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Abstract. Motion representation is key to many computer vision prob-
lems but has never been well studied in the literature. Existing works
usually rely on the optical flow estimation to assist other tasks such as
action recognition, frame prediction, video segmentation, etc. In this pa-
per, we leverage the massive unlabeled video data to learn an accurate
explicit motion representation that aligns well with the semantic dis-
tribution of the moving objects. Our method subsumes a coarse-to-fine
paradigm, which first decodes the low-resolution motion maps from the
rich spatial-temporal features of the video, then adaptively upsamples
the low-resolution maps to the full-resolution by considering the semantic
cues. To achieve this, we propose a novel context guided motion upsam-
pling layer that leverages the spatial context of video objects to learn the
upsampling parameters in an efficient way. We prove the effectiveness of
our proposed motion representation method on downstream video under-
standing tasks, e.g., action recognition task. Experimental results show
that our method performs favorably against state-of-the-art methods.

Keywords: motion representation · self-supervised learning · action recog-
nition

1 Introduction

Motion serves as an essential part of video semantic information, and has led
to great breakthroughs in numerous tasks such as action recognition [17,21,63],
video prediction [33, 46], video segmentation [67, 72], to name a few. Existing
literature typically represents motions in the form of 2-dimensional optical flow
vectors. However, optical flow estimation algorithms usually suffer from expen-
sive computational cost or inaccurate estimates [15, 24]. More seriously, recent
deep learning based approaches rely on human-labeled ground-truths that are
labor-consuming [4], or computer-generated synthetic samples [24,25] that may
cause domain gap with natural realistic scenes. Therefore, there exists an urgent
demand for unsupervised learning of motion representations.
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(a) Frame t (b) Frame t + 1 (c) GT Motion (d) Possible Motion

Fig. 1: Schematic diagram of motion. The circle and the triangle shapes
represent two different semantic groups, while the pixels of different brightness
are marked with different colors. (a) and (b) are two consecutive frames. (c)
is the ground-truth motion along the time step. (d) is one possible but wrong
solution by only considering the brightness consistency rule.

Amounts of tasks rely on accurate motion representations. Action recogni-
tion methods [8, 21, 50, 55, 60] usually take motion modalities, e.g., optical flow
stream as the additional input besides RGB frames to further improve the per-
formance. Many works in video generation [2, 32, 34, 35, 46, 48] learn to predict
the motions of the objects in the frame as an intermediate step. Video segmen-
tation works [10, 39, 67, 72] highly depend on accurate motion information to
find prominent objects from frames. However, there are few works focusing on
the learning of motion representation. Sun et al. [54] proposed a motion repre-
sentation in feature space and shared a similar formula definition with optical
flow. However, the training of their networks involves large-scale category labeled
video datasets. Choutas et al. [11] proposed the PoTion method that aggregates
human joints’ heatmap in each frame to the pose motion representation, which
is limited to the category of human motions.

Motivation: The basic self-supervised paradigm of learning motion representa-
tion is (1) first predicting a per-pixel transformation from a pair of consecutive
frames and (2) then minimizing the photometric loss, e.g., `1 loss between the
transformed second frame and the ground-truth. So, what’s the main obstacle
for learning the accurate motion representation beneficial to down-stream tasks?
We argue that the current works ignore the correlation between the
local motion and the high-level semantic constraints. As shown in Fig. 1,
by only considering the brightness consistency rule, one possible motion solution
is (d), which is less semantic and is harmful to downstream tasks.

To tackle the above mentioned problem, we propose a coarse-to-fine mo-
tion network to extract motion maps of both high accuracy and semantics from
the input video in a self-supervised manner. In the coarse stage, the network
decodes the low-resolution motion maps from the video features. In the re-
fined stage, the network upsamples the motion maps from the previous stage
to high-resolution. Moreover, to make the upsampling operation learnable, the
motion maps are interpolated by our proposed Context Guided Motion Upsam-
pling Layer (CGMUL) instead of the traditional bilinear upsampling. CGMUL
is carefully designed to exploit the local motion-semantics correlation in feature
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space for producing the full-scale motion features and aggregate the features into
high-resolution motion maps in an efficient way.

To fully utilize the long-term temporal semantics in videos, our method takes
video clips instead of frame pairs as input and adopt the off-the-shelf 3D CNNs,
e.g., C3D [56], 3DResNet [21] or SlowFast Network [17] as the video feature
extractor. This reduces the semantic gap between our learned motion represen-
tations and other video understanding tasks based on these 3D CNNs. Addi-
tionally, our learning process can regularize the backbone 3D CNNs without
increasing the computation cost at inference time in two ways, (1) improving
the performances of other tasks in a multi-task fashion and (2) serving as a
pre-training method for the backbone network.

Our contributions are summarized from the following aspects:
First, we further restrict the search space of self-supervised motion represen-

tation learning by leveraging the motion-semantics correlations in local regions.
The resulting representations are accurate, of high semantics and beneficial to
downstream video understanding tasks.

Second, we propose a Context Guided Motion Upsampling Layer (CGMUL)
to learn the motion map upsampling parameters by exploiting the correlation
between the semantic features of spatial contexts and local motions.

Third, we show that our method reaches a new state-of-the-art performance
on action recognition task. Moreover, the motion representation ability of our
method is competitive to other recent optical flow methods, e.g., FlowNet2.0 [24].

2 Related Work

Motion Representation Learning. The most common motion representation
is optical flow. Numerous works [24,25] attempt to produce flow map from cou-
pled frames by CNN in an efficient way. However, most of their training datasets
are synthetic and thus they perform poorly on real word scenes. Recently, other
motion representations have been proposed. TSN [63] leverages the RGB differ-
ence between consecutive frames. OFF [54] proposes an optical flow alike motion
representation in feature space. PoTion [11] temporally aggregates the human
joints’ heatmap in each frame to a clip-level representation with fixed dimen-
sion. In contrast, our method is self-supervised and learns more general motion
representations for both articulated objects and dynamic textures.
Dynamic Filter Networks. DFN [3] first proposes to generate the variable
filters dynamically conditioned on the input data. DCN [12] can also produce
position-specific filters. PAC [52] proposes a pixel-adaptive convolution oper-
ation, in which the convolution filter’s weights are multiplied with a spatially
varying kernel. Unlike them, we produce the dynamic motion filters directly from
the video features for individual spatial position.
Video Prediction. Video prediction relies on the motion cues in feature space
or primal space to synthesize the future frame from past frames. BeyondMSE [36]
adopts a cGAN model to make use of temporal motion information in videos im-
plicitly. Recent works take advantage of motion cues embodied in videos by flow
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consistency [33, 42], the retrospective cycle nature of video [29], the static and
dynamic structure variation [70], etc. However, their motion generators usually
adopt the frame-level spatial feature extractor. Some works such as SDC [46]
rely on optical flow map and dynamic kernel simultaneously to synthesize the
future frames. In comparison, our method makes use of the rich spatial-temporal
features from long-term videos without leveraging optical flow maps.
Action Recognition. Recently, convolutional networks are widely adopted in
many works [19,50,56,62] and have achieved great performance. Typically, two-
stream networks [19, 50, 62] learn motion features based on extra optical flow
stream separately. C3D network [56] adopts 3D convolution layers to directly
capture both appearance and motion features from raw frames volume. Re-
cent deep 3D CNN based networks [8, 17, 21] such as 3D-RestNet [21] have
been trained successfully with the promising results upon the large scale video
datasets. Our work is built upon the 3D CNNs and surpass their performance.

3 Proposed Method

In this section, we first provide an overview of our motion representation al-
gorithm. We then introduce the proposed context guided motion upsampling
layer, which plays a critical role in learning the accurate full-resolution motion
maps. Finally, we demonstrate the design of all the sub-modules and clarify the
implementation details of the proposed model.

3.1 Overview

Different from the previous motion representation methods that only take two
consecutive frames as input, we feed a video clip consisting of T frames into the
network to craft T motion maps simultaneously, where the first T − 1 motion
maps reflect the motion representations between every consecutive frame pair,
while the last one is a prediction of the possible motion w.r.t. the next unknown
future frame. Our method shares the video’s spatial-temporal features with other
tasks, e.g., action recognition and benefits them in a multi-task paradigm. More-
over, the learned motion maps can serve as another input modality to further
improve the performances of these downstream tasks.

3.2 Context Guided Motion Upsampling Layer

Motion Map: We first give a principled definition to the motion map in our
method. Given input video X ∈ Rt×w×h×c, the motion maps are composed of
a series of local filters of size k × k, each of which models the localized mo-
tion cues around the center pixel, where t, w, h, c and k denote video temporal
length, video frame width, video frame height, the number of video frame chan-
nels and the constant parameter indicating the maximum displacement between
consecutive frames. Let us denote the motion map by Mt ∈ Rk×k×w×h, which
describes the motions between Xt and Xt+1. These three tensors are related by
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Fig. 2: Context Guided Motion Upsampling Layer. The layer exploits the cor-
relation between the contextual features and the motion features to estimate
the higher resolution motion maps. “x” and “Concat” denote the channel-wise
multiplication and concatenation operations respectively.

the pixel-adaptive convolution [52] operation, which can be precisely formulated
as:

X̃t+1,x,y,ci =

r∑
m=−r

r∑
n=−r

Mt (m+ r, n+ r, x, y)×Xt,ci (x−m, y − n) . (1)

where r = k−1
2 , ci denotes the color channel. Each filter of the motion map is

adaptive to a single pixel of Xt while shared across the color channels. Compared
to optical flow, this definition can represent the motions in sub-pixel level and
synthesize novel pixel values to address subtle brightness changes of the moving
pixels, which is common in natural scenes.
Learn to Upsample Motion Maps: To learn the non-linear interpolating
parameters for upsampling the motion map, we propose the Context Guided
Motion Upsampling Layer (CGMUL) to estimate the high-resolution (HR) mo-
tion maps from the low-resolution (LR) motion maps, as shown in Fig. 2. The
estimation process is guided by the semantic context in the local regions.

Precisely, we denote the contextual feature, the LR motion map, and the mo-

tion feature as Fcontext ∈ RC×ŵ×ĥ, MLR ∈ Rk×k×ŵ×ĥ and Fmotion ∈ RC×ŵ×ĥ,
where ŵ = w

r , ĥ = h
r and r is the upsampling scale.

We first compute the correlational similarity map S ∈ Rŵ×ĥ conditioned by
MLR between Fcontext and Fmotion:

S(x, y) =

C∑
c=0

r∑
m=−r

r∑
n=−r

(MLR(m+ r, n+ r, x, y)×

Fmotion(c, x, y)× Fcontext(c, x−m, y − n))× 1

C
,

(2)

where r = k−1
2 and 1

C are used for normalization. The similarity describes the
relationship between three inputs explicitly.
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Recent studies [31] proposed to enhance the feature’s discrimination by dot-
producting the channel-wise pooling features. By analogy, Eq. 2 can be viewed
as the soft fusion of the channel-wise pooling features derived from Fcontext and
Fmotion. Thus, we produce the enhanced features in the following way:

F ′context(c) = S · Fcontext(c),

F ′motion(c) = S · Fmotion(c),
(3)

The final context guided motion feature is the concatenation of the features
above along the channel dimension, given by

F = cat(Fcontext, Fmotion, S, F
′
context, F

′
motion), (4)

We perform a learnable 3 × 3 convolution on F to produce feature maps F ′ ∈
R(r·r·k̂·k̂)×ŵ×ĥ. Finally, we utilize the periodic shuffling operator [49] on the

feature maps above to get the HR motion map MHR ∈ R(k̂·k̂)×(rŵ)×(rĥ):

MHR(c, x, y) = F ′C·r· mod (y,r)+C· mod (x,r)+c,bx/rc,by/rc. (5)

, where C = k̂ ·k̂ and c denotes the channel index. Noting that k̂ is bigger than k ,
for the motion filters in motion maps of higher resolution require wider receptive
field.

3.3 Context Guided Motion Network

As shown in Fig. 3, the proposed Context Guided Motion Network (CGM-Net)
consists of the following submodules: the video encoder, the LR motion decoder,
the context extractor, and the motion upsampler. We adopt the proposed con-
text guided motion upsampling layer to upsample the LR motion map to the
HR motion map in a learnable way. We illustrate every component in detail as
follows.
Video Encoder. This module extracts compact video features Fv from the
input video clip X, which mainly consists of a series of 3D convolution operations.
Notably, the proposed method is compatible with most recent off-the-shelf 3D
CNNs [8, 17, 56]. In our experiment, due to the space limitation, we only report
the performance when using two landmark 3D CNNs (i.e. 3D-ResNet [21] and
SlowFast network [17]) as feature extractors to derive spatial-temporal features.
LR Motion Decoder. This module reconstructs the LR motion features FLR

from video features Fv by deconvolution operations. To facilitate the network
convergence, we replace all deconvolution operations in the network with a bi-
linear upsample operation followed by a convolution operation with the kernel
size of 3 and the stride of 1 as suggested by the pervious research [71].
Context Extractor. This module extracts semantic contextual information
from each frame of the input video. We utilize the response of the conv3 x layer
from ResNet-18 [23] as the contextual features and remove the max-pooling
layer between the conv 1 and conv2 x to maintain a high spatial resolution of
the contextual features.
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Fig. 3: Architecture of the proposed context guided motion network.
CGMUL denotes the Context Guided Motion Upsampling Layer, as illustrated
in Fig. 2. Given the input video, we extract the rich spatial-temporal features
from the entire video clip, and extract a group of contextual features from every
single frame, respectively. We first decode the low-resolution motion maps from
spatial-temporal features directly following an encoder-decoder paradigm. We
then adopt the proposed CGMUL to upsample the motion maps adaptively
following the semantic guide of the contextual features. The final output high-
resolution motion map is of both high accuracy and semantics.

3.4 Enhancing Action Recognition

After obtaining the motion maps, we feed them into a light-weight action CNN to
boost the video action recognition task, because our motion maps capture more
semantics than the vanilla RGB images. Concretely, the action CNN utilizes six
convolution layers and one fully-connected layer to predict the action category of
the input video. It is worth mentioning that we can also perform classification by
adding one fully-connected layer after the backbone network directly. We fuse
the prediction scores of these two methods to boost action recognition in the
test.

3.5 Training Strategy

Self-supervised Learning When learning motion representations, CGM-Net
aims to (1) reconstruct all input frames and (2) predict the next future frame
after the input clip simultaneously. The output frames are computed as X̃t+1 =
Mt ⊗Xt as defined in Eq. 1, where Mt is the predicted motion maps. We train
the network by optimizing the following reconstruction loss:

LHR =

T∑
t=0

ρ
(

X̃t+1 −Xt+1

)
, (6)

where ρ(x) =
√
x2 + ε2 is the Charbonnier penalty function [9]. We set the

constant ε to 0.000001.
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Intermediate Supervision: To facilitate the optimization of the internal LR
motion maps, we also exploit the downsampled input videos as the intermediate
self-supervised supervision. The LR resconstruction loss LLR follows the same
formulation as Eq. 6.
Multi-task Loss: When learning with the full-supervised classification task, we
formulate a multi-task loss as

L = LHR + λ1LLR + λ2Lc. (7)

where Lc is the action classification loss (e.g. the cross entropy), λ1 and λ2 are
the hyper-parameters to trade-off these losses.

4 Experimental Results

We first carry out comparisons between our method and other recent methods
regarding the motion representation ability. Then, we show that our method
can facilitate the action recognition performance of the very recent 3D CNNs
to achieve the new state-of-the-arts while keeping efficient. Finally, we conduct
extensive ablation studies to verify the every aspects of the proposed method.

4.1 Comparison with other motion representation method

To solve the occlusion and color noise problems in the natural scenes, our method
synthesizes novel pixels not in the previous frame. Therefore, we compare the
motion representation errors on the natural scene dataset, i.e., the UCF101
dataset [51]. We compare our method with other methods in terms of (1) motion
estimation and (2) 1-step frame prediction.
Dataset. UCF-101 is a widely-used video benchmark including 101 human ac-
tion classes. We choose 20 videos with neat backgrounds and obvious motions,
named UCF-Flow, to compare the performance of motion estimation. We select
101 videos of different actions, named UCF-Pred, to compare the performance
of frame synthesis on the video prediction task.
Implementation details. For our method, we split the videos into clips of
16 frames and discard the too short clips. For other optical flow methods, we
compute the optical flow for every two consecutive frames. We apply the `1 error
between the warped second image and the ground-truth second image instead
of End-Point-Error (EPE) to measure the motion representation error, for our
motion map can’t be transformed to an optical flow map losslessly. All the images
are normalized to the range [−1, 1] before computing the error. In the training
process, we set the λ1 and λ2 of Eq. 7 as 1.0 and 0 (we do not leverage the video
ground-truth label in this part) respectively. We adopt Adam optimizer [26] with
a start learning rate as 0.001 and reduce the learning rate every 50 epochs.
Motion estimation results. As shown in Tab. 1 (left), our method substan-
tially outperforms the best optical-flow methods by a large margin in terms of `1
Error. The explanation for the obvious improvement upon the optical flow based
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(a) (b) (c) (d) (e) (f)

Fig. 4: The visualization of our high-resolution motion maps on UCF-Flow set.
The predominant motions are consistent with the semantics of the objects. Our
method is robust to human action and natural object’s motion. For example, in
(a) and (d), the motion of objects (i.e. spoon and human body) are predicted
accurately. In (e), our motion map shows excellent performance in the multi-
objects scenario.

Table 1: left : Comparison of motion estimation methods on UCF-Flow. The top
part shows the performance of the current best traditional optical flow estimation
methods. The middle part shows the results of the CNN based methods. right :
Comparison of video prediction methods on UCF-Pred.

Method `1 Err Train

DIS-Fast [27] 0.055 No
Deepflow [66] 0.058 No
TV-L1 [44] 0.037 No

Flownet2.0 [24] 0.057 Yes
PWC-Net [53] 0.049 Yes
TV-Net-50 [16] 0.040 Yes

Ours 0.018 Yes

Method PSNR SSIM

BeyondMSE [36] 32 0.92
ContextVP [5] 34.9 0.92

MCnet+RES [59] 31 0.91
EpicFlow [47] 31.6 0.93

DVF [35] 33.4 0.94

Ours (112px) 35.0 0.96
Ours (256px) 36.3 0.96

methods is that the environment illuminations change constantly and most ob-
jects are not rigid in natural scenes. Our motion map can synthesize new pixels
around the moving objects. To further prove our method represents the motions
precisely and robustly, we show the visualization of the motion map for diverse
human actions on UCF101 in Fig. 4.

1-Step frame prediction results. For quantitative evaluation, we utilize the
SSIM and PSNR [64] as the evaluation metrics. The higher SSIM and PSNR, the
better prediction performance. Tab. 1 (right) describes the quantitative evalua-
tion results of the state-of-the-art methods and the proposed method on UCF101.
Our method achieves the best results in terms of SSIM and PSNR. Moreover,
even with lower input resolution of 112×112, the performance of our method also
keeps stable and competitive. This demonstrates our motion representations are
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(a) MCNet [59] (b) ConvLSTM [5] (c) DVF [35] (d) Ours (e) Ground-truth

Fig. 5: Qualitative comparisons of the predicted frame on the UCF-
Pred set. Our method not only mitigates the blur artifacts around the ambi-
guity region but also reduces the distortion on the background.

learned from either spatially localized textures or global semantic information
that are not sensitive to video resolution.

Fig. 5 depicts a few results of the preceding methods, where the frames
predicted by our method obtain better perceptual quality [37, 38, 74], even our
method is not equipped with the perceptual loss. MCNet [59] and ConvLSTM [5]
cause ghosts in the regions around the blob objects, e.g., the mop head, because
they encode both the motion and content features into their models. DVF [35]
shows unexpected artifacts in background regions around the motion objects
because it doesn’t synthesize novel pixels around the motion regions. However,
the motion filters of our motion map are adaptive to the position and thus only
acts on the activities related regions in a pixel synthesis way.

4.2 Action Recognition

Datasets We evaluated our method on three large-scale general human action
and activity datasets, including Kinetics [8], UCF101 [51], and HMDB51 [28]. We
follow the original training/test splits and protocols provided by the datasets.
We report the mean average accuracy over the three splits for HMDB51 and
UCF101. For Kinetics, we report the performance on the validation set.
Kinetics. Kinetics is a challenging human action recognition dataset. We eval-
uate our method on Kinetics-400 and Kinetics-600. We report top-1 and top-5
classification accuracy (%) on Kinetics.
UCF101. UCF-101 includes 13,320 action instances from 101 human action
classes. To evaluate the action recognition performance, we first train it on the
Kinetics-400 dataset and then fine-tune on UCF101. For this dataset, we also
study the effectiveness of our method as a pre-training strategy compared with
other self-supervised pre-training methods.
HMDB51. HMDB51 includes 6,766 videos from 51 human action classes. On
this dataset, we conduct all action recognition experiments mentioned in UCF101.

Implementation Details We train the network with only motion representa-
tion branch (λ2 is set to 0) as the pre-training step on 500K unlabeled video
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Table 2: left : Comparison of self-supervised action representation methods. The
baseline methods in first group are without self-supervised pretraining. right :
Evaluation of training on different sets of Kinetics-400. ResNext-101 and STC-
ResNext101 are abbreviated as R101 and S-R101 respectively. * indicates that
the corresponding method uses extra unlabeled data.

Method UCF101 HMDB51
3D-R101 [21] 56.2 30.3
S-R101 [13] 56.7 30.8

Shuffle and learn [40] 50.9 19.8
OPN-RGB [30] 71.8 36.7

Order Prediction [69] 72.4 30.9
Odd-One-Out [20] 60.3 32.5
AOT-RGB∗ [65] 86.5 -

ActionFlowNet∗ [41] 83.9 56.4
DynamoNet(3D-R101)∗ [14] 87.3 58.6
DynamoNet(S-R101)∗ [14] 88.1 59.9

Ours(3D-R101)∗ 88.1 59.0

Method Data Top1
3D-R101 [21] half 53.9
3D-R101 [21] full 65.1
S-R101 [13] half 55.4
S-R101 [13] full 66.2

St-Net(R101) [22] half 56.7
St-Net(R101) [22] full 71.38

DynamoNet(S-R101) [14] half 63.6
DynamoNet(S-R101) [14] full 67.67

Ours(3D-R101) half 69.8
Ours(3D-R101) full 76.2

clips from YouTube8M [1] dataset. We first resize the video frames to 128px
when smaller and then randomly perform 5 crops (and flips) of size 112× 112 as
the main network input size. When using the SlowFast [17] as backbone network,
we follow the same input size as them. We adopt Adam optimizer [26] with an
initial learning rate as 0.001 and batch size of 64 to train the model. In our ex-
periments, we use the different versions of 3D-ResNet/ResNeXt as the backbone
networks. Empirically, we obtain the best results when setting the motion map
upsampling scale factor = 4, λ1 = 1 and λ2 = 10. We use the PyTorch [43]
framework for the implementation and all the experiments are conducted on
sixteen 2080 Ti NVIDIA GPUs.

Self-supervised Action Representation Since motion is an important cue
in action recognition, we argue the learned motion representation implied in the
backbone 3D CNN can be adopted as a good initial representation for the action
recognition task. Our network is firstly trained on unlabeled video clips to learn
motion representation. Then, we fine-tune the full network carefully, with all
losses in Eq. 7 activated.

In Tab. 2 (left), we observe that our method performs better in comparison to
state-of-the-art self-supervised methods [14,20,30,40,41,65,69] on UCF101 and
HMDB51. The performance gap between our method pretrained by unlabeled
data and the 3D-ResNet101 trained on Kinetics-400 (shown in Tab. 5) is largely
reduced to 0.8% on UCF101. DynamoNet with the STC-ResNeXt101 indeed
outperforms our method with 3D-ResNeXt101 by 0.9% on HMDB51 because
STC-ResNeXt101 has a stronger ability to capture spatial-temporal correlations
compared to vanilla 3D-ResNeXt101.

Tab. 2 (right) shows the self-supervised pre-training backbone network based
on our method can alleviate the need for labeled data and achieves the best
results with datasets of different sizes. Moreover, the performance of our pipeline
trained with half data is competitive with other state-of-the-art methods (e.g.,
St-Net) trained with full data.
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Table 3: Performance comparisons of our method with other state-of-the-art 3D
CNNs on Kinetics-400 dataset. Y500K indicates the subset of Youtube8M.

Method Flow Backbone Pretrain Top1 Top5
3D-ResNet18 [21] 7 7 7 54.2 78.1

C3D [56] 7 7 Sports1m 55.6 -
3D-ResNet50 [21] 7 7 7 61.3 83.1
3D-ResNet101 [21] 7 7 7 62.8 83.9

3D-ResNeXt101 [21] 7 7 7 65.1 85.7
R(2+1)D [57] 7 7 7 73.9 90.9

STC-Net [13] 7 3D-ResNeXt101 7 68.7 88.5
DynamoNet [14] 7 3D-ResNeXt101 Y500K 68.2 88.1

StNet [22] ResNet101 7 71.4 -
DynamoNet [14] 7 STC-ResNeXt101 Y500K 77.9 94.2

SlowFast 16×8 [17] 7 ResNeXt101 7 78.9 93.5
R(2+1)D Flow [58] X 7 7 67.5 87.2

I3D [8] X 7 7 71.6 90.0
R(2+1)D [58] X 7 7 73.9 90.9

Two-Stream I3D [8] X BN-Inception ImageNet 75.7 92.0
S3D-G [68] X 7 ImageNet 77.2 93.0

Ours 7 3D-ResNet50 Y500K 70.1 90.2
Ours 7 3D-ResNeXt101 Y500K 76.2 92.3
Ours 7 SlowFast16×8 Y500K 80.8 94.5

Table 4: Performance comparisons of our method with other state-of-the-art 3D
CNNs on Kinetics-600 dataset. Y500K indicates the subset of Youtube8M.

Method Backbone Pretrain Top1 Top5
P3D [45] ResNet152 ImageNet 71.3 -
I3D [7] BN-Inception 7 71.9 90.1

TSN [63] IRv2 ImageNet 76.2 -
StNet [22] IRv2 ImageNet 79.0 -

SlowFast 16×8 [17] ResNeXt101 7 81.1 95.1
Ours 3D-ResNet50 Y500K 76.2 90.7
Ours 3D-ResNeXt101 Y500K 80.2 94.0
Ours SlowFast16×8 Y500K 81.9 95.1

Comparison With the State-of-the-art Tab. 3 presents results on Kinetics-
400 for our method. With 3D-ResNeXt101 backbone, our method outperforms
DynamoNet, which also ensembles the motion representations in a self-supervised
way, with large margins: 8.0% and 4.2% improvements in terms of Top1 and
Top5 accuracies respectively. This indicates the superiority of our semantic
guided motion maps, compared with DynamoNet [14] directly adopting the spa-
tially shared motion kernel weights. Interestingly, we find that our method based
on 3D-ResNet50 outperforms the vanilla 3D-ResNet101 obviously, by 7.3% and
6.3% improvements in terms of Top1 and Top5 accuracies. As shown in Tab. 4,
our method with SlowFast backbone also achieves the best performances. We also
compare our method with the other most recent 3D CNNs taking inputs RGB
and optical flow modalities and verify that our method outperforms the best of
them by 3.6% while saving the inference cost w.r.t. the computation of optical
flow maps. Tab. 5 demonstrates the state-of-the-art performances achieved by
our method compared with the very recent methods on UCF101 and HMDB51
datasets. DynamoNet [14] outperforms our method on HMDB51 with more in-
put frames (64 vs. 32), because it has been verified [13, 14] that the number of
input frames has a strong impact on the final performance, and the more input
frames, the better performance.
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Table 5: Performance comparisons of our method with other state-of-the-art
methods on UCF101 and HMDB51. The number inside the brackets indicates
the frame number of the input clip. † and ∗ indicate the backbone network is
3D-ResNeXt101 or STC-ResNeXt101 respectively.

UCF101 HMDB51
Method Top1 Method Top1

DT+MVSM [6] 83.5 DT+MVSM [6] 55.9
iDT+FV [60] 85.9 iDT+FV [60] 57.2

C3D [56] 82.3 C3D [56] 56.8
Two Stream [50] 88.6 Two Stream [50] -
TDD+FV [61] 90.3 TDD+FV [61] 63.2

RGB+Flow-TSN [63] 94.0 RGB+Flow-TSN [63] 68.5
ST-ResNet [18] 93.5 ST-ResNet [18] 66.4

TSN [63] 94.2 TSN [63] 69.5
3D-ResNet101 [21] 88.9 3D-ResNet101 [21] 61.7

3D-ResNeXt101 [21] 90.7 3D-ResNeXt101 [21] 63.8
DynamoNet (16)† [14] 91.6 DynamoNet (16)† [14] 66.2
DynamoNet (32)† [14] 93.1 DynamoNet (32)† [14] 68.5
DynamoNet (64)∗ [14] 94.2 DynamoNet (64)∗ [14] 77.9

Ours (32)† 94.1 Ours (32)† 69.8

4.3 Ablation Study

In this part, to facilitate the training process, we adopt the 3D-ResNet18 as the
backbone network.
Learnable vs. unlearnable upsampling methods. We first emphasize the
superiority of our learnable motion upsampling method compared with the tra-
ditional methods: (1) nearest neighbour interpolation and (2) bilinear interpo-
lation. For traditional methods, we upsample each channel of the motion maps
and exaggerate each motion filter with zero holes following the similar expand-
ing method as dilation convolution kernels [73]. As shown in Tab. 6 and Tab. 7,
our method substantially outperforms the traditional baselines in both motion
representation and action recognition. The traditional motion upsampling meth-
ods result in coarse output motion maps whereas our method hallucinates the
motion details thanks to the static contexts and the motion prior learned from
massive videos. It’s also interesting to notice from Tab. 7 that the LR motion
map also benefits the action recognition task obviously by 3.8% despite the
motions in this scale are imperceptible, which indicates the advantage of our
motion representation in sub-pixel level.
Impact of different HR/LR motion map scale factors. As shown in Fig. 6
(left), the motion estimation performance decreases as the scale factor increases.
Besides, when the scale factor < 8, the performance drop is moderate. The trend
of Fig. 6 (right) is quite different. When the scale factor = 1, we got the worse
performance because the motion maps are only decoded from the video features
without considering the motion-semantics correlation. When the scale factor is
quite large, e.g., 16, the deficiency of the motion details causes the performance
drop. The scale factor of 4 produces the best performance result that surpasses
the baseline by 6.2%. Therefore, in all experiments in our paper, we select the
scale factor as 4 as a good trade-off between the accuracy and the semantics of
the motion map if not specified otherwise.
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Table 6: Comparison of different
motion map upsampling methods.

Method `1 Err
Nearest 0.042
Bilinear 0.037
Ours 0.024

Table 7: Comparison of different
motion maps for action recognition.

Method Top1
Backbone 84.4%

+LR 88.2%
+LR+HR (nearest) 88.2%
+LR+HR (bilinear) 88.2%

+LR+HR (Ours) 90.6%

Fig. 6: left : The motion representation per-
formances. Lower `1 error indicates better
motion estimation. right : The action recog-
nition performances. Higher Top1 accuracy
indicates better performance.

Table 8: Comparison of different pipelines on UCF101. † indicates the result is
averaged with the prediction of backbone CNN.

Inference pipeline Top1 Parameters GFLOPs
Baseline (3D-ResNet18) 84.4 33.2M 19.3
Baseline (3D-ResNet34) 87.7 63.5M 36.7

Backbone CNN (3D-ResNet18) 86.5 33.2M 19.3
LR (3D-ResNet18)† 88.2 45.73M 30.3
HR (3D-ResNet18)† 89.4 48.12M 155.7

LR+HR (3D-ResNet18)† 90.6 53.63M 156.01

Computation cost analysis. We list the performance and the computation
cost of each pipeline above in Tab. 8. The pipeline only adopting the features
from the 3D-ResNet18 backbone CNN outperforms the corresponding baseline
by 2.1% without any extra inference-time computation cost. When fused
with the results from the LR motion map, our method outperforms the baseline
3D-ResNet18 by 3.8%. More importantly, despite using a shallower backbone
(i.e., 3D-ResNet18), our method outperforms the stronger baseline 3D-ResNet34
by 0.5%, demonstrating the lower inference-time computation cost and the bet-
ter performance. The pipeline fusing the results from both LR and HR motion
map shows a superior performance - 90.6%.

5 Conclusion

In this paper, we propose a context guided motion network, which integrates a
novel context guided motion upsampling layer, in order to learn the semantic
motion representation in a self-supervised manner. The learned motion represen-
tation is versatile and can be applied to boost the performance of various video-
related tasks, e.g., frame prediction and video recognition. We experimentally
verified the superiority of the proposed method from various perspectives, show-
ing the state-of-the-art performances over several popular video-related tasks.
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