Supplemental Material

1 Introduction

In this document we present additional results and analysis of our framework,
including implementation details as well as quantitative and qualitative compar-
isons. We also provide a short video in eccv2020_2107.mp4 to demonstrate the
qualitative results on the Imagenet VID 2015 dataset [6]. For viewing purposes,
we show the video at 15 fps although the original video is captured at 30 fps.

2 Implementation Details

We implement our framework with PyTorch. The models are trained on TITAN
X GPUs, and the inference speed is reported on an Intel Xeon E5 CPU. When
training the single-image detectors, we observe that adding class weights for the
imbalance issue helps improve the accuracy on several classes but decreases the
overall mAP. Hence, we randomly sample training images from the VID [6], DET
[6], and COCO [2] datasets without setting particular class weights. The hyper-
parameter p for the heuristic keyframe policy is set to normalize the tracking
score s. For correlation-based trackers like KCF [1], s is usually within the range
of (0,1). Therefore, we set u = 1 in our experiments. Detailed architecture of
our LSTM module is shown in Fig. 1, where all internal layers have 32 channels.
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Fig. 1: Detailed architecture of our Bottleneck-LSTM module.

To pre-train the RL policy, we assign a ground truth action in different cases
given the oracle keyframes. If no keyframe should be triggered within the current
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interval Dy, then a; = 2 (fix interval) is encouraged. If an oracle keyframe is
within D; but not within D,/2, then ground truth action is a; = 1 (shorten
interval). Otherwise, we encourage the policy to take a; = 0 (detect instantly).

3 Quantitative Comparisons

3.1 Using a Different Single-image Detector

In Fig. 2 we show the validation results of our framework with CenterNet [7] +
KCF. We visualize the comparison with previous approaches [8,3,4] in (a), and
the speed-accuracy tradeoff of different keyframe policies in (b). Similar to using
YOLOv3 [5] as the single-image detector, our framework with CenterNet gener-
ally has a better tradeoff between mAP gain and speed-up ratio. Interestingly,
the oracle keyframe policy achieves higher mAP when applying the detection
model sparsely. It indicates that simply tracking the objects can produce higher
accuracy than applying detection in certain situations. The observation exem-
plifies the importance of keyframe selection.
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Fig. 2: Quantitative comparisons on the Imagenet VID validation set. In (a) we
plot the relative mAP gain versus speed-up ratio compared to the single-image
baselines. The performance of different keyframe policies are shown in (b).

3.2 Using a Different Object Tracker

We also plot the tradeoff curves using SiamFC trackers in Fig. 3. With the deep
trackers, the accuracy drops slower as the keyframe interval increases. However,
the accuracy gain by the heuristic scheduler is barely noticeable since the score
s provided by CNN filtering does not directly correspond to the tracking qual-
ity. Our RL policy still produces a significant performance gain by leveraging
additional features such as detection confidence and box size variation.
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Fig.3: Quantitative comparisons of different keyframe schedulers using (a)
YOLOv3 + SiamFC and (b) CenterNet 4+ SiamFC. All models are run with
LSTM-based temporal aggregation.

3.3 Analysis of Different Classes

The detailed accuracy of the 30 VID classes are listed in Table 1. Our method
with Dpgse = 1 produces the highest mAP on most classes. For the object
classes with slower motions, e.g.bears, lizards, and watercrafts, a larger detection
interval results in higher accuracy. The classes like antelopes, birds, and lions
are often misclassified as other classes by the detection model. Our temporal
aggregation tends to filter out the correct classification on these classes, leading
to a lower mAP.

Table 1: Detailed accuracy of the 30 classes in the VID dataset. We report the
mAP scores of CenterNet as the single-image baseline, and KCF trackers +
LSTM-based temporal aggregation for our methods.
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Single-image  77.4 78.7 55.4 60.1 63.5 56.1 41.8 37.3 35.2 38.7 58.1 60.3 62.7 79.3 60.4
Ours (Dpgse = 1) 81.0 69.5 68.0 67.1 54.1 69.6 51.0 38.3 39.8 50.2 63.1 65.9 70.1 89.5 65.1
Ours (Dpgse = 7) 79.2 70.3 69.8 63.4 56.9 66.9 49.1 37.9 39.4 49.5 62.5 62.6 71.2 88.7 63.3
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Single-image  14.0 59.6 23.3 70.2 39.7 36.9 25.6 27.9 23.1 68.2 67.9 54.8 50.9 45.3 83.8
Ours (Dpgse = 1) 6.3 54.6 34.7 68.7 37.8 33.9 31.0 42.6 21.6 82.6 71.2 55.5 57.7 57.6 87.0
Ours (Dpgse = 7) 13.0 63.3 31.3 63.6 38.5 35.7 32.4 36.4 24.7 73.2 70.4 50.9 61.3 51.3 83.8
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4 Qualitative Results

In Fig. 4-8 we show additional qualitative comparisons. Each detected object is
labeled by a colored box with its class name, detection confidence, and tracking
score on the top. The keyframes are marked with red outlines. From top to
bottom, we show the results of a) single-image baseline, b) temporal aggregation
at Dpgse = 1, ¢) fixed keyframe interval at Dyqse = 15, and d) adaptive keyframe
scheduling at Dpgse = 15. All of our models adopt CenterNet detectors, KCF
trackers, LSTM-based temporal aggregation, and RL keyframe scheduler.
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Fig. 4: Qualitative comparisons of our methods with single-image baseline.
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Fig. 5: Qualitative comparisons of our methods with single-image baseline. Our
temporal aggregation module produces a more consistent prediction on the fast
moving motorcycle. The adaptive keyframe scheduler further improves the re-
sults of the partially occluded bus when applying detection sparsely.
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Fig. 6: Qualitative comparisons of our methods with single-image baseline. Our
temporal aggregation module and adaptive keyframe scheduler produce more
consistent and accurate predictions on the fast moving cars.
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Fig. 7: Comparisons of different base interval. We show the results of CenterNet +
KCF + LSTM-based aggregation with fixed keyframe intervals. They exemplify
the need for frequent detection during rapid object movement or deformation.
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Fig.8: Comparisons of different object trackers. We show the results of Cen-
terNet + LSTM-based aggregation with a fixed keyframe interval Dygse = 7.
SiamFC trackers perform better than KCF in the videos where occlusion and
rapid motion are present.
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