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Abstract. 3D shape interpretation and reconstruction are closely related
to each other but have long been studied separately and often end up
with priors that are highly biased towards the training classes. In this
paper, we present an algorithm, Generalizable 3D Shape Interpretation
and Reconstruction (GSIR), designed to jointly learn these two tasks to
capture generic, class-agnostic shape priors for a better understanding of
3D geometry. We propose to recover 3D shape structures as cuboids from
partial reconstruction and use the predicted structures to further guide
full 3D reconstruction. The unified framework is trained simultaneously
offline to learn a generic notion and can be fine-tuned online for specific
objects without any annotations. Extensive experiments on both synthetic
and real data demonstrate that introducing 3D shape interpretation
improves the performance of single image 3D reconstruction and vice
versa, achieving the state-of-the-art performance on both tasks for objects
in both seen and unseen categories.
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1 Introduction

Single image 3D geometry has attracted much attention in recent years due
to its numerous applications, such as robotics, medicine and film industry. To
fully understand 3D geometry, it is essential to know structure properties (e.g.,
symmetry, compactness, planarity, and part to part relations) [43,8,30] and
surface properties (e.g., texture and curvature). In this paper, we address these
problems simultaneously, i.e., 3D shape interpretation and reconstruction, in
which these two tasks have been known to be closely related to each other [55,28].

For single image 3D reconstruction, the difficulty is mainly reflected in two
aspects: how to extract geometric information from high dimensional images
and how to utilize prior shape knowledge to pick the most reasonable prediction
from many 3D explanations. Recent research tackles these problems through
deep learning [13,18,56], since it has shown great success in image information
distillation tasks like classification [27], detection [24] and segmentation [22]. Many
algorithms have explored ways to utilize shape prior knowledge. For example,
ShapeHD [61] integrated deep generative models with adversarially learned shape
priors and penalized the model only if its outputs were unrealistic.
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Fig. 1: We present Generalizable 3D Shape Interpretation and Reconstruction (GSIR)
to learn 3D shape interpretation and reconstruction jointly

Many existing methods do not enforce explicit 3D representation in the
model, which leads to overfitting. As a result, they suffer when reconstructing the
unobservable parts of objects, especially under self-occlusions. Recently, methods
that encode shapes in a function [38,40] take a step toward better generalization.
In this paper, we approach the problem by enforcing explicit 3D representation
in the model. Inspired by pose-guided person generation [34,7], we propose a
structure-guided shape generation that explicitly uses the structure to guide
shape completion and reconstruction. The key idea of our approach is to guide the
reconstruction process explicitly by an appropriate representation of the object
structure to enable direct control over the generation process. More specifically,
we propose to condition the reconstruction network on both the observable parts
of the object and a predicted structure. From the observable parts, the model
obtains sufficient information about the visible surface of the object. The guidance
given by the predicted structure is both explicit and flexible. There are many
other interesting downstream applications. For example, we later show that we
can design new objects by keeping the original surface details and manipulate
the size and orientation of each part of the object by changing the guidance.

On the other hand, single image 3D structure interpretation itself is challenging
and often inaccurate. Therefore, the derived structure information does not
always help reconstruction. More specifically, when an image is captured from
accidental views, the structure interpretation methods are not effective to predict
landmarks positions [3] or primitive orientations [39]. To overcome this problem,
we bring reconstructed 3D information to help the algorithm predict more accurate
interpretations (cuboid position, orientation, and size in our case).

Based on the above observations, we propose to jointly reason about single
image generalizable 3D shape interpretation and reconstruction (GSIR). Building
upon GenRe [64], we first project a predicted 2.5D sketch into a partial 3D model.
We then generate geometrically interpretable representations of the partial 3D
model through oriented cuboids, where symmetry, compactness, planarity, and
part-to-part relations are taken into consideration. Instead of performing shape
completion in the 3D voxel grid, our method completes the shape based on
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spherical maps since mapping a 2D image / 2.5D sketch to a 3D shape involves
complex but deterministic geometric projections. Using spherical map, our neural
modules only need to model object geometry, without having to learn projections,
which enhances generalizability. Unlike GenRe, we perform the completion in a
structure-guided manner. Fusing information from both the visible object surfaces
and the projected spherical maps of oriented cuboids and edges, we can further
complete non-visible parts of the object.

Our model consists of four learnable modules: single-view depth estimation
module, structure interpretation module, structure-guided spherical map inpainting
module, and voxel refinement module. In addition, geometric projections form
the links between those modules. Furthermore, we propose an interpretation
consistency between the predicted structure and the partial 3D reconstruction.

Our approach offers three unique advantages. First, our estimated 3D structure
encodes symmetry, compactness, planarity, and part-to-part relations of the
given objects explicitly, which help us understand the reconstruction in a more
transparent way. Second, we reason about 3D structure from partial observable
voxel grid to alleviate the burden on domain transfer in previous single image
3D structure interpretation algorithms [39,59], which enhances generalizability.
Third, our interpretation consistency can be used to fine-tune the system for
specific objects without any annotations, which further enables the communication
between two branches (the consistency can be jointly optimized with the model).

We evaluate our method on both synthetic images of objects from the
ShapeNet dataset, and real images from the PASCAL 3D+ dataset. We show
that our method performs well on 3D shape reconstruction, both qualitatively
and quantitatively on novel objects from unseen categories. We also show the
method’s capacity to generate new objects given modified shape guidance.

To summarize, this paper makes four contributions: we propose an end-
to-end trainable model (GSIR) to jointly reason 3D shape interpretation and
reconstruction; we develop a structure-guided 3D reconstruction algorithm; we
develop a novel end-to-end trainable loss that ensures consistency between
estimated structure and partially reconstructed model; we demonstrate that
exploiting symmetry, compactness, planarity, and part-to-part relations inside
object can significantly improve both shape interpretation and reconstruction
accuracy and help with generalization.

2 Related Work

Single Image 3D Reconstruction Lots of work have been done on 3D reconstruction
from single images. Early works can be traced back to Hoiem et al. [26] and
Saxena et al. [49]. Theoretically, recovering 3D shapes from single-view images
is an ill-posed problem. To alleviate the ill-posedness, these methods rely heavily
on the knowledge of shape priors, which require large amount of data. With the
releasing of IKEA [32] and ShapeNet [9], many learning-based methods begin
to dominate the trend. Choy et al. [13] apply a CNN to the input image, then
pass the resulting features to a 3D deconvolutional network, that maps them to
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an occupancy grid of 323 voxels. Girdhar et al. [18] and Wu et al. [60] proceed
similarly, but pre-train a model to encode or generate 3D shapes respectively, and
regress images to the latent features of the model. Instead of directly producing
voxels, Arsalan Soltani et al. [2], Shin et al. [50], Wu et al. [58] and Richter et al.
[44] output multiple depth-maps and/or silhouettes, which are subsequently fused
for voxel reconstruction. Although we focus on reconstructing 3D voxels, there
are many other works that reconstruct 3d objects using pointcloud [16,29,35],
meshes [21,33,55,57,25], octrees [45,46,54], and functions [38,51,63,14]. [25]
presents a general framework to learn reconstruction and generation of 3D
shapes with 2D supervision, using an assembly from cuboidal primitives as a
compact representation. To encode both geometry and appearance, [51] encodes
a feature and RGB representation for each point and predicts the surface location
with a ray marching LSTM network. [63] combines 3D point features with
image features from the projected query patch and significantly improves on 3D
reconstruction. [38] represents the 3D surface as continuous decision boundaries
and shows robust results.

3D Structure Interpretation Different from 3D reconstruction, 3D structure
interpretation focuses on understanding structure properties instead of dense
representations, which is broadly defined based on positions and relationships
among semantic (the vertical part), functional (support and stability), economic
(repeatable and easy to fabricate) parts. Among all ways to abstract object
structures, a 3d skeleton is most common in use because of its simplicity, especially
in human pose estimation [1,6,65,42]. 3D-INN [59] estimate 3D object skeletons
through 2D keypoints and achieve a promising result on chairs and cars. Another
way is to represent the method using volumetric primitives, which can date
to the very beginnings of the computer vision. There are many attempts to
represent shapes as a collection of components or primitives, such as geons [5],
block world [47] and cylinders [36]. Recently, more compact and parametric
representations are introduced using LSTM [66] or set of primitives [55].

Structure-Aware Shape Processing Previous studies have recognized the value of
structure-guided shape processing, editing, and synthesis, mainly in computer
graphics [17] and geometric modeling [19]. For shape synthesis, many approaches
have been proposed based on fixed relationships such as regular structures [41],
symmetries [52], probabilistic assembly-based modeling [10]. Wu et al. [62] encode
the structure into an embedding vector. The work that is most similar to ours
is probably SASS proposed by Balashova et al. [3]. SASS extracts landmarks
from a 3D shape and adds a shape-structure consistency loss to better align
shape with predicted landmarks. Our model has two advantages over SASS. First,
instead of using a fixed number of landmarks, we abstract primitives of any given
object. This gives more freedom to the objects that can be constructed. Second,
our proposed method deeply integrates shape interpretation and reconstruction
through structure-guided inpainting and the interpretation consistency other
than just force the alignment.
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Depth Prediction The ability to learn depth using a deep learning framework
was introduced by [15], who uses a dataset of ground truth depth and RGB
image pairs to train a network to predict depth. This has been further improved
through better architecture [11,31] and larger datasets [37].

3 Approach

Fig. 2: Our model contains four learnable functions and five deterministic projection
functions.

Our whole model (Fig. 2) consists of four learnable functions (f) connected
by five deterministic projection functions (p). The model is summarized below
and each module is discussed in details in the subsections:

1. The model begins with a single-view depth estimation module: with
a color image (RGB) as input, the module estimates its depth map D =
f(RGB). We then convert the depth estimation D into partial reconstructed
voxel grid Vp = p(D), which reflects only visible surfaces.

2. Our second learnable function is the structure interpretation module:
the partial voxel grid (Vp) is taken as input and parsed by the module
into compact cuboid-based representations S = f(Vp). We then project
the resulting structure surfaces and edges into spherical maps: Mss =
p(surface(S)),Mse = p(egde(S)).

3. Along with projected spherical maps from depth estimation Mp = p(D), the
structure-guided shape completion module can predict the inpainted
spherical mapMi = f(Mp,Mss,Mse), which is then projected back into voxel
space Vi = p(Mi).

4. Since spherical maps only capture the outermost surface towards the sphere,
they cannot handle self-occlusion along the sphere’s radius. To mitigate this
problem, we adopt the voxel refinement module that takes all predicted
voxels as input and outputs the final reconstruction V = f(Vp, Vi, S).
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3.1 Single-View Depth Estimation Module

Since depth estimation is a class-agnostic task, we use depth as an intermediate
representation like many other methods[58,44]. Previous research shows that
depth estimation can be generalized well into different classes despite their distinct
visual appearances and can even be applied in the wild [11]. Our module takes
a color image (RGB) as input and estimates its depth map (D) through an
encoder-decoder network. More details can be viewed in Section 3.6.

3.2 Structure Interpretation Module

To better represent the symmetry, compactness, planarity, and part-to-part
relations, we adopt a recursive neural network as the 3D structure interpreter
like in [28]. However, unlike [39], we encode the structure embedding from Vp to
alleviate the domain adaptation. The encoder is achieved by a 3D convolutional
network that encodes Vp into a bottleneck feature, then the decoder recursively
decodes it into a hierarchy of part boxes.

Starting from the root feature code, the RNN recursively decodes it into a
hierarchy of features until reaching the leaf nodes which each can be further
decoded into a vector of box parameters. There are three types of nodes in our
hierarchy: leaf node, adjacency node, and symmetry node. During the decoding,
two types of part relations are recovered as the class of internal nodes: adjacency
and symmetry. Thus, each node can be decoded by one of the three decoders
below, based on its type (adjacency node, symmetry node or box node):

Adjacency decoder The adjacency decoder split a single part into two adjacent
parts. Formally, it splits a parent n-D code p into two child n-D codes c1 and
c2, using the mapping function with a weight matrix Wad ∈ R2n×n and a bias
vector bad ∈ R2n:

[c1, c2] = tanh(Wad · p+ bad) (1)

Symmetry decoder The symmetry decoder recovers a n-D code for a symmetry
group g in the form of a n-D code for the symmetry generator s and a m-D
code for the symmetry parameters z. The transformation has a weight matrix
Wsd ∈ Rn×(n+m) and a bias vector bsd ∈ Rn+m:

[s, z] = tanh(Wsd · g + bsd) (2)

The symmetry parameters are represented as a 8-dim vector (m = 8) containing:
symmetry type (1D); number of repetitions for rotation and translation symmetries
(1D); and the reflection plane for reflection symmetry, rotation axis for rotation
symmetry, or position and displacement for translation symmetry (6D).
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Box decoder The box decoder converts the n-D code of a leaf node l to a 12-D
box parameters defining the center, axes, and sizes of a 3D oriented box. It has a
weight matrix Wld ∈ R12×n and a bias vector bld ∈ R12:

[x] = tanh(Wld · l + bld) (3)

These decoders are recursively applied during decoding. We also need to
distinguish p, g and l since they require different decoders. This is achieved by
learning a node classifier where the ground-truth box structure is known. The
node classifier is jointly trained with the three decoders. We refer the readers to
[28] for a better understanding.

3.3 Structure-guided Shape Completion Module

The problem of 3D surface completion was first cast into 2D spherical map
inpainting by GenRe [64], showing better performance than surface completion
in the voxel space. However, the original spherical inpainting network takes
only the partially observable depth map Mp as input and encode the shape
prior implicitly in their neural network. We use an encoder-decoder network
and concatenate Mp,Mss,Mse channel-wise as input: structure surface map Mss

provides the reference depth as it shows the planar tilt; structure edges Mse

handles self-occlusion as edges do not have volume. Thus, structure information
is explicitly embedded into the network. Note both structure and depth map are
viewer-centered and are automatically aligned.

3.4 Voxel Refinement Module

We adopt a voxel refinement module to recover the lost information caused
by spherical projection, similar to GenRe. This module takes all voxels (one
projected from the estimated depth map Vp and the other from the inpainted
spherical map Vi) as well as the voxelized structure S as input, and predict the
final reconstruction.

3.5 Interpretation Consistency

There have been works attempting to enforce the consistency between estimated
3D shape and 2D representations or 2.5D sketches [58] in a neural network. Here,
we propose a consistency loss between structure interpretation S and partial
reconstruction Vp.

Similar to [55], our consistency loss contains both sub loss and super loss.
The former evaluates if the interpretation cuboids are completely inside the
target object, the latter evaluates if the target object is completely covered by
the interpretation cuboids.

Formally, sub loss Lsub and super loss Lsup are defined as

Lsub = Ep∼Vp
‖C(p;S)‖2 (4)
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Lsup = Ep∼S‖C(p;Vp)‖2 (5)

L = Lsub + Lsup (6)

where the points p are sampled from either the structure interpretation or
the partial reconstruction, and C(·;O) computes the distance to the closest point
on the object and equals to zero in the object interior.

C(p;O) = min
p′∈O
‖p− p′‖2 (7)

Note that the reconstruction Vp only contains observable parts, so it is not
reasonable to force consistency in the occluded region. Therefore, we only calculate
the consistency loss of structure primitive where the volume occupied by Vp is
larger than a threshold α. We fix the three decoders mentioned in Section 3.2
during testing and only fine-tune the node codes and parameters. During inference,
our method can be self-supervised.

3.6 Technical Details

Network Parameters Following GenRe [64], we use a U-Net structure [48] for
both single-view depth estimation module and structure-guided shape completion
module. The encoder is a ResNet-18 [23], encoding a 256× 256 image into 512
feature maps of size 1 × 1. The decoder is a mirrored version of the encoder,
replacing all convolution layers with transposed convolution layers. The decoder
outputs the depth map / inpainted map in the original view at the resolution of
256× 256. We use a L2 loss between predicted and target images. Our structure
interpretation module takes the 128 × 128 × 128 dimensional Vp as input and
output a 128D latent vector, which is then fed into the RNN decoder. The
node classifier and the decoders for both adjacency and symmetry are two-layer
networks, with the hidden layer and output layer having 256 and 128 units,
respectively. Our voxel refinement module is also a U-Net, which takes a three-
channel 128×128×128 voxel grid (Vp, Vi, S) as input, encode it into a 320D latent
vector and then decode the latent vector into the 128× 128× 128 dimensional
final reconstruction.

Geometric Projections We use five deterministic projection functions: a depth
to voxel projection, a depth to spherical map projection, a structure surfaces
to spherical map projection, a structure edges to spherical map projection, and
a spherical map to voxel projection. We use the same method as described in
GenRe. All projections are differentiable, thus the pipeline is end-to-end trainable.

Training We first train each module separately with fully labelled ground truth for
250 epochs, all rendered with synthetic ShapeNet objects [9]. We then jointly fine-
tune our whole model together with both 3D shape and 3D structure supervision
for another 250 epochs. In practice, we fine-tuned our model using consistency
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loss on each image for 30 iterations. We used adam optimizer with a learning
rate of 1× 10−4.

4 Experiments

4.1 3D Shape Interpretation

Method Hausdorff Error Thresholded Acc.
δ < 0.2 δ < 0.1

im2struct (Mask + VGG-19) [39] 0.1096 91.2% 66.7%
GSIR (without consistency) 0.0798 93.3% 79.6%
GSIR (With consistency) 0.0731 97.4% 84.8%

Table 1: Comparison of performance on the structure recovery task.

Fig. 3: Example results of 3D shape interpretation. From left to right: RGB input
image, partial voxel grid, im2struct, Ours(GSIR).

We present results on 3D shape interpretation for generalizing to novel objects
unseen in training. All models are trained on cars, chairs, airplanes, tables, and
motorcycles and tested on unseen objects from the same categories. Same as
in im2struct [39], we use two measures to evaluate the performance of our 3D
Shape Interpretation: Hausdorff Error and Thresholded Accuracy. The results
are presented in Table 1. We compare our method with the current best method
(im2struct). In “GSIR without consistency”, the structure is estimated using only
the structure interpretation module. In “GSIR with consistency”, the structure
is esimated using the structure interpretation module followed by a refinement
using the proposed interpretation consistency. The result demonstrates that
recovering structure significantly benefits from infusing information of partially
reconstructed voxel grid. Fig. 3 gives a visual comparison of our method and
im2struct, which directly recover 3D shape from single-view RGB image. As can
be seen, our method produces part structures that are more faithful to the input.
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This is because 1) we reason about 3D structure from predicted 3D voxels, which
alleviates the domain adaptation, and 2) our model is end-to-end trainable, the
performance of structure recovery gets better as richer information gets distilled
for 3D reconstruction.

4.2 Structure-Guided Shape Completion

Fig. 4: Visualization of example spherical maps at each stage of our method, with
a comparison of structure guided inpainting and normal inpainting. From left to
right: RGB (original), partial map from depth estimation, surface map from structure
prediction, edge map from structure prediction, inpainted map without structure
guidance, inpainted map with structure guidance, ground truth.

We present qualitative results on structure-guided shape completion in
Fig. 4. The contribution of each element in our method is visualized in the
figure. We show that with structure guidance, the missing or unobservable parts
can be well completed, hence leading a more faithful reconstruction. However,
without structure information, the inpainting network can only recover incomplete
unobservable parts (e.g., the wing of the airplane bounded by the green boxes) or
even ignore the unobservable parts directly (e.g., the engine of the airplane and
the leg of the table bounded by the red boxes). In contrast, structure guidance
enables the model to fully reconstruct unobservable parts. More quantitative
results are shown in Section 4.3.

4.3 3D Shape Reconstruction

In Table 2, we present results on generalizing to novel objects from both training
and testing classes. All models are trained on ShapeNet cars, chairs, airplanes,
tables, and motorcycles while tested on novel objects from the same categories
(denoted as Seen) and unseen categories (denoted as Unseen) including benches,
sofa, beds and vessels. Since our model only focuses on surface voxel reconstruction,
we evaluate reconstruction quality using Chamfer distance (CD) [4]. We sweep
voxel thresholds from 0.3 to 0.7 with a step size of 0.05 for isosurfaces, compute
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Method CD
Seen Unseen

Object-Centered

IM-NET [12] 0.055 0.119
ONet [38] 0.060 0.128

DeepSDF [40] 0.053 0.115
AtlasNet [20] 0.063 0.126

Viewer-Centered

DRC [56] 0.097 0.127
MarrNet [58] 0.081 0.116
GenRe [64] 0.068 0.108

Ours 0.057 0.099
Table 2: Comparison of performance on the shape reconstruction task.

CD with 1,024 points sampled from all isosurfaces, and report the best average
CD for each object class. For seen categories, our method beats all other viewer-
centered methods, performing on par with most object-centered methods. For
unseen objects, our model outperforms all objected-centered and viewer-centered
methods by a large margin, demonstrating its capacity to generalize to objects
with new shapes from completely unseen classes.

Fig. 5: Example results of 3D shape reconstruction for novel objects from training
categories. From left to right: RGB image, GenRe, Ours(GSIR), Ground Truth. The
red bounding boxes surround key areas that suffer from self-occlusion / symmetry in
GenRe but are successfully reconstructed by the proposed method.

We give a visual comparison of our method and the state-of-the-art method
on novel objects from seen categories in Fig. 5. The red bounding boxes surround
key areas that suffer from self-occlusion / symmetry in GenRe but are successfully
reconstructed by the proposed method. These results show that our method
significantly improves the reconstruction performance under self-occlusion /
symmetry. We also present some visualizations on novel objects from unseen
categories in Fig 6. It can be observed that compared to the best previous method,
our method better preserves the structural properties of the objects in the input
images and closely reconstructs various details of the objects (e.g., the middle
leg of the bench, the armrest of the sofa, and the ceiling of the vessel, etc.).
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Fig. 6: Example results of 3D shape reconstruction for novel objects from testing
categories. From left to right: RGB image, structural interpretation, GenRe (Best
Baseline), Ours(GSIR), Ground Truth.

4.4 Shape Interpretation with Consistency

By reasoning the consistency between the partial voxel grid and object structure,
we can obtain better structure interpretation by fine-tuning on one object while
preserving good shape prior knowledge. As shown in Fig. 7, the tilt and size of
each cuboid can be rectified even if the initial structure interpretation is coarse
and distorted (as shown in the red boxes). Furthermore, since our structure
model utilizes symmetry explicitly, the unobservable parts can also be better
reconstructed through forcing consistency with observable parts.

Fig. 7: Example results that demonstrates the efficacy of the proposed interpretation
consistency. From left to right: partial voxel grid (Vp), coarsely reconstructed structure
(Structure), fine-tuned structure with consistency (Fine-tuned).

4.5 Generalization to Real Images

In this subsection, we extend our experiments from rendered images to real
images. Our experiments show that the proposed network’s capability to robustly
reconstruct objects of unseen classes from real images, both qualitatively and
quantitatively. For example, all models are trained on rendered images of chairs,
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airplanes, and cars from ShapeNet, while tested on real images of beds, bookcases,
desks, sofas, tables, and wardrobes from another dataset, Pix3D [53]. Quantitative
results evaluated by Chamfer Distance are presented in Table 3. While AtlasNet
achieves a smaller error on seen objects (chairs & tables), our model outperforms
both other methods across all novel classes, which demonstrate its generalization
abilities on cross-domain shape interpretation and reconstruction. We also
present qualitative visualizations in Fig. 8. Both our interpretation network
and reconstruction network produce high-fidelity results, preserving both the
overall structure and fine-grained details.

Fig. 8: Example results of 3D shape
interpretation and reconstruction on real
images of objects from unseen classes in Pix3D
(the model is trained on ShapeNet).

AtlasNet GenRe Ours
Chair 0.083 0.095 0.091
Table 0.092 0.099 0.094
Bed 0.115 0.111 0.107

Bookcase 0.137 0.101 0.095
Desk 0.124 0.107 0.100
Sofa 0.096 0.085 0.083

Wardrobe 0.119 0.111 0.103

Table 3: Reconstruction
errors (in CD) for seen
(chairs, tables) and unseen
classes (beds, bookcases, sofas,
wardrobes) on real images
from Pix3D.

Fig. 9: Examples of structure-guided shape manipulation. We change the leg number
of a swivel chair from five to six and shorten the length of a table.

4.6 Ablation Study

To investigate the effectiveness of each module in our model design, we perform an
ablation study to quantify the performance of different module design configurations.

For each projection representation in our model, there could be alternative
choices: instead of using spherical map, we can instead use a multi-view representation:
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Method Seen Unseen
Encoder Decoder 0.127 0.196
Depth + Decoder 0.088 0.131

Depth + Multi-view + Vi 0.075 0.123
Depth + Multi-view + Guided + Vi 0.072 0.121

Depth + Spherical Map + Vi 0.073 0.119
Depth + Spherical Map + Guided + Vi 0.069 0.113

Depth + Spherical Map + Guided + Vi+ Vp 0.064 0.106
Ours (w.o. consistency loss) 0.060 0.103
Ours (w. consistency loss) 0.057 0.099

Table 4: Ablation Study. All annotations are consistent with Section 3.

e.g., six views depth projection as proposed by MatryoshkaNet [44]. Then we
can apply structure-guided depth map inpainting on all six views (denoted as
Multi-view in Table 4).

In the ablation study, we gradually add more representations and more
projective losses. The baseline method is a single vanilla 3D autoencoder (denoted
as Encoder Decoder). Then, each module added sequentially, bearing the same
name as mentioned in Section 3. We adopt the same experimental settings as in
Section 4.3 and the results are shown in Table 4. Results suggest that spherical
maps lead to better performance than multi-view ensemble, which justify our
choice of design. This ablation study also suggests that each module in our model
contributes to the improved performance. Our full model design benefits from
joint learning of interpretation and reconstruction, significantly improving the
baseline network performance.

4.7 Shape Manipulation

Another unique advantage of our method is that it provides explicit and flexible
ways to manipulate the underlying objects while maintaining good surface details.
We can modify the symmetry groups (e.g., changing the number of legs of a chair
from five to six) in structure-guided shape completion step (as shown in the first
row of Fig. 9), and/or apply rotation, translation or scaling to the primitives
(as shown in the second row of Fig. 9). As shown in Fig. 9, our model smoothly
modifies the output of reconstruction according to the structure guidance.

5 Conclusion

We jointly learned single image 3D shape interpretation and reconstruction.
We propose GSIR, an novel end-to-end trainable viewer-centered model that
integrates both shape structure and surface details, for a better understanding of
3D geometry. Extensive experiments on both synthetic and real data demonstrate
that with this joint structure, both interpretation and reconstruction results can
be improved. We hope our work will inspire future research in this direction.
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