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Supplementary Materials

1 Network Architectures

The architectures of the encoders with respect to different size of images are
described in Table 1, Table 2 and Table 3. The ResBlocks used in the encoders
are presented in Fig. 1. Table 4 and Table 5 show the architecture of the critic
and the discriminator, respectively. The critic and the discriminator both consist
of three fully-connected layers. The discriminator shares some layers with the
encoder to reduce computations, i.e., the input X in Table 5 is a flatten vector
created by the encoder. For the encoder in Table 1, X is the output of the
last convolutional layer, while for the encoders in Table 2 and Table 3, X is
the output of the second last ResBlock. The slopes of lReLU functions for all
architectures are set to 0.2.

2 Data Augmentation

The data augmentation adopted in DCCS includes four commonly used ap-
proaches:

(1) Random cropping: randomly crop a rectangular region whose aspect ratio
and area are randomly sampled in the range of [3/4, 4/3] and [40%, 100%],
respectively, and then resize the cropped region to the original image size.

(2) Random horizontal flipping: flip the image horizontally with 50% probability.
(3) Color jittering: scale brightness, contrast and saturation with coefficients

uniformly drawn from [0.6, 1.4], while scale hue with coefficients uniformly
drawn from [0.875, 1.125].

(4) Channel shuffling: randomly shuffle the RGB channels of the image.

Random cropping and color jittering are employed for all datasets. Following [5],
random horizontal flipping is used for all datasets except MNIST due to the
direction sensitive nature of the digits. Channel shuffling is applied to color
images before graying. Note that channel shuffling can also change the brightness
of the grayscale images because the RGB channels are summed with different
weights for graying.

3 βAug Configuration

As previously stated, a small βAug cannot disentangle the style information well,
while a large βAug may lead the clusters to overlap by generating high confidence
of the overlapping part of two clusters. Therefore, we propose an applicable way
for βAug configuration by visualizing the t-SNE figure of the latent representa-
tion. As shown in Fig. 2a and Fig. 2c, with βAug being set to 2 for Fashion-
MNIST and 4 for CIFAR-10, the clusters are well separated. However, the clus-
ters start to overlap after increasing βAug to 3 for Fashion-MNIST (Fig. 2b) or 5



2

Table 1: The encoder architecture for MNIST and Fashion-MNIST, similarly as
the architecture used in [9]

Input X ∈ R28×28

4× 4, stride=2 conv, BN 64 lReLU

4× 4, stride=2 conv, BN 128 lReLU

Dense, BN 1024 lReLU

Dense softmax for Zc

Dense linear for Zs

Table 2: The encoder architecture for
CIFAR-10, similarly as the architec-
ture used in [2] with images converted
to grayscale

Input X ∈ R32×32

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 512

BN, ReLU, global average pooling

Dense softmax for Zc

Dense linear for Zs

Table 3: The encoder architecture for
STL-10 and ImageNet-10, similarly as
the architecture used in [2] with im-
ages converted to grayscale

Input X ∈ R96×96

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 512

BN, ReLU, global average pooling

Dense softmax for Zc

Dense linear for Zs
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Fig. 1: ResBlock architecture. The kernel size of the convolutional layer is 3× 3.
2×2 average pooling is employed for downsampling after the second convolution,
while the nearest-neighbor upsampling is applied for upsampling before the first
convolution

for CIFAR-10 (Fig. 2d). Experiments show that using the biggest βAug without
overlapping clusters in the t-SNE visualization can always yield decent clustering
performance.
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Table 4: The critic architecture

Input Z = (Zc, Zs)

Dense, 1024 lReLU

Dense, 512 lReLU

Dense, 1 linear

Table 5: The discriminator architecture

Input (X,Z)

Dense, 1024 lReLU

Dense, 512 lReLU

Dense, 1 sigmoid

(a) (b) (c) (d)

Fig. 2: The t-SNE visualizations of the latent representations, including Fashion-
MNIST with βAug = 2 (a), Fashion-MNIST with βAug = 3 (b), CIFAR-10 with
βAug = 4 (c) and CIFAR-10 with βAug = 5 (d). Note that the visualization is
completely based on the latent representation without any usage of the ground
truth label

4 Discriminator vs. Decoder

The proposed DCCS adopts a discriminator to maximize the mutual informa-
tion I(X,Z) between the input image X and its latent representation Z to avoid
learning arbitrary representations. Autoencoder is another popular approach to
embed the image information into the latent representation. The discriminator
in the proposed framework could be replaced by a decoder with the mutual infor-
mation loss being replaced by the reconstruction loss. The performance of these
two approaches is compared in Table 6. The decoder architectures for Fashion-
MNIST and CIFAR-10 are described in Table 7 and Table 8, respectively. The
weight of the reconstruction loss is set to 5 for its best performance. The results
show that the reconstruction strategy delivers inferior performance, suggesting
that the representations learned by the decoder based DCCS may contain gen-
erative information which is irrelevant for clustering.

Table 6: Comparison of different ways to avoid learning arbitrary representations

Method
Fashion-MNIST CIFAR-10

ACC NMI ARI ACC NMI ARI

Discriminator 0.756 0.704 0.623 0.656 0.569 0.469

Decoder 0.732 0.703 0.611 0.651 0.565 0.464
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Table 7: The decoder architecture for
Fashion-MNIST, similarly as the ar-
chitecture used in [9]

Input Z = (Zc, Zs)

Dense, BN 1024 lReLU

Dense, BN 7× 7× 128 lReLU

4× 4, stride=2 deconv, BN 64 lReLU

4× 4, stride=2 deconv, BN 1 tanh

Table 8: The decoder architecture for
CIFAR-10, similarly as the architec-
ture used in [2] with images converted
to grayscale

Input Z = (Zc, Zs)

Dense, 4× 4× 512

ResBlock up 512

ResBlock up 256

ResBlock up 128

BN, ReLU, 3× 3 conv, 1 tanh

Table 9: The impact of different pre-
processing for Fashion-MNIST

Preprocessing ACC NMI ARI

None 0.756 0.704 0.623

Sobel filtering 0.758 0.706 0.625

Table 10: The impact of different pre-
processing for CIFAR-10

Preprocessing ACC NMI ARI

None 0.635 0.544 0.448

Grayscale 0.656 0.569 0.469

Sobel filtering 0.652 0.564 0.464

5 Impact of the Image Preprocessing

For preprocessing, we only convert the color images to grayscale, while IIC [5]
further applies Sobel filtering to extract gradient information. Table 9 and Ta-
ble 10 compare the clustering performance with different preprocessing strategies
on Fashion-MNIST and CIFAR-10, respectively. When performing Sobel filter-
ing, a convolutional layer with the Sobel kernel is added before the encoder.
For Fashion-MNIST, using Sobel filtering achieves slightly better performance.
For CIFAR-10, grayscale without Sobel filtering has the best performance, while
clustering on the color images yields the worst performance, indicating that the
color information may be trivial for clustering on CIFAR-10.

6 Results on STL-10 with Pretrained Model

Several methods use ResNet-50 [3] pretrained with ImageNet [1] to extract fea-
tures for clustering. For a fair comparison with these methods, we replace the
encoder of DCCS with the same network, i.e., a pretrained ResNet-50 followed
by three fully-connected layers with 500, 500, 2000 units, respectively. Batch
normalization and ReLU activation function are applied on each fully-connected
layer. The parameters of the ResNet-50 are fixed during optimization the same as
in previous studies. We use RGB images as inputs and resize them to 224 × 224
pixels. The input X of the discriminator in Table 5 is the average pooled vector
of the last residual block of ResNet-50. As shown in Table 11, DCCS outperforms
other state-of-the-art methods, e.g. 1.43% accuracy higher than IMSAT [4]. The
NMI and ARI metrics of DCCS are 0.9030 and 0.9051, respectively.
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Table 11: Comparison of the clustering accuracy with other state-of-the-art
methods on STL-10 (without the unlablled subset, using ResNet-50 [3] pre-
trained with ImageNet [1]). The best two results are highlighted in bold

Method ACC (%)

AE+GMM [11] 79.83

DEC [10] 80.64

VaDE [6] 84.45

RIM [7] 92.50

IMSAT [4] 94.10

LTVAE [8] 90.00

DGG [11] 90.59

DCCS (Proposed) 95.53
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