
Improving Monocular Depth Estimation by
Leveraging Structural Awareness and

Complementary Datasets

Tian Chen?, Shijie An?, Yuan Zhang, Chongyang Ma,
Huayan Wang, Xiaoyan Guo, and Wen Zheng

Y-tech, Kuaishou Technology

Abstract. Monocular depth estimation plays a crucial role in 3D recog-
nition and understanding. One key limitation of existing approaches lies in
their lack of structural information exploitation, which leads to inaccurate
spatial layout, discontinuous surface, and ambiguous boundaries. In this
paper, we tackle this problem in three aspects. First, to exploit the
spatial relationship of visual features, we propose a structure-aware neural
network with spatial attention blocks. These blocks guide the network
attention to global structures or local details across different feature layers.
Second, we introduce a global focal relative loss for uniform point pairs
to enhance spatial constraint in the prediction, and explicitly increase
the penalty on errors in depth-wise discontinuous regions, which helps
preserve the sharpness of estimation results. Finally, based on analysis of
failure cases for prior methods, we collect a new Hard Case (HC) Depth
dataset of challenging scenes, such as special lighting conditions, dynamic
objects, and tilted camera angles. The new dataset is leveraged by an
informed learning curriculum that mixes training examples incrementally
to handle diverse data distributions. Experimental results show that our
method outperforms state-of-the-art approaches by a large margin in
terms of both prediction accuracy on NYUDv2 dataset and generalization
performance on unseen datasets.

1 Introduction

Recovering 3D information from 2D images is one of the most fundamental tasks
in computer vision with many practical usage scenarios, such as object localization,
scene understanding, and augmented reality. Effective depth estimation for a
single image is usually desirable or even required when no additional signal
(e.g., camera motion and depth sensor) is available. However, monocular depth
estimation (MDE) is well known to be ill-posed due to the many-to-one mapping
from 3D to 2D. To address this inherent ambiguity, one possibility is to leverage
auxiliary prior information, such as texture cues, object sizes and locations, as
well as occlusive and perspective clues [40,21,27].
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(a) Dark lighting (b) Portrait (c) Spurious edges

(d) Reflecting surface (e) Sky (f) Tilted shot

Fig. 1: Six typical hard cases for existing monocular depth estimation methods.
(a), (c), and (e) show results of Alhashim et al. [1], while (b), (d), and (f) are
based on Fu et al. [11]. Red boxes highlight inaccurate regions in the results.

More recently, advances in deep convolutional neural network (CNN) have
demonstrated superior performance for MDE by capturing these priors implicitly
and learning from large-scale dataset [10,9,28,52,36,19]. CNNs often formulate
MDE as classification or regression from pixels values without explicitly account-
ing for global structure. That leads to loss of precision in many cases. To this
end, we focus on improving structure awareness in monocular depth estimation.

Specifically, we propose a new network module, named spatial attention block,
which extracts features via blending cross-channel information. We sequentially
adopt this module at different scales in the decoding stage (as shown in Fig. 2a)
to generate spatial attention maps which correspond to different levels of detail.
We also add a novel loss term, named global focal relative loss (GFRL), to ensure
sampled point pairs are ordered correctly in depth. Although existing methods
attempt to improve the visual consistency between predicted depth and the RGB
input, they typically lack the ability to boost performance in border areas, which
leads to a large portion of quantitative error and inaccurate qualitative details.
We demonstrate that simply assigning larger weights to edge areas in the loss
function can address this issue effectively.

Furthermore, MDE through CNNs usually cannot generalize well to unseen
scenarios [8]. We find six types of common failure cases as shown in Fig. 1 and
note that the primary reason for these failures is the lack of training data, even
if we train our network on five commonly used MDE datasets combined. To this
end, we collect a new dataset, named HC Depth Dataset, to better cover these
difficult cases. We also show that an incremental dataset mixing strategy inspired
by curriculum learning can improve the convergence of training when we use
data following diverse distributions.

To sum up, our main contributions include:

– A novel spatial attention block in the network architecture.

– A new loss term (GFRL) and an edge-aware consistency scheme.

– A new MDE dataset featuring hard cases that are missing or insufficient in
existing datasets, and a data mixing strategy for network training.
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2 Related Work

Monocular depth estimation. Depth estimation from 2D images is an essential
step for 3D reconstruction, recognition, and understanding. Early methods for
depth estimation are dominated by geometry-based algorithms which build
feature correspondences between input images and reconstruct 3D points via
triangulation [17,23]. Recently CNN-based approaches for pixel-wise depth
prediction [24,9,52] present promising results from a single RGB input, based on
supervision with ground-truth training data collected from depth sensors such as
LiDAR and Microsoft Kinect camera. By leveraging multi-level contextual and
structural information from neural network, depth estimation has achieved very
encouraging results [12,25,28,54]. The major limitation of this kind of methods
is that repeated pooling operations in deep feature extractors quickly decrease
the spatial resolution of feature maps. To incorporate long-range cues which are
lost in downsampling operations, a variety of approaches adopt skip connections
to fuse low-level depth maps in encoder layers with high-level ones in decoder
layers [25,11,52].

Instead of solely estimating depth, several recent multi-task techniques [9,36,19]
predict depth map together with other information from a single image. These
methods have shown that the depth, normal, and class label information can be
jointly and consistently transformed with each other in local areas. However, most
of these approaches only consider local geometric properties, while ignoring global
constraints on the spatial layout and the relationship between individual objects.
The most relevant prior methods to ours are weakly-supervised approaches which
consider global relative constraint and use pair-wise ranking information to
estimate and compare depth values [5,51,6].

Attention mechanism. Attention mechanisms has been successfully applied to
various high-level tasks, such as generative modeling, visual recognition, and
object detection [55,47,18]. In addition, attention maps are very useful in pixel-
wise tasks. NLNet [49] adopts self-attention mechanism to model the pixel-level
pairwise relationship. CCNet [20] accelerates NLNet by stacking two criss-cross
blocks, which extract contextual information of the surrounding pixels. Yin et
al. [53] leverage multi-scale structured attention model which automatically
regulates information transferred between corresponding features.

Cross-dataset knowledge transfer. A model trained on one specific dataset
generally does not perform well on others due to dataset bias [45]. For MDE,
solving different cases, e.g. indoor, outdoor, and wild scenes, usually requires
explicitly training on diverse datasets [31,6,13,29]. When training on mixed
datasets, curriculum learning [3] is needed to avoid the local minimum problem
by training the model on easier datasets first. Moreover, when the datasets
are imbalanced, resampling [15,16,35] is often performed to reshape the data
distribution.
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Fig. 2: Illustration of our network architecture and the proposed SAB.

3 Our Method

3.1 Network Architecture

We illustrate our network architecture in Fig. 2a. Based on a U-shaped network
with an encoder-decoder architecture [33], we add skip connections [48] from
encoders to decoders for multi-level feature maps. We observe that encoder
mainly extracts semantic features, while decoder pays more attention to spatial
information. A light-weight attention based global context block (GCB) [4]
(Fig. 2b) is sequentially applied to each residual block in the encoding stage to
recalibrate channel-wise features. The recalibrated vectors with global context
are then combined with high-level features as input for our spatial attention
blocks (SAB) through skip connections. Then, the recalibrated features and the
high-level features are fused to make the network focus on either the global spatial
information or the detail structure at different stages. From a spatial point of view,
the channel attention modules are applied to emphasize semantic information
globally, while the spatial attention modules focus on where to emphasize or
suppress locally. With skip connections, these two types of attention blocks build
a 3D attention map to guide feature selection. The output features of the four
upsampling blocks are upsampled by a factor of 2, 4, 8, and 16, respectively, and
then fed to the refinement module to obtain the final depth map which has the
same size as the original image. The main purpose of these multi-scale output
layers is to fuse information at multiple scales together. The low resolution output
retains information with finer global layout, while the high resolution output is
used to restore details lost after the downsampling operations.
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(a) Input (b) Output (c) S1 (d) S2 (e) S3 (f) S4

Fig. 3: Spatial attention maps at different scales visualized as heat maps overlaid
on the input image. Si is the ith attention map from the top layer in the decoder
(see Fig. 2c). Red color indicates larger value. Our network attends to different
levels of structural detail at different scales.

Spatial attention block. Different from channel-attention mechanism which selects
semantic feature in network derivation, our SAB is designed to optimize geometric
spatial layout in pixel-wise regression tasks. In SAB, we perform a squeeze
operation on concatenate features via 1 × 1 convolution to aggregate spatial
context across their channel dimensions. Then we activate local attention to
get a 2D attention map which encodes pixel-wise depth information over all
spatial locations. The low-level features are multiplied by this 2D attention map
for subsequent fusion to deliver the spatial context from a higher-level layer.
Therefore, our SAB generates attention maps with richer spatial information to
recalibrate the semantic features from GCB. The SAB shown in Fig. 2(c) can be
formulated as

Di = f
(
σ
(
W1 ∗ f(Di+1,GCBi)

)
�GCBi,Di+1

)
, (1)

where f is a fusion function (e.g. element-wise sum, element-wise dot product,
or concatenation), while ∗ denotes 1 × 1 or 3 × 3 convolution and � denotes
element-wise dot product. Since a depth maps has a wide range of positive values,
we use ReLU as the activation function σ(x).

As shown in Fig. 3, attention feature maps obtained using our SAB help the
network focus on the specific information of relative depth across different levels.
Specifically, the attention map S4 contains low-level features which depict the
semantic hierarchy and capture the overall near-and-far structure in 3D space.
The closer a spatial attention feature map is to the top layer S1, the more local
details are focused for the prediction output.

3.2 Network Training

The loss function to train our network contains four terms, i.e., Berhu loss LB,
scale-invariant gradient loss Lg, normal loss Ln, and global focal relative loss Lr.
We describe each loss term in detail as follows.

BerHu loss. The BerHu loss refers to the reversed Huber penalty [58] of depth
residuals, which provides a reasonable trade-off between L1 norm and L2 norm
in regression tasks when the errors present a heavy-tailed distribution [39,28].
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Therefore, the BerHu loss LB is commonly used as the basic error metric for
MDE and is defined as:

LB =
∑
i,j

|di,j − d̂i,j |b, |x|b =

{
|x| |x| ≤ c,
x2+c2

2c |x| > c
, (2)

where di,j and d̂i,j are the ground-truth and predicted depth values at the pixel

location (i, j), respectively. We set c to be 0.2 max
p

(|d̂p − dp|), where {p} indicate

all the pixels in one batch.

Scale-invariant gradient loss. We use scale-invariant gradient loss [46] to empha-
size depth discontinuities at object boundaries and to improve smoothness in
homogeneous regions. To cover gradients at different scales in our model, we use
5 different spacings {s = 1, 2, 4, 8, 16} for this loss term Lg:

Lg =
∑
s

∑
i,j

|gs(i, j)− ĝs(i, j)|2,

gs(i, j) =

(
di+s,j − di,j
|di+s,j + di,j |

,
di,j+s − di,j
|di,j+s + di,j |

)>
,

(3)

Normal loss. To deal with small-scale structures and to further improve high-
frequency details in the predicted depth, we also use a normal loss term Ln:

Ln =
∑
i,j

(
1− 〈ni,j , n̂i,j〉√

〈ni,j ,ni,j〉 ·
√
〈n̂i,j , n̂i,j〉

)
, (4)

in which 〈·, ·〉 denotes the inner product of two vectors. The surface normal is

denoted as ni,j = [−∇x,−∇y, 1]
>

, where ∇x and ∇y are gradient vectors along
the x and y-axis in the depth map, respectively.

Global focal relative loss. Relative loss (RL) [5,51,30,6] is used to make depth-
wise ordinal relations between sample pairs predicted by the network consistent
with the ground-truth. Inspired by the focal loss defined in Lin et al. [32], we
propose an improved version of relative loss, named global focal relative loss
(GFRL), to put more weight on sample pairs of incorrect ordinal relationships
in the prediction. To ensure uniform selection of point pairs, we subdivide the
image into 16× 16 blocks of the same size and randomly sample one point from
each block. Each point is compared with all the other points from the same
image when training the network. Our loss term of n pairs is formally defined as
Lr =

∑n
k Lr,k. The k-th pair loss term Lr,k is

Lr,k =

{
wγk log

(
1 + exp

(
− rk (d1,k − d2,k)

))
, rk 6= 0

(d1,k − d2,k)
2
, rk = 0

wk = 1− 1/
(
1 + exp

(
− rk (d1,k − d2,k)

))
,

(5)
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where rk is the ground-truth ordinal relationship and is set to −1, 0, or 1, if the
first point has a smaller, equal, or a larger depth value compared to the second
point. The equality holds if and only if the depth difference ratio is smaller than
a threshold of 0.02.

In Eqn. 5, our key idea is to introduce a modulating factor wγk to scale the
relative loss. Intuitively, when a pair of pixels have incorrect ordinal relationship
in the prediction, the loss is unaffected since wk is close to 1. If the depth ordinal
relationship is correct and the depth difference is large enough, the weight wk
on this pair will go to 0. The parameter γ smoothly adjusts the magnitude of
weight reduction on easy point pairs. When γ = 0, our GFRL is equivalent to
RL [5]. As γ increases, the impact of the modulating factor becomes larger and
we set γ = 2 in our experiments. It turns out our GFRL outperforms RL under
various evaluation metrics (see Sec. 5.2).

Total loss. We train our network in a sequential fashion for better convergence
by using different combinations of loss terms in different stages [19]. Our total
loss function Ltotal is defined as:

Ltotal = λ1LI-III
B + λ2LII-III

g + λ3LIII
n + λ4LIII

r , (6)

where {λi} are the weights of different loss terms, and the superscripts I-III
denote the stages of using the corresponding terms. BerHu loss is the basic term
being used to start the training. After convergence, we first add gradient loss for
smooth surface and sharp edges. To further improve the details of predicted depth
and refine the spatial structure, we add normal loss and global focal relative loss
in the final stage.

Edge-aware consistency. Depth discontinuities typically arise at the boundaries
of occluding objects in a scene. Most existing MDE methods cannot recover these
edges accurately and tend to generate distorted and blurry object boundaries [19].
Besides, we observe that in these areas, the average prediction error is about 4
times larger than that of other areas.

Based on these observations, we introduce an edge-aware consistency scheme
to preserve sharp discontinuities in depth prediction results. Specifically, we first
use Canny edge detector [2] to extract edges for the ground-truth depth map, and
then dilate these edges with a kernel of 5 to get a boundary mask.We multiply
the loss Lij at the pixel pij by a weight of 5 if pij is an edge pixel in the boundary
mask. Our edge-aware consistency scheme can be considered as a hard example
mining method [41] to explicitly increase the penalty on prediction errors in
boundary regions.

4 Datasets

4.1 HC Depth Dataset

In recent years, several RGBD datasets have been proposed to provide collections
of images with associated depth maps. In Tab. 1, we list five open source RGBD
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Table 1: Properties of different monocular depth estimation datasets. The last
column denotes types of hard cases (see Fig. 1) included in these datasets.

ID Datasets Type Annotation Images Hard cases
1 NYU Indoor Kinect 108,644 a,b,c
2 ScanNet Indoor Kinect 99,571 a,c,f
3 SUNCG Indoor Synthetic 454,078 -
4 CAD Portrait Kinect 145,155 b
5 URFall Portrait Kinect 10,764 b
6 HC Depth Mixed Kinect & RealSense 120,060 a,b,c,d,e,f

datasets and summarize their properties such as types of content, annotation
methods, and number of images. Among them, NYUDv2 [34], ScanNet [7],
CAD [37], and URFall [26] are captured from real indoor scenes using Microsoft
Kinect [56], while SUNCG [42] is a synthetic dataset collected by rendering
manually created 3D virtual scenes. In addition, CAD and URFall contain videos
of humans performing activities in indoor environments. These datasets offer a
large number of annotated depth images and are widely used to train models for
an MDE task. However, each of these RGBD datasets primarily focuses on only
one type of scenes and may not cover enough challenging cases. In Fig. 1, we
identify and summarize six types of typical failure cases for two state-of-the-art
MDE methods [1,11] trained on the NYUDv2 dataset.

To complement existing RGBD datasets and provide sufficient coverage on
challenging examples for the MDE task, we design and acquire a new dataset,
named HC Depth dataset, which contains all the six categories of hard cases
shown in Fig. 1. Specifically, we collect 24660 images using Microsoft Kinect [56],
which provides dense and accurate depth maps for the corresponding RGB images.
Due to the limited effective distance range of Kinect, these images are mainly
about indoor scenes of portraits. We also collect 95400 images of both indoor and
outdoor scenes using Intel RealSense [22], which is capable of measuring larger
depth range in medium precision. In sky cases, we assign a predefined maximum
depth value to sky regions based on semantic segmentation [57]. We also perform
surface smoothing and completion for all the cases using the toolbox proposed by
Silberman et al. [34]. We show several typical examples of our HC Depth dataset
in the supplementary materials.

4.2 Incremental Dataset Mixing Strategy

Training on aforementioned datasets together poses a challenge due to the different
distributions of depth data in various scenes. Motivated by curriculum learning [3]
in global optimization of non-convex functions, we propose an incremental dataset
mixing strategy to accelerate the convergence of network training and improve
the generalization performance of trained models.

Curriculum learning is related to boosting algorithms, in which difficult
examples are gradually added during the training process. In our case of MDE,
we divide all the training examples into four main categories based on the content
and difficulty, i.e., indoor (I), synthetic (S), portrait (PT), and hard cases (HC).
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First, we train our model on datasets with similar distributions (e.g., I + S) until
convergence. Then we add remaining datasets (e.g., PT or HC) one by one and
build a new sampler for each batch to ensure a balanced sampling from these
imbalanced datasets. Specifically, we count the number of images ki contained
in each dataset, and K =

∑
i ki is the total number of training images. The

probability of sampling an image from the i-th dataset is proportional to K/ki
to effectively balance different datasets.

5 Experiments

5.1 Experimental Setup

To validate each algorithm component, we first train a baseline modelMb without
any module introduced in Sec. 3. We denote the model trained with edge-aware
consistency as Me and the model trained with both edge-aware consistency
and our spatial attention blocks as Me,SAB. The model obtained with all the
components is denoted as Mfull, which is essentially Me,SAB trained with the
addition of GFRL andMe,Lr

trained with the addition of SAB. We also compare
with the option to train Me,SAB with an additional relative loss Lr described
in Chen et al. [5]. We show additional comparisons with variations of existing
attention modules, e.g., Spatial Excitation Block (sSE) [38] and Convolutional
Block Attention Module (CBAM) [50]. Finally, we train the full model on different
combinations of datasets to evaluate the effect of adding more training data.

We implement our method using PyTorch and train the models on four
NVIDIA GPUs with 12GB memory. We initialize all the ResNet-101 blocks
with pretrained ImageNet weights and randomly initialize other layers. We use
RMSProp [44] with a learning rate of 10−4 for all the layers and reduce the rate
by 10% after every 50 epochs. β1, β2 and weight decay are set to 0.9, 0.99, and
0.0001 respectively. The batch size is set to be 48. The weights {λi} of the loss
terms described in Sec. 3.2 are set to 1, 1, 1, and 0.5 respectively. We pretrain
the baseline model Mb for 40 epochs on NYUDv2 dataset. The total number
of trainable parameters for our full model is about 167M. When training on
multiple datasets, we first use our multi-stage algorithm (Sec. 3.2) on the first
dataset until convergence of the total loss function, and then include more data
via our incremental dataset mixing strategy (Sec. 4.2).

We compare our method with several state-of-the-art MDE algorithms both
quantitatively and qualitatively using the following commonly used metrics [10]:

– Average relative error (REL): 1
n

∑n
p

∣∣∣dp − d̂p∣∣∣ /d̂p.
– Root mean squared error (RMSE):

√
1
n

∑n
p

(
dp − d̂p

)2
.

– Average log10 error: 1
n

∑n
p

∣∣∣log10 (dp)− log10

(
d̂p

)∣∣∣.
– Threshold accuracy: {δi} are ratios of pixels {dp} s.t. max

(
dp

d̂p
,
d̂p
dp

)
< thri for

thri = 1.25, 1.252, and 1.253.
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Fig. 4: BerHu loss curves of different training strategies. The red curve denotes
the loss curve with all datasets added from the beginning, while the green curve
represents the loss curve based on our incremental dataset mixing strategy. The
blue dot lines indicate the epochs when new datasets are included. The dataset
IDs are defined in Tab. 1.

RGB GT Mb Me Mfull

Fig. 5: Evaluation results of our edge-aware consistency module. From left to
right: input images, ground-truth depth, results of our baseline model Mb, the
model Me with our edge-aware consistency module, and our full model Mfull.

5.2 Experimental Results

Results on NYUDv2 Dataset. The NYUDv2 dataset contains 464 indoor
scenes. We follow the same train/test split as previous work, i.e., to use about 50K
images from 249 scenes for training and 694 images from 215 scenes for testing. In
Fig. 4, we compare the BerHu loss curves on the test set when training on multiple
datasets without and with our incremental dataset mixing strategy (Sec. 4.2),
which illustrates that our strategy considerably improves the convergence of
network training.

Tab. 2 summarizes the quantitative results of our ablation study on NYUDv2
dataset together with the numbers reported in previous work. Our baseline
model Mb uses ResNet101 as the backbone and couples with GCB modules,
combining several widely used loss terms (Berhu loss, scale-invariant gradient
loss, and normal loss) of previous work. As can be seen from the table, all of our
algorithm components can improve depth estimation results noticeably, including
edge-aware consistency, SAB, and GFRL. Furthermore, adding our HC Depth
dataset with our dataset mixing strategy (Sec. 4.2) significantly improves the
model performance (seeMb → 1,6 andMfull → 1,6). By comparingMfull with
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Table 2: Quantitative results on NYUDv2 dataset using different quantitative
metrics. Higher numbers indicate better accuracy, while lower ones represent
better results in terms of predication errors. The numbers after the right arrow
indicate the IDs of datasets (defined in Tab. 1) to train each model.

Methods
Accuracy ↑ Error ↓

δ1 δ2 δ3 RMSE REL log10
Eigen et al. [9] → 1 0.769 0.950 0.988 0.641 0.158 -
Laina et al. [28] → 1 0.811 0.953 0.988 0.573 0.127 0.055
Qi et al. [36] → 1 0.834 0.960 0.990 0.569 0.128 0.057
Hao et al. [14] → 1 0.841 0.966 0.991 0.555 0.127 0.053
Hu et al. [19] → 1 0.866 0.975 0.993 0.530 0.115 0.050
Fu et al. [11] → 1 0.828 0.965 0.992 0.509 0.115 0.051

Alhashim et al. [1] → 1 0.846 0.974 0.994 0.465 0.123 0.053
Yin et al. [54] → 1 0.875 0.976 0.994 0.416 0.108 0.048

Mb → 1 0.856 0.974 0.994 0.430 0.120 0.051
Me → 1 0.860 0.974 0.994 0.426 0.118 0.050

Me,SAB → 1 0.864 0.971 0.993 0.417 0.113 0.049
Mfull → 1 0.876 0.979 0.995 0.407 0.109 0.047

Me,SAB + Lr [5] → 1 0.864 0.971 0.993 0.418 0.113 0.049
Me,Lr+ sSE [38] → 1 0.857 0.968 0.992 0.433 0.117 0.051
Me,Lr+ CBAM [50] → 1 0.860 0.968 0.992 0.432 0.117 0.050

Mb → 1,6 0.868 0.976 0.995 0.420 0.115 0.049
Mb → 1-6 0.874 0.978 0.995 0.414 0.111 0.048
Mfull → 1-3 0.888 0.982 0.996 0.391 0.104 0.044
Mfull → 1-5 0.888 0.981 0.996 0.390 0.103 0.044
Mfull → 1,6 0.885 0.979 0.994 0.401 0.104 0.045
Mfull → 1-6 0.899 0.983 0.996 0.376 0.098 0.042

Me,SAB + Lr [5], we can conclude that GFRL leads to better results than the
alternative relative loss [5]. We also show that our SAB (Mfull) brings notable
improvement over Spatial Excitation Block (Me,Lr

+ sSE [38]) and Convolutional
Block Attention Module (Me,Lr+ CBAM [50]). Finally, training our full model
Mfull on multiple datasets can achieve the best results and outperforms training
solely on NYUDv2 dataset by a large margin.

Fig. 6 presents qualitative results on three test cases to compare our full model
with three prior methods [11,19,1]. The first example shows that our results have
more reasonable spatial layout. In the second example, our model provides more
accurate estimation than other methods in the regions of color boundaries. In the
third example, our results preserve details in the region around the chandelier.
Although Fu et al. [11] achieves structural patterns similar to our method, their
results contain disordered patterns and thus have much larger errors. Fig. 5 shows
evaluation results on two more test examples from NYUDv2 to compare our
baseline model Mb with the model Me trained with edge-aware consistency and
our full model Mfull. Our edge-aware consistency module leads to much more
accurate boundaries in the depth estimation results, such as the back of the chair
and legs of the desk.

Results on TUM Dataset. We use the open source benchmark TUM [43]
to evaluate the generalization performance of different methods in the setting
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GT/RGB Fu et al. Hu et al. Alhashim et al. Ours Ours→1-6
Near Distant Farther Closer

Fig. 6: Qualitative results on four test cases from NYUDv2 Dataset. In each
example, the first row shows the ground-truth depth map, results of three prior
methods [11,19,1], and the results of our full model trained solely on NYUDv2
and on the combination of all the six datasets listed in Tab. 1, respectively. The
second row of each example shows the input image and the error maps of the
corresponding results in the first row.

of zero-shot cross-dataset inference. The test set of TUM consists of 1815 high
quality images taken in a factory including pipes, computer desks and people,
which are never seen when we train our models. Tab. 3 demonstrates that
our full model Mfull trained solely on NYUDv2 dataset outperforms previous
methods. Furthermore, training the full model by adding HC Depth dataset or
more datasets using our dataset mixing strategy can significantly improve the
generalization performance. As shown in the qualitative results in Fig. 7, our
method retains sharp edges of plants in the first example and leads to more
accurate spatial layout in the second and third examples.

Results on HC Depth Dataset. To test the performance of different models
on hard cases, we use the test split of our HC Depth dataset which contains 328
examples. Tab. 4 summarizes the corresponding quantitative results, from which
we can obtain consistent findings with Tab. 3. Fig. 8 illustrates qualitative results
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Fig. 7: Qualitative results on TUM dataset.

Table 3: Quantitative results of generalization test on TUM dataset. The
experimental configuration is the same as Tab. 2.

Methods
Accuracy ↑ Error ↓

δ1 δ2 δ3 RMSE REL log10
Hu et al. [19] → 1 0.577 0.842 0.932 1.154 0.216 0.111
Fu et al. [11] → 1 0.598 0.855 0.934 1.145 0.209 0.110

Alhashim et al. [1] → 1 0.567 0.847 0.920 1.250 0.224 0.115
Mfull →1 0.606 0.888 0.947 1.109 0.212 0.100
Mfull → 1-3 0.665 0.903 0.955 1.031 0.194 0.091
Mfull → 1-5 0.710 0.913 0.952 1.013 0.175 0.084
Mfull →1,6 0.689 0.906 0.950 1.029 0.189 0.086
Mfull → 1-6 0.735 0.927 0.959 0.912 0.177 0.081

of six examples from the test set, which correspond to the six types of hard cases
in Fig. 1. As shown in Fig. 8 and Tab. 4, our method based on NYUDv2 dataset
already provides more faithful prediction compared to Alhashim et al. [1] and the
predicted depth can be further improved considerably by adding our HC Depth
dataset or using all the datasets through our dataset mixing strategy.

6 Conclusions

In this paper we put together a series of coherent efforts to improve the structural
awareness in monocular depth estimation, with the effectiveness and necessity of
each component thoroughly verified. We introduce a novel encoder-decoder archi-
tecture using the spatial attention mechanism, and boost the network performance
by proposing a global focal relative loss and an edge-aware consistency module.
We further collect a dataset of hard cases for the task of depth estimation and
leverage a data mixing strategy based on curriculum learning for effective network
training. We validate each component of our method via comprehensive ablation
studies and demonstrate substantial advances over state-of-the-art approaches on
benchmark datasets. Our experimental results show that truly generic models for
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Fig. 8: Qualitative results on our HC Depth dataset. From top to bottom, the
examples correspond to the six types of hard cases showed in Fig. 1.

Table 4: Quantitative results on the HC Depth dataset. The experimental
configuration is the same as Tab. 2.

Methods
Accuracy ↑ Error ↓

δ1 δ2 δ3 RMSE REL log10
Hu et al. [19] → 1 0.531 0.783 0.898 1.276 0.285 0.128
Fu et al. [11] → 1 0.477 0.755 0.866 1.356 0.2962 0.145

Alhashim et al. [1] → 1 0.551 0.819 0.918 1.137 0.257 0.118
Mfull →1 0.600 0.843 0.930 1.070 0.249 0.109
Mfull → 1-3 0.610 0.837 0.921 1.072 0.244 0.108
Mfull → 1-5 0.633 0.845 0.924 1.065 0.237 0.107
Mfull →1,6 0.825 0.895 0.961 0.715 0.190 0.087
Mfull → 1-6 0.879 0.965 0.988 0.566 0.113 0.048

monocular depth estimation require not only innovations in network architecture
and training algorithm, but also sufficient data for various scenarios.

Our source code, pretrained models, and the HC Depth dataset will be released
to encourage follow-up research. In the future, we plan to capture more diverse
scenes and further expand our HC Depth dataset. We would also like to deploy
our models on mobile devices for several applications such as augmented reality.

Acknowledgements. We would like to thank the anonymous reviewers for their
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for help on paper proofreading.
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