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Abstract. In this supplementary file, we first present our analysis on re-
touching operations (White-balancing, Saturation controlling, and Tone
mapping). Then, we conduct some experiments to support our analysis in
Section 2. Besides, we provide more visual results of our proposed CSR-
Net and other state-of-the-art methods. For ablation study, we explore
the condition network with different hyper-parameters. Finally, we show
more results on smooth transition between multiple styles and strength
control for image retouching.

1 Analysis on Retouching Operations

In the main paper, we investigate two retouching operations (global brightness
change and contrast adjustment) and formulate them into the representaion of
MLPs. In this section, we analyze more operations, including white-balancing,
saturation controlling and tone-mapping.
White-balancing. In [1,3], the operation for white-balancing is described as
follows:

I
′

R = αR ∗ IR
I

′

G = αG ∗ IG
I

′

B = αB ∗ IB

(1)

where αR, αG, αB are the adjustment scalars for each color channel. The above
operation can be represented as an MLP used on singal pixel. Note that the
following derivation applies to three channels for each pixel location, therefore,
there are totally 3MN input units.

Y = f(WTX + b) (2)

? The first two authors are co-first authors. † Corresponding author
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Fig. 1: Illustration of the equivalent MLPs for the corresponding retouching op-
erations. Commonly-used retouching operations can be regarded as classic MLPs
used on input image. Moreover, operations like white-balancing (a), saturation
controlling (b) and tone-mapping (c), can further regarded as MLPs used on
individual pixels, since these operations are pixel-independent and only contain
inner-pixel connections. However, operations like contrast adjustment require
global information and contain cross-pixel connections (d). The condition net-
work can collaborate with the base network, providing global features and facil-
itating cross-pixel connections. For simplicity, the illustrations for tone-mapping
and contrast adjustment only show the case of single channel.

where X ∈ R3MN is the vector flattened from the input image, W ∈ R3MN×3MN

and b ∈ R3MN are weights and biases, and f(.) is the activation function. Let
w = diag{αR, αG, αB} ∈ R3×3.

When W = diag{w,w, . . . , w} =

w · · · 0
...

. . .
...

0 · · · Aw

 ∈ R3MN×3MN , b = 0 and

f(x) = x, the above MLP (2) is equivalent to the white-balancing operation (1),
as shown in Figure 1(a).
Saturation controlling. Saturation describes the purity of the color. In [3],
the operation for controlling saturation is as follows:

I
′
(x, y) = αI(x, y) + (1− α)IRGB(x, y) (3)

where IRGB(x, y) = 1
3 [IR(x, y)+IG(x, y)+IB(x, y)] is the cross-channel average

of the pixel on location (x, y), and IR, IG, IB represent the RGB channels,
respectively. The saturation adjustments operation above can be modeled in an
MLP with 3MN , 4MN and 3MN units in each layer. There are three channels
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(RGB) for each pixel location, thus, there are totally 3MN input units.

Y = f1(WT
1 X + b1)

Z = f2(WT
2 Y + b2)

(4)

where X ∈ R3MN is the input vector, W1 ∈ R3MN×4MN , W2 ∈ R4MN×3MN are
the weight matrices, b1 ∈ R4MN , b2 ∈ R3MN are the bias vectors, and f1(.), f2(.)

are the activation functions. Let w1 =

1 0 0 1/3
0 1 0 1/3
0 0 1 1/3

, w2 =


α 0 0
0 α 0
0 0 α

1− α 1− α 1− α

.

When W1 = diag{w1, w1, . . . , w1} =

w1 · · · 0
...

. . .
...

0 · · · w1

 ∈ R3MN×4MN ,

W2 = diag{w2, w2, . . . , w2} =

w2 · · · 0
...

. . .
...

0 · · · w2

 ∈ R4MN×3MN , b1 = b2 = 0 and

f1(x) = f2(x) = x, the MLP (4) is equivalent to formula (3). (see Figure 1(b))
Color curve adjustment/Tone mapping. Color curve is a channel-independent
monotonic and piecewise-linear mapping function (Figure 1(c) Left). Suppose the
curve is uniformly divided into L pieces and the curve can be represented by the
end points on the it: {( iL , Ti) | i = 0, 1, . . . , L}, as shown in Figure xxx. The
height of each piece is ti = Ti+1 − Ti, i = 0, 1, . . . , L− 1, T0 = 0. Then, an input
pixel I(x, y) ∈ [0, 1] is mapped to

f(I(x, y)) =

L−1∑
i=0

clip(L ∗ I(x, y)− i, 0, 1)ti (5)

Above mapping is channel-independent and the operation is equivalent to an
MLP. For simplicity we only consider the case of a single channel. We construct
a three-layer MLP, in which the first, second and third layer contains M × N ,
L×M ×N and M ×N units, respectively.

Y = f1(WT
1 X + b1)

Z = f2(WT
2 Y + b2)

(6)

where X ∈ RMN is the input vector, W1 ∈ RMN×LMN , W2 ∈ RLMN×MN are
weight matrices, b1 ∈ RLMN , b2 ∈ RMN are bias vectors, and f1(.), f2(.) are the
activation functions. Let Eij be the basic matrix with only a one on the position

(i, j) and zeros elsewhere. For example, if E ∈ R2×3 then E12 =

[
0 1 0
0 0 0

]
. Let

w1,i, E ∈ RMN×L and w1,i = Lti(Ei1 + Ei2 + · · · + EiL), for i = 1, 2, . . . ,MN .
Let w2,i, E ∈ RL×MN and w2,i = E1i + E2i + · · · + ELi, for i = 1, 2, . . . ,MN .
Let B = [0,−t1, . . . ,−iti, . . . ,−(L− 1)tL−1]T .
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When W1 =
[
w1,1, w1,2, · · · , w1,MN

]
, b1 =

[
B, B, · · · , B

]T
which contains

L stacked vector B,W2 =
[
w2,1, w2,2, · · · , w2,MN

]T
, b2 = 0, f1(x) = clip(x, 0, 1)

and f2(x) = x, the above MLP (6) is equivalent to the tone mapping formula
(5). Given an example, for M = N = 2 and L = 2, there should be W1 =


Lt0 Lt1 0 0 0 0 0 0
0 0 Lt0 Lt1 0 0 0 0
0 0 0 0 Lt0 Lt1 0 0
0 0 0 0 0 0 Lt0 Lt1

, W2 =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


, b1 =



0
−t1
0
−t1
0
−t1
0
−t1


, b2 = 0.

Discussions. So far, we have shown that most commonly-used retouching
operations can be formulated as classic MLPs used on the input image. These
operations are pixel-independent or location-independent; that is to say, the
manipulation on one pixel is uncorrelated with neighboring pixels or pixels on
specific positions. Further, operations like brightness change, white-balancing,
saturation controlling, tone-mapping, can be also viewed as MLPs used on a
single pixel, which is similar with the MLPconv proposed in [2]. Enlightened
by this discovery, the base network in the proposed method is designed as a fully
convolutional network with all the filter size of 1 × 1, which acts like an MLP
worked on individual pixels and slides over the input image. Some operations,
like contrast adjustment, may require global information that relates to all pixels
in the image (e.g., image mean value). Such global information can be provided
by the condition network in our method.

2 Demonstration Experiments on The Proposed Method

To support the analysis above, we use the proposed network to simulate the
procedures of several retouching operations, including global brightness change,
tone-mapping and contrast adjustment. Specifically, we adopt images retouched
by expert C as inputs and apply retouching operations with specified adjustment
coefficients on the inputs as supervision labels. Then we utilize the base network
and the proposed CSRNet to learn such mappings.

Theoretically, the base network can perfectly handle operations like global
brightness change and tone-mapping, because these pixel-independent opera-
tions are equivalent to MLPs used on individual pixels. For contrast adjustmen-
t, only the base network should not be enough, since it cannot extract global
information like image mean value.

The results are shown in Table 1. As expected, the base network can suc-
cessfully deal with the pixel-independent operations 4. Nevertheless, we observe
that a sole base network is unable to handle contrast adjustment, which requires

4 Images are basically the same when PSNR > 50dB.
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Table 1: Demonstration experiment on simulating retouching operations. Our
method can successfully handle commonly-used retouching opereations, which
is consistent with the theoretical analysis.

Operations
original

(Input-GT)
base

netwok
condition
netwok

PSNR

brightness
(α = 1.5)

X × × 14.7413
× X × 69.7061

brightness
(α = 0.5)

X × × 12.8460
× X × 69.0525

tone-mapping*

(L = 4)

X × × 21.7580
× X × 56.1175

contrast
(α = 1.5)

X × × 21.3584
× X × 28.6734
× X X 60.5206

* The parameters for tone-mapping are set to ti =
[3/8, 2/8, 1/8, 2/8].

global information. We can solve this problem by introducing the condition net-
work. As we can see, the PSNR rises from 28dB to 60dB, demonstrating the
effectiveness of the proposed method.

3 Visual comparison

In visual comparison, we observe that the results obtained by Pix2Pix are quite
noisy. However, it might not be obvious when the images are downsized. Here,
we specially provide some Pix2Pix examples for better visualization in Figure 2.

Besides, we provide more visual results of our proposed methods and other
state-of-the-art methods in Figrue 3, 4 and some failure cases in Figure 5.

4 Ablation study

Condition network. The condition network aims to estimate a condition vector
that represents global information of the input image. Here, we explore the
condition network with different hyper-parameters. Specifically, we change the
number of layers or increase the channel size in each convolutional layer. First,
we fix the number of layers to 3 and change the channel size to 64 and 128.
From Table 2, we can observe that larger channel size leads to higher PSNR but
require much more parameters. Then, we change the number of layers by adding
convolutional layers with kernel size 3 × 3 and stride 1 or remove the existing
layers. However, there is no improvement with more layers in the condition
network. Therefore, the extraction of global features are already well achieved
by a shallow network.
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Table 2: Results of ablation study for the condition network.

layers channel PSNR params

3 32 23.69 36,489 (ours)
3 64 23.73 104,969
3 128 23.81 352,521

2 32 23.48 27,241
3 32 23.69 36,489 (ours)
5 32 23.65 54,985
7 32 23.62 73,481
5 64 23.67 178,825

5 Multiple Styles and Strength Control

In this section, we present more results about smooth transition between multiple
styles (see Figure 6) and strength control (see Figure 7) on image retouching
achieved by image interpolation.
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Pix2Pix Ours

Pix2Pix Ours

Pix2Pix Ours

Fig. 2: Artifacts in Pix2Pix.
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input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

Fig. 3: Visual comparision with state-of-the-arts (a).
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input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

Fig. 4: Visual comparision with state-of-the-arts (b).
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input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

input Distort-and-recover White-box DPE

Pix2Pix HDRNet Ours GT

Fig. 5: Failure cases. For the first input, our method outputs a pink sky, which
is supposed to be white. For the second input, our method is unable to change
the original green tone.
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expert A α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert B

expert A α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert C

expert A α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert D

expert A α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert E

Fig. 6: Image interpolation between different styles.

input α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert A

input α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert B

input α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert C

input α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert D

input α = 0.0 α = 0.3 α = 0.5 α = 0.8 α = 1.0 expert E

Fig. 7: Image interpolation for strength control.
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