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Abstract. Current methods for trajectory prediction operate in super-
vised manners, and therefore require vast quantities of corresponding
ground truth data for training. In this paper, we present a novel, label-
free algorithm, AutoTrajectory, for trajectory extraction and prediction
to use raw videos directly. To better capture the moving objects in videos,
we introduce dynamic points. We use them to model dynamic motions by
using a forward-backward extractor to keep temporal consistency and us-
ing image reconstruction to keep spatial consistency in an unsupervised
manner. Then we aggregate dynamic points to instance points, which
stand for moving objects such as pedestrians in videos. Finally, we ex-
tract trajectories by matching instance points for prediction training. To
the best of our knowledge, our method is the first to achieve unsupervised
learning of trajectory extraction and prediction. We evaluate the perfor-
mance on well-known trajectory datasets and show that our method is
effective for real-world videos and can use raw videos to further improve
the performance of existing models.

1 Introduction

For intelligent agents like robots and autonomous vehicles, it is crucial to be
able to forecast neighboring traffic-agents’ future trajectories for navigation and
planning applications. Trajectory prediction for dynamic objects has been widely
studied and is an active area of research. Some traditional methods for trajec-
tory prediction are based on motion models such as Bayesian networks [25],
Kalman filters [2], Gaussian process regression models [18], etc. These methods
can deal with simple scenarios with very few moving instances, but are limited
in complex real-world scenarios with many instances or agents interacting with
each other. Recurrent Neural Network (RNN) and its variant long short-term
Memory (LSTM) have become an effective way for trajectory prediction due to
its ability to model non-linear temporal dependencies in sequence learning and
generation [31, 6]. Based on these networks, recent works are able to achieve
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good accuracy on predictig trajectories for pedestrians [1, 17], vehicles [24, 33],
and heterogeneous traffic-agents [29]. However, all of the above methods oper-
ate in supervised manners, which rely heavily on labeled trajectory data. One
general method to get a trajectory dataset [35, 26] is to label consecutive posi-
tions of moving traffic-agents (pedestrians or vehicles) on fixed-view videos and
then transfer the trajectory from the image coordinate system to a real-world
coordinate system. Labeling consecutive objects from videos is complex and ex-
pensive [19]. There is a great demand for an unsupervised learning method to
alleviate the dependence on annotations by simply taking raw videos as input
and automatically extracting trajectories for training prediction network.

The most pivotal and challenging task for label-free trajectory extraction is
capturing the moving objects, which we also call dynamic instances, from videos
without any supervision. There are some related problems that also need to learn
the motion dynamics of objects from videos, like activity prediction [27], video
prediction [21, 30], and object tracking [19, 11]. However, we found they did not
perform well for common bird’s-eye view videos (sometimes, we may just see the
heads and shoulders of pedestrians). For such videos, it is difficult to distinguish
instances for the network just by appearance and structure features, while the
above methods all rely on these features. To extract trajectories for dynamic
instances in videos, we need consider not only the appearance and structure
features in spatial space, but also the dynamic features (consecutive motions of
objects) in temporal space. Our work is based on this consideration.

Main Results: In this paper, we propose a label-free learning-based method
AutoTrajectory for trajectory extraction and prediction to overcome the above
difficulties. To better capture the motion dynamics of moving objects in the
video, we use the concept of dynamic points, which can focus on dynamic loca-
tions on images. These points are derived by keeping the spatial appearance and
structure consistent via self-image reconstruction and maintaining the temporal
dynamic features to be consistent in consecutive frames. Because our target is to
get trajectories of instances, then we use optical flow and clustering algorithms to
aggregate dynamic points to instances and extract trajectories by the matching
method. Finally, we use these trajectories to train the trajectory prediction net-
work. The whole process uses no labels. Our approach contains four main parts,
including dynamic point modeling, dynamic-to-instance aggregation, trajectory
extraction, and trajectory prediction. The main contributions of our work are:

– We propose a label-free trajectory extraction and prediction pipeline, which
can extract trajectories of dynamic instances from raw videos directly and
train a prediction network.

– We propose a novel forward-backward dynamic-point extractor, which could
capture dynamic features in consecutive images.

– We propose a dynamic-to-instance mechanism, which could aggregate dy-
namic locations to instances.

– Our method is effective and has good scalability. With more raw videos, our
method can also improve existing methods in a semi-supervised manner.
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2 Related Work

2.1 Trajectory Prediction

Classical model-based approaches for trajectory prediction [25, 2, 18, 28] focus on
the inherent motion regularities of objects themselves. However, the motion of
dynamic objects in the real world is diverse and can be governed by many factors,
like neighboring objects’ motion states and the environment. These methods are
limited in modeling complex scenarios. Recently, RNN and its variant LSTM
have achieved great success in modeling sequence prediction tasks [31, 6]. Based
on these basic networks, many prediction approaches [1, 17, 24, 33, 29, 9, 8, 43, 39,
7, 38, 48, 32, 44] have outperformed classical methods in real-world benchmarks.
However, these supervised methods require large-scale, well-annotated trajectory
data. Two main ways to generate the data are labeling moving instances from
fixed-view videos and LiDAR point clouds. Both ways are expensive and time-
consuming. Even though there are a lot of videos captured by street or commod-
ity cameras, they cannot be used to improve the prediction performance without
annotation. We try to solve this problem by using unsupervised manners.

2.2 Supervised Multi-object Tracking

Except for manual labeling, another possible solution for getting trajectories
from videos is using current SOTA trackers. However, most modern trackers[5,
4, 13, 40, 42, 49, 46] follow the tracking-by-detection paradigm. The performance
depends largely on the detector used to find the objects as the tracking targets
and the detector requires large-scale labeled data. Besides, the tracker is always
trained for fixed-categories, which is hard to adapt to other domains. Recent
trend in multi-object tracking is combining both detection and tracking in one
framework[15, 37, 3]. However, they do not overcome the above limitations. Our
approach focuses on exploring the nature of video, i.e., the dynamic information,
which is naturally category-free and works well on all domains.

2.3 Unsupervised Learning for Dynamic Modeling

To extract trajectories from sequential frames, a crucial step is learning the
motion dynamics of the video. Many works have explored unsupervised meth-
ods for dynamic modeling for videos to solve different problems [27]. Based
on keypoint-based representation [20], the video prediction approach [30] could
decouple pixel generation from dynamic prediction. [21] combines keypoints
and extra action classes to help generate action conditioned image sequences.
Inspired by the function of keypoint on video prediction and generation, we
designed dynamic point. For unsupervised tracking, unsupervised single object
tracking is the mainstream [36, 47, 45]. However, they cannot handle the scenes
with multiple objects. For unsupervised multi-object tracking, the pioneering
work AIR [12] proposes a VAE-based framework to detect objects from individ-
ual images through inference, which is followed by [22, 19]. [11] makes use of
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spatially invariant computations and representations to exploit the structure of
objects in videos. In our initial attempts, we applied these unsupervised methods
to locate dynamic instances on pedestrian videos directly but got poor results.
The primary reason is that the above methods rely on structure and appear-
ance features of objects, which are not applicable for trajectory extraction from
bird’s-eye view videos, where the these features are not very obvious.

3 Our Approach

3.1 Problem Definition

Given raw videos without any annotations, our task is to obtain a trajectory pre-
dictor in an unsupervised manner. We solve this problem by two main steps: tra-
jectory extraction and trajectory prediction. For trajectory extraction, the input
is raw videos captured by street cameras, and the output is R = {r1, r2, ..., rn},
where R denotes all trajectories of moving objects in the videos. The trajec-
tory for the ith object is defined as a set of discrete positions in the real-world
coordinate system: ri =

{
ptstart
i , ptstart+1

i , ..., ptend
i

}
, where [tstart, tend] denotes

the time interval when the object occurs in the video. For the trajectory predic-
tion, the extracted trajectories R acts as the dataset for training and validating
the prediction network. The predictor observes objects’ trajectories of an time
interval and predicts their trajectories in the following period, like observing
trajectory of 3s and predicting the trajectory for the next 5s. Without any label,
we finally compute a trajectory prediction predictor.

3.2 Method Overview

We propose a label-free pipeline to generate the trajectory and then train the
trajectory predictor. Specifically, our approach consists of four components:
Dynamic-Point Modeling, Dynamic-to-Instance Aggregation, Instance Match-
ing, and Trajectory Prediction. The first three parts form the unsupervised tra-
jectory extraction. We show the pipeline in Fig. 1. In what follows, we will
present these components in details.

3.3 Dynamic-Point Modeling

This part performs the unsupervised discovery of the dynamic points. Given a
sequence of images, including Image1 (I1), Imaget−1 (It−1), Imaget (It), and
Imaget+1 (It+1), our objective is to capture K pixel locations, namely dynamic
points Φ ∈ RK×2, which correspond to the locations of moving regions in It.

The detailed networks are shown in Fig. 1(1). The first image provides the
background and layout features. Two pairs of consecutive images are used to
capture the dynamic points in It. Both background features and the dynamic-
point gaussian heatmaps are used to reconstruct the image (It). The learning
objective L then consists of two parts, consistency loss LC and reconstruction
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Fig. 1. Pipeline and main components of AutoTrajectory. Specifically, the first three
components form the unsupervised trajectory extraction.

loss LR, to regularize the dynamic points extraction and image reconstruction,
respectively. The total objective is formulated as L = LR + βLC .

Forward-Backward Dynamic-Point Extractors. Keypoints are known
as natural representations of objects. Some methods for video prediction [21,
30] encode single frames to keypoints to make the representation spatially struc-
tured and then generate videos. For the trajectory extraction from bird’s eye
view videos (Fig. 2(a)), the movement features in the temporal space are very
important due to the limited appearance and structure features. Thus, we ex-
tend keypoints to dynamic points by utilizing more consecutive infomation in
the temporal space. Dynamic-point extractors use two consecutive images to
capture the dynamic points Φ. Two sets of images are applied in both forward
(i.e. from t − 1 to t) and backward (i.e. from t + 1 to t) directions to keep the
dynamic points of It consistent. The consistency loss is a location-wise MSE loss.

LC = ||(Φforward − Φbackward)||22. (1)

Gaussian Heatmaps. After obtaining dynamic points Φ ∈ RK×2, we use
gaussian heatmaps H ∈ RH×W×K to encode these points Φ into pixel represen-
tation, which is more suitable as the input for the convolutional reconstruction
network. We first normalize the dynamic points via Softmax (i.e. Φ∗ after nor-
malization). Then each dynamic point is replaced with a gaussian function:

H = exp(− 1

2σ2
‖Φ− Φ∗‖2), (2)
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(a): Image (b): Dynamic-Point (c): Optical-Flow

Fig. 2. A sample of image with dynamic points and optical flow. Yellow circles denote
the pedestrians. Green dashed circles denote the poor instance-level representations.
Solid green circles indicate the better instance-level descriptions.

where σ is a fixed standard deviation. The result H ∈ RH×W×K is the gaussian
heatmap that describes the dynamic locations; it is also used as an input to the
decoder network.
Decoder. The decoder network utilizes background and layout features and
dynamic-point heatmaps to reconstruct the image (i.e. the reconstructed image
is I∗t ). The reconstruction loss is a pixel-wise L2 loss:

LR = ‖(I∗t − It)‖22. (3)

In this way, the objective could induce the representation of dynamic points for
reconstructing the specific image in an unsupervised manner. Meanwhile, image
reconstruction can make full use of the appearance and structure information in
the spatial space, which is a complement to the focus on dynamic motions.

3.4 Dynamic-to-Instance Aggregation

Dynamic points could detect dynamic locations on images, while trajectories
originate from instances. After acquiring the well-trained dynamic-point ex-
tractor in the previous step, we aim to group these dynamic points to get the
instance-level location information. Intuitively, the solution is to cluster the dy-
namic points to instance points directly. However, the dynamic points have some
characteristics: it shows better instance-level information (distinguishing differ-
ent objects well) when multiple objects are close to each other while shows loose
when solo object occurs.

We tackle this problem by introducing the optical flow into the instance-
level information collection. An example of the dynamic points and optical flow
is shown in Fig. 2. We can observe that the dynamic points correspond to a better
instance-level representation, when multiple objects are in close proximity (solid
green circles in (b)). The optical flow shows the compact representation for solo
objects (solid green circle in (c)). It shows that that dynamic points and optical
flow are complementary.
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T-1 T T+1

: Matching Trajectory : Outliers

Fig. 3. An example of instance matching. Green dashed line denotes the instance points
matching across timesteps. Blue circles denote the outliers of the instance points (also
mean missmatching points).

Specifically, we use a pair of consecutive images (It and It−1) to extract
the dynamic point representation and optical flow, training the dynamic-point
extractor in step 1 and applying unsupervised optical flow method [14]. The
gaussian heatmaps are upsampled to the original image size via bilinear interpo-
lation. Then both gaussian heatmaps and optical flow are concatenated as the
input to the clustering method, i.e. mean-shift, to get the cluster centers, which
are the coordinates of objects.
Region of Validity. Since there exist invalid regions for moving objects in
images (railway in Fig. 2) and the background is static for a fixed camera, we
apply the region of validity to filter these outliers located in the invalid regions.
We show the details in the experiment section.

3.5 Instance Matching

The instance points obtained from the clustering method are independent across
time. To obtain the trajectory, we perform cross-time instance matching. The
basic idea is to establish a cost matrix between two consecutive images where
each entry indicates the distance between two instance points across two images.
Then we apply the Kuhn-Munkres (KM) algorithm to calculate the minimum-
cost matching. To better incorporate the appearance feature, we also use the
RGB information as a part of distance. The final distance function is designed
as Dij = dist(Pi, Qj) + λrgb(Pi, Qj), where Pi and Qj are two instance points
from two images. dist(·) is the Euclidean distance and rgb(·) is the L1 distance.

Specifically, the cost matrix C ∈ RM×N is defined as the all-to-all distance
between two images, where M and N indicate the number of instance points
in two images. We use the KM algorithm with the cost matrix C to get the
minimum-cost matching. The workflow is shown in Fig. 3. The matching pair
from the KM algorithm is specified as a true pair if its distance is less than
the pre-defined threshold D, otherwise it is a false pair. Note that there exist

http://software.clapper.org/munkres/
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some outliers that do not match any point. We label these outliers with blue
circles. To handle these points, we apply some specific methods to filter them.
For the points in image T , if we cannot find the former matching points in image
T − 1 but can find the matching points in image T + 1, we label these points
as the starting points of the sequence, otherwise we label them as outliers. This
bidirectional filter benefits the precision of cross-time matching.

3.6 Trajectory Prediction

After extracting the trajectories in the pixel coordinate system, we transfer them
to the real-word coordinate system and use them as the dataset to train and
validate the prediction network in the last stage. At any time t, the status
for the ith dynamic instance can be represented as the location pi = (xti, y

t
i).

The task for the prediction network is to observe the status of all the dynamic
instances in the time interval [1 : Tobs] and then predict their discrete positions at
[Tobs + 1 : Tpred]. We have highlighted many learning-based works in Section 2.1
and these methods can be directly used in our approach. Because the datasets we
use are human crowd videos, we utilize some classical LSTM-based approaches
for pedestrian trajectory prediction in our experiments to verify the effectiveness
of our unsupervised method.

3.7 Optimization

In the proposed approach, dynamic-point modeling and trajectory prediction
stages have trainable parameters, and the other two stages are non-parametric.
The whole workflow is stage-by-stage. We first train the dynamic-point modeling
part. An ADAM optimizer with learning rate = 1e-4 is used for optimization. β is
0.5, σ is 0.1 and λ = 0.2. Then we apply the well-trained dynamic-point extractor
to access the dynamic points. After dynamic-to-instance and instance matching,
we get the extracted trajectories. For the trajectory prediction part, we follow
the settings in the original paper to train the network optimizer, including the
observation and prediction length.

3.8 Network Architecture

Dynamic-Point Modeling. For the dynamic-point extractor, we use the basic
block (Conv2d + BatchNorm2d +Leaky Relu) in VGG [41] as the unit. The
sizes of Conv2d are: [64, 128, ‘M’, 256, 256, ‘M’, 512, 512, ‘M’, 512, 512], where
‘M’ denotes the MaxPooling and each number indicates the size of one unit. For
the encoder, we use a structure similar to the dynamic-point extractor. For the
decoder part, we use the reverse setting of the encoder to keep the output and
input size consistent. The detailed setting is [512, 512, ‘U’, 256, 256, ‘U’, 256,
256, ‘U’, 128, 64], where ‘U’ denotes the bilinear upsampling.
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4 Experiments

4.1 Implementation Details

For trajectory prediction, we use several LSTM-based models, including Vanilla-
LSTM, Occupancy-LSTM (O-LSTM), and Social LSTM (S-LSTM) [1]. They
are trained by ground truth data before. In our approach, we use our extracted
trajectories to train these models. Following the original setting in S-LSTM, we
filter our extracted trajectories by removing the trajectories with lengths less
than 20 frames (8 seconds). We set K=180 so that the dynamic points could
distribute all moving objects.
Evaluation Metrics. We evaluate our performance on three aspects: detected
instance points, extracted trajectories, and predicted trajectories.

We introduce recall and precision to test the quality of instance points ex-
tracted from Dynamic-to-Instance Aggregation. We give the detailed explanation
as follows. (1) True-Positive instance points: instance points where the distance
between detected instance points and the ground-truth points is less than the
threshold D. (2) Recall: the ratio of True-Positive points to all ground-truth
points. (3) Precision: the ratio of True-Positive points to all detected instance
points. We term them Ins-Recall and Ins-Precision, respectively.

We also apply recall and precision to test qualities of extracted trajecto-
ries. The True-Positive trajectories are defined as: trajectories where the aver-
age distance between extracted trajectories and ground truth trajectories across
timesteps is less than the threshold E . The definition of recall and precision is
similar to the statement above. We term them Gen-Recall and Gen-Precision,
respectively. Note that there exist some conditions where one detected instance
point (or trajectory) corresponds to several ground truth points (or trajectories),
or vice versa. We use the KM algorithm to get the minimum cost matching. Both
precision and recall are calculated on average. We set E = 1.5 and D = 1.5.

Similar to prior work [1], we use two popular evaluation metrics for predicted
trajectory evaluation: (1) Average Displacement Error (ADE): Average L2 dis-
tance between predicted trajectory and the ground truth over all timesteps. (2)
Final Displacement Error (FDE): The distance between the predicted final des-
tination and the true final destination in the ground truth. Besides the compari-
son between our unsupervised method and supervised methods, we also conduct
semi-supervised experiments by using our extracted trajectories as extra data to
train supervised models.

4.2 Datasets

For the dynamic-point modeling part, we use two publicly available datasets:
ETH [34] and UCY [23] as the training data. These two datasets are captured by
fixed-cameras. Although there are some other datasets containing videos of traffic
scenarios such as KITTI [16] and Argoverse [10], the videos are all captured in
drivers’ view. The camera is moving and and they do not provide the homograph
matrix for each frame, which is not infeasible for our method.
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We follow Social LSTM [1] to split the video to frames at every 0.4 seconds.
For the trajectory prediction stage, we need to convert pixel coordinates to real-
world coordinates to train these LSTM-based methods. Therefore, the extrinsic
matrix is required to transfer the pixel coordinates to the real-world coordinates.
From the open-source codebase , it can be found that only three scenes (UCY-
Zara01, UCY-Zara02, and UCY-University) have complete transform matrixes.
We thus use these three scenes for trajectory prediction.

Table 1. Evaluation results of detected instance points. We compare the proposed
method with the unsupervised tracking [19] method and unsupervised keypoint mod-
eling method [30]. ‘-’ indicates the model cannot converge in the dataset

Metric Ins-Precision Ins-Recall

Dataset ETH Hotel Univ Zara1 Zara2 ETH Hotel Univ Zara1 Zara2

Un-Tracking [19] 8.3% - - 19.6% 21.4% 12.7% - - 10.1% 14.8%

Un-Keypoint [30] 16.8% 11.2% - 33.1% 36.7% 14.1% 14.6% - 39.4% 41.0%

Ours 47.9%37.1%36.4%58.7%60.3%58.3%42.0%31.4%63.1%67.9%

4.3 Results

Experimental Results for Instance Points. We first evaluate the extracted
instance points on various datasets. Since there is no annotation in any of
the datasets, we use the unsupervised object tracking algorithm [19] and the
keypoint-based video prediction algorithm [30] as baseline methods. From Ta-
ble 1, several phenomena can be found: 1) in all datasets, the proposed dynamic-
point modeling and dynamic-to-instance aggregation achieve consistently better
performance than unsupervised tracking and unsupervised keypoint modeling;
2) for Hotel and Univ (where there are a large number of moving instances),
unsupervised tracking method cannot converge while our method remains gen-
eralizable; 3) unsupervised keypoint modeling method without considering the
sequential temporal information also performs poor (even does not converge in
Univ dataset), while our method exploits the temporal consistency and achieves
decent performance for all videos. Hence, for unsupervised tracking and keypo-
ing modeling methods, it is difficult for them to extract dynamic instances from
these videos, which are in bird’s-eye view containing limited appearance and
structure features. Instead, the proposed dynamic-point modeling and dynamic-
to-instance aggregation could better handle the difficulties.
Visualization for the decoder. To investigate the performance of the decoder
part in dynamic-point modeling, we visualize the reconstructed images in Fig. 1
in the supplementary material. It can be observed that the moving pedestrians
are well captured and reconstructed, even with a large number of moving ob-
jects. The reconstructed images are also real and decent. Hence, it can be found

https://github.com/trungmanhhuynh/Scene-LSTM
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Post-Instance-Point

Fig. 4. Visualization for the output of each step in dynamic-to-instance aggregation.
For the image of the valid region, the grey color denotes the valid part while the black
color indicates the invalid region.

that our dynamic modeling does capture the dynamic information and could
reconstruct the input image.
Visualization for each step in dynamic-to-instance aggregation. To give
a more intuitive description, we visualize the output of each step during instance-
point extraction in Fig. 4. Specifically, we first use Image (T) and Image (T-1) to
extract the dynamic points. Then both dynamic points and optical flow are used
to get the pre-instance points. Due to some invalid regions (buildings, railways)
for pedestrians, we constrain these instance points with the valid region map.
Because the background for a fixed-camera is static, it is easy to circle the valid
region on just one frame. After that, we obtain the post-instance points.

Experimental Results for extracted trajectories. We use Gen-Recall and
Gen-Precision to test the performance of extracted trajectories. Three datasets,
including Zara1, Zara2, and Univ, are reported. The results are shown in the
following; Gen-Precision of Zara1, Zara2 and Univ is 49.1%, 53.7%, and 23.7%
respectively. Gen-Recall of Zara1, Zara2 and Univ is 52.9%, 54.4%, and 20.6%
respectively. Our method could generate about a half number of trajectories
similar to the ground truth for general videos. We visualize some extracted tra-
jectories in Fig. 5. For very crowded scene (Univ), the performance drops due to
the mismatching of instances. We show some bad cases in Fig. 2 in supplemen-
tary material. When multiple pedestrians meet, the error of instance matching
occurrs and the trajectories of these pedestrians are biased in the wrong direc-
tion. It is also a fundamental obstacle for multi-object tracking methods.

Experimental Results for Trajectory Prediction. Because the datasets
(Zara1, Zara2, and Univ) we use are about pedestrians, we test the extracted
trajectories with three popular models for predicting trajectories of pedestrians,
including LSTM, O-LSTM, and S-LSTM. We use a popular evaluation method,
the leave-one-out approach, to test the trajectory prediction part, where we train
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(a) (b) (c)

Fig. 5. Visualization for trajectory prediction. We display three examples with the
ground truth trajectory (GT in green line), the extracted trajectory by our method
(ET in blue line), and the predicted trajectory by our method (PT in red dashed line).

Table 2. Experimental results of trajectory prediction. We use three popular models
to test the extracted trajectories, where O-LSTM and S-LSTM are both from Social-
LSTM [1]. LSTM(sup), O-LSTM(sup), and S-LSTM(sup) indicate these models in a
supervised manner. The unit for ADE and FDE is meters

Metric ADE FDE

Dataset Univ Zara1 Zara2 Univ Zara1 Zara2

LSTM 0.936 0.729 0.742 1.512 1.24 1.338

O-LSTM 0.875 0.511 0.579 1.427 0.947 1.092

S-LSTM 0.892 0.477 0.495 1.45 0.911 1.03

LSTM (sup) 0.52 0.43 0.52 1.25 0.93 1.09

O-LSTM (sup) 0.35 0.22 0.28 0.90 0.46 0.58

S-LSTM (sup) 0.27 0.22 0.25 0.77 0.48 0.50

on 2 scenes and test on the remaining one. We follow settings from prior works
to observe the trajectory for 8 timesteps (3.2s) and predict the trajectory of 12
timesteps (4.8s). We use our extracted trajectories in the training process and
test with the ground truth. The results of trajectory prediction are shown in
Table. 2. The performance on Univ is worse than the other two scenes because
it is more complex with a crowd of moving objects. We also display the perfor-
mances of LSTM, O-LSTM, and S-LSTM with supervision. We can see that the
supervised method performs better than our unsupervised methods. It is mainly
because our extracted trajectories are not smooth (Fig. 5) as the ground truth
and sometimes we have bad cases (Fig. 2 in supplementary material). However,
for our unsupervised method without any label, the ADE is about half meter
and FDE is about one meter, it still has good practical significance.

Visualization for trajectory prediction. In Fig. 5, We show several exam-
ples to display the ground-truth trajectory, our extracted trajectory, and our
predicted trajectory. From the visualization, we can find that the extracted tra-
jectories mainly focus on the centers of moving objects, which demonstrates
that our generated instance points can capture the main dynamic information
of moving objects. After training on extracted trajectories, our trajectory pre-
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dictor can also work on true trajectories, which also illustrates the usefulness of
our extracted trajectories in an unsupervised manner.
Semi-supervised training for trajectory prediction. To show the capa-
bility of our extracted trajectories in improving current supervised prediction
models, we conduct semi-supervised experiments. We first use the ground truth
data of Zara1 to train the model. Then we use extracted trajectories from other
datasets as extra data to further train the model. Table 3 shows the results of
testing on Zara2. We can see that adding more our extracted trajectories in the
training process will make the prediction results more accurate. It illustrates our
method is feasible in using large-scale raw videos to improve current models.

Table 3. Results of Semi-supervised training

Dataset Zara1 +Univ(Gen) +Univ(Gen)+Zara2(Gen)

Method LSTM S-LSTM LSTM S-LSTM LSTM S-LSTM

ADE 0.598 0.347 0.578 0.341 0.521 0.320

FDE 1.25 0.69 1.157 0.687 1.094 0.659

4.4 Ablation Study

In this section, we perform several ablation studies to investigate the effectiveness
of different components of the proposed approach. We train the dynamic-point
modeling part with all five scenes and test the performance on Zara1 and Zara2.
Components of Clustering. For the dynamic-to-instance aggregation part,
we use two types of dynamic information as the features, i.e. gaussian heatmaps
and optical flow. From Table 4, it can be found after removing the dynamic
points and optical flow, the performance of instance points is about 20% worse.
Additionally, the model without dynamic points performs worse than the model
without optical flow, which also demonstrates that dynamic points play a more
important role in the instance-point extraction.
Forward vs. Backward Extractors. In the dynamic-point modeling part, we
apply a forward-backward cycle extractor to keep the dynamic points consistent
in cycle timesteps. We try to remove one of them to perform the ablation study.
From Table 4, it can be observed that removing the forward extractor or remov-
ing the backward extractor will decrease the performance. Both forward and
backward extractors are important ingredients in the instance-point extraction.
Consistency Loss. Moreover, we remove the consistency loss between the for-
ward and backward extractors to check the effect. The results in Table 4 show
that the consistency loss further boosts the forward-backward extractors (about
3%-4%) during the instance-point extraction.
Scalability. To verify the scalability of the proposed dynamic-point modeling,
we compare the model trained with all five scenes to the model trained with only
two scenes (Zara1 and Zara2). The results in Table 4 show that more video data
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improves the performance. It also demonstrates that our methods keep good
scalability and take full advantage of large-scale video data.

Table 4. Ablation studies for instance-point extraction. We make several variants to
investigate the effectiveness of different components

Metric Ins-Precision Ins-Recall

Dataset Zara1 Zara2 Zara1 Zara2

Ours w/o Dynamic-Point 38.3% 39.8% 44.1% 48.2%

Ours w/o Optical Flow 40.7% 43.4% 49.9% 53.1%

Ours w/o Forward Extractor 46.8% 50.1% 54.4% 59.8%

Ours w/o Backward Extractor 52.1% 56.8% 57.8% 62.2%

Ours w/o Consistency Loss 56.2% 58.0% 59.1% 60.4%

Ours w/ only-two-scenes 52.3% 53.9% 58.1% 61.6%

Ours 58.7% 60.3% 63.1% 67.9%

4.5 Limitations and Future Work

Although the proposed method works in an unsupervised manner, there also
exist some limitations. 1) The whole framework is not end-to-end. We train
these learnable components one by one. 2) There are some hyper-parameters,
which need fine-tuning when training with different datasets. 3) Since there
is no target category, our method might focus on the dynamic part of non-
target category, such as a car in the pedestrian trajectory dataset. We visualize
some badcases in the supplementary materials. In the future work, we aim to
incorporate the category-aware memory and template into the dynamic modeling
to further distinguish different categories. And we will also explore dynamic
point-based approach on drivers’ view videos.

5 Conclusion

In this paper, we propose a complete pipeline for label-free trajectory extraction
and prediction. To our knowledge, this is the first time unsupervised trajectory
extraction and prediction have been explored. We make full use of the spatial
consistency by image reconstruction and the temporal dynamic consistency by
sequential frames to capture moving regions in videos through dynamic points.
To extract trajectories at the instance-level, we also propose a novel aggregation
approach to cluster dynamic points to instance points by compensating with
optical flow. Without any supervision, our method uses raw videos to extract
trajectories and train trajectory prediction networks. The experiments show the
effectiveness and scalability of our approach.
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