-COCO instance segmentation task with the transferred
models obtained from the object detection task. In particular, we take the Mask-
RCNN[13] and replace the backbone with the transferred model, and then we
directly finetune on MS-COCO instance segmentation dataset.

We report performances of our models in Table.5. Our transfer-ResNet-50
with architecture of [1, 3, 7, 5] outperforms its counterparts on both segmentation
and detection with various object scales. In Fig.4 we show some of the cases
from MS-COCO dataset that the traditional ResNet-50 handles badly while our
transferred model handles well. For Transfer-ResNet-101, its segmentation and
detection mAP are better than its default counterpart by 0.8% and 0.9%, and it
also shows improvement on objects of all scales. For Transfer-MobileNetV2, the
mAP of detection and segmentation are better by 1.2% and 1.7% respectively.
Interestingly, the segmentation of larger object is inferior to baseline by 0.3%
while detection on larger object better by 2.3%.

4.4 Conclusion.

In this paper, we propose a novel transfer framework containing a neural archi-
tecture search module and a neural weight search module. In the architecture
transfer we design a block-level search space and accordingly build an power-
ful super network on source, and search for the optimal architecture through
a greedy algorithm on the target task. For the neural weight search module,
we adopt weight fine-tuning, which can be smoothly replaced by other exist-
ing transfer learning methods to push the performance even higher. Extensive
experiments of our framework on various tasks show promising results .
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