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Abstract. While single-image object detectors can be naively applied
to videos in a frame-by-frame fashion, the prediction is often tempo-
rally inconsistent. Moreover, the computation can be redundant since
neighboring frames are inherently similar to each other. In this work
we propose to improve video object detection via temporal aggregation.
Specifically, a detection model is applied on sparse keyframes to han-
dle new objects, occlusions, and rapid motions. We then use real-time
trackers to exploit temporal cues and track the detected objects in the
remaining frames, which enhances efficiency and temporal coherence.
Object status at the bounding-box level is propagated across frames and
updated by our aggregation modules. For keyframe scheduling, we pro-
pose adaptive policies using reinforcement learning and simple heuristics.
The proposed framework achieves the state-of-the-art performance on the
Imagenet VID 2015 dataset while running real-time on CPU. Extensive
experiments are done to show the effectiveness of our training strategies
and justify the model designs.

Keywords: Video object detection; object tracking; temporal aggrega-
tion; keyframe scheduling

1 Introduction

As mobile applications prevail nowadays, increasing attention has been drawn
to deploying vision models on mobile devices. With the limited computation
resource on mobile or embedded platforms, it is crucial to find an appropriate
tradeoff between model accuracy, processing time, and memory usage. Real-time
inference on videos, particularly, requires heavy computation within a glimpse of
an eye. This paper focuses on object detection for videos, a fundamental task of
numerous downstream applications. The performance of single-image detection
has been improved considerably by the advance of deep convolutional neural
networks (CNNs). However, the best way to exploit temporal information in
videos remains unclear. Early methods [8,15] extend single-image detectors to
videos by offline linking the per-frame predictions. The flow-guided approaches
[40,39,35] calculate motion field to propagate or aggregate feature maps tem-
porally. They are shown to be effective but computationally expensive. Recent
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Fig. 1: Illustration of the proposed framework. Given a video sequence, we
sparsely apply the detection model on certain keyframes. The object informa-
tion is temporally propagated by the trackers and aggregated when the next
detection is triggered.

methods [38,20,21] propagate temporal information through memory modules.
By inserting recurrent units between the convolutional layers, the network can
extract features based on its memory of previous frames. While they achieve the
state-of-the-art performance on mobile devices, we argue that aggregation at a
higher level is more efficient and generic than feature-level aggregation. In par-
ticular, we propose to aggregate information at the object/bounding-box level,
i.e., the output of the detection models. First, the dimensionality of object status
is reduced compared to CNN feature maps. Second, it disentangles the binding
between temporal aggregation and feature extraction. When adapting to a new
feature extractor or distinct temporal dynamics, memory-guided feature aggre-
gation requires model re-training as a whole. On the contrary, box predictions
can be easily aggregated regardless of the semantic meaning of feature maps.

To exploit temporal cues for object-level aggregation, tracking models come
as an intuitive choice. The Detect and Track (D&T) approach [5] performs object
detection and tracking with a jointly trained network, and yet its heavy com-
putation is not applicable in real-time scenarios. For acceleration, we propose
temporal aggregation modules to integrate detection and tracking information
at the object level. As illustrated in Fig. 1, our framework applies detection on
sparse keyframes and propagates the object status by real-time trackers. Since
detection is applied sparsely, the selection of keyframes becomes crucial. We in-
vestigate the pros and cons of detection and tracking models, then propose adap-
tive keyframe scheduling via reinforcement learning (RL) and simple heuristics.
Our experimental results demonstrate that the keyframe policies can generalize
to various detection rates and produce a significant performance gain compared
to fixed intervals. With the proposed aggregation modules and keyframe sched-
ulers, we show the possibility to achieve competitive speed-accuracy tradeoffs
with object-level temporal aggregation.
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The contributions of this paper are as follows:
– We propose temporal aggregation modules to integrate object detection and

tracking models at the object/bounding-box level.
– We present adaptive keyframe schedulers using simple heuristics and RL

training with diverse video sequences.
– We conduct extensive experiments to compare our framework with the state-

of-the-art methods in terms of CPU inference speed and accuracy on the
Imagenet VID 2015 dataset [32].

2 Related Work

The majority of existing methods are built upon single-image object detec-
tors. Our framework further incorporates object tracking models. Therefore,
we briefly introduce the state-of-the-art object detectors and trackers, then cat-
egorize the video approaches into three groups: track-based, flow-guided, and
memory-guided aggregation.

Single-image Object Detection. One group of detection models proposes
region candidates that possibly contain an object, then refines and classifies them
in a second stage. They are referred to as two-stage or region-based detectors,
including R-CNN [7] and its descendants [6,31,9,18]. Single-shot methods such
as YOLO [29,30] and SSD [22] are proposed to improve efficiency based on
a set of pre-defined anchor boxes. Bottom-up approaches [17,37,4,36] further
explore the possibility of detection without anchor boxes. Several methods like
Mobilenet [12,33] focus on network optimization. They are commonly combined
with other detection models for acceleration on mobile devices. Since most two-
stage detectors hardly run in real-time, we adopt Darknet53 [28] + YOLOv3-
SPP [30] and Resnet18 [10] + CenterNet [36] as our single-image baselines, which
represent the single-shot and bottom-up models, respectively.

Object Tracking. Object tracking is a common vision task which aims to trace
objects throughout a video sequence. Given the initial bounding box as an ob-
ject template, a tracking model can estimate the current location by correlation
or CNN filtering. Most existing methods assume temporal smoothness of object
appearance between frames. However, deformations, occlusions, and large mo-
tions can all pose a threat to the assumption, thus making it difficult to perform
association and update object status. Fortunately, our scenario does not include
long-term tracking and multi-object association. The association problem is also
naturally avoided since we concern about the object class and not their iden-
tity. Considering the speed requirement, we choose the Kernelized Correlation
Filter (KCF) [11] and Fully-convolutional Siamese Network (SiamFC) [1] as the
trackers in our experiments.

Track-based Aggregation. As an intuitive extension from single-images to
videos, one can associate the per-frame detected boxes and refine the predic-
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tions accordingly. The Seq-NMS method [8] links the bounding boxes of an ob-
ject across frames, then reassigns the maximal or average confidence score to the
boxes along the track. The TCN approach [15] associates the boxes via optical
flow and tracking algorithms before confidence reassignment. They can both pro-
vide a 3-5% mAP gain to most single-frame baselines, but are considered offline
post-processing methods. The D&T framework [5] proposes to learn detection
and tracking simultaneously. Benefiting from multi-task training, it produces a
considerable accuracy gain on both tasks, whereas the expensive computation
limits its application on mobile devices.

Flow-guided Aggregation. Another group of approaches aggregates tempo-
ral information at the feature-map level via optical flow. The DFF method [40]
applies expensive feature extraction on certain keyframes, then propagates the
feature maps to the remaining frames. Zhu et al. [39] warp and average the fea-
ture maps of neighboring frames with flow-guided weighting. Wang et al. [35]
leverage optical flow for pixel-level and instance-level calibration to boost the
detection accuracy. To enable real-time inference on mobile devices, Zhu et al.
[38] further speed up feature extraction and propagation by the Gated Recurrent
Units. In spite of the acceleration efforts, most flow-guided approaches are sub-
stantially slower than other mobile-focused models. Moreover, the performance
depends on the flow estimator which requires densely labeled data for training.

Memory-guided Aggregation. Recent improvement of mobile-focused mod-
els relies on memory modules. Liu et al. [20] insert LSTM units between con-
volutional layers (ConvLSTM) to propagate temporal cues and refine feature
maps. A following work by Liu et al. [21] proposes to balance between a small
and a large feature extractor. It interleaves the extracted features by the ConvL-
STM layers before the detection head. The feature extractors are trained along
with the memory modules for temporal aggregation. Despite the merit of joint
optimization, the binding demands intensive training when adapting to unseen
domains with distinct temporal properties. We adopt a similar memory module
for temporal aggregation in our framework, except that the information is ag-
gregated at the object level. With a comparable accuracy, our method is shown
to be more efficient and model-agnostic.

Adaptive Key-frame Scheduling. Most existing methods use a fixed keyframe
interval to balance between heavy and lightweight computations. Several adap-
tive policies are proposed for object tracking [13,34] and video segmentation
[24]. For object detection, Chen et al. [2] select keyframes by offline measuring
the difficulty of temporal propagation. Luo et al. [23] train a Siamese network to
switch between detection and tracking models based on image-level features. Liu
et al. [21] propose an RL policy for model interleaving, which results in marginal
performance gain. Mao et al. [25] and Lao et al. [16] focus on minimizing the
delay in detecting new objects. In this work we emphasize the importance of
keyframe selection and propose two adaptive schedulers: a heuristic policy and
a lightweight RL model.
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(a) Framework overview. Our aggregation module
updates the object-level features and the adaptive
scheduler adjusts the keyframe interval online.

(b) Memory module for
temporal aggregation.

Fig. 2: The proposed framework and aggregation module (best viewed in color).

3 Proposed Approach

Ideally, a detection model is able to capture the presence or absence of objects.
The prediction of each frame is generated independently, and thus is robust from
rapid motions or scene changes. Nonetheless, we often observe temporal incon-
sistency in the detection results, especially when an object is slightly deformed
or partially occluded. The tracking models, on the other hand, excel at exploit-
ing temporal cues to trace an object given its initial appearance. With a more
lightweight computation, they can provide accurate and stable estimations of the
object location. To leverage the advantages of detection and tracking models,
we propose a framework which integrates them at the object level. Specifically,
detection is applied on keyframes to capture new objects and initialize track-
ers. The trackers update object location and propagate the box features across
frames, which facilitates object association and accelerates detection. Our tem-
poral aggregation helps stabilize the confidence scores and class probabilities by
utilizing past predictions. To ensure that detection is triggered when tracking
fails, we propose adaptive schedulers to determine the keyframe interval based
on object status. An overview of our framework is shown in Fig. 2a.

3.1 Temporal Aggregation

A typical detection model produces a confidence/objectness score c, class prob-
abilities p, and box coordinates b for each object. Object tracking models can
provide an estimate of the box coordinates b̃ and a tracking score s indicating
how well the current box matches the object template or how confident the es-
timation is. The information combined with tracking duration d are exploited
as features. The selection of object-level features makes our aggregation more
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model-agnostic, as it applies to any object detector and tracker that yield the
above output. For each feature x in (c,p, b, s), we denote the value propagated
by the trackers as x̃, and the aggregated output as x′.

At each keyframe, we initialize a tracker for each new object and terminate
the old ones for occluded or disappeared objects. The tracked objects are as-
sociated with the current detection by thresholding the intersection-over-union
(IOU) ratio. We adopt the convention in the existing methods [8,2] and set the
IOU threshold as 0.5 in our experiments. Once associated, the features of the
existing objects are aggregated with the new detection. As shown in Fig. 2b,
we employ a memory module that takes the tracked information and new de-
tection as inputs, updates the internal state, and produces an aggregated out-
put. Our memory module is similar to the speed-optimized Bottleneck-LSTM
proposed by Liu et al. [21], except that we replace convolution operations by
two fully-connected layers since our inputs are object-level features instead of
convolutional feature maps. We show the detail LSTM architecture in the sup-
plementary material. Unlike the prior memory-guided methods, our aggregation
module has a low-dimensional input and is only applied at sparse keyframes,
thus it entails a minimal inference time.

In addition to the learning-based aggregation, we propose a simple yet ef-
fective heuristic module to mitigate the inconsistency of three predictions: 1)
box coordinates, 2) class probabilities, and 3) confidence score. First, to produce
accurate and temporally smooth box coordinates, we refine the detected boxes
bt by the tracked boxes b̃t. The coordinates are averaged based on the detection
confidence and tracking score. We weight higher on the detected boxes when the
new detection is more confident than tracking, and vice versa. The refinement
can be expressed as:

b′t =
s̃tc̃tb̃t + ctbt
s̃tc̃t + ct

, (1)

where c̃t and s̃t denote the confidence and minimal tracking score propagated
from the previous keyframe to time t. Second, we aggregate the class probabilities
of the previous keyframes to prevent inconsistent class predictions. The proba-
bilities are re-weighted by the confidence scores and aggregated by cumulative
average:

p′t =
ctpt + γ

∑
i<t,i∈K cipi

ct + γ
∑
i<t,i∈K ci

, (2)

where K is the keyframe set, and γ is the weight decay for previous predictions.
Finally, the confidence score is stabilized by track-based reassignment. We keep
track of the confidence scores in the keyframes and update the current confidence
by the temporal maximal:

c′t = max(c̃t, ct). (3)

It aims to pick up the low-confidence detection between high-confidence frames.
The final detection result for frame t is given by (b′t,p

′
t, c
′
t).
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3.2 Adaptive Keyframe Scheduling

Fixing the keyframe interval is a naive way to switch between lightweight and
heavy and computations. However, it ignores temporal variations and fails to
adapt to certain events where one model is preferred over another. If a video se-
quence is rather smooth, we prefer tracking over detection since it costs minimal
computation. On the contrary, frequent detection is required when the object
dynamics are beyond the capability of trackers, e.g., large motions, deforma-
tions, and occlusions. More importantly, the selection of keyframes determines
the object templates for tracker initialization, which affects tracking performance
significantly. In our experiments, we observe that selecting the first frame where
an object just appeared does not lead to optimal tracking results. Instead, a few
frames after the first appearance typically contain more faithful and complete
templates to initialize object trackers. We also find that tracking score as well as
other object-level features are useful and convenient indications of the tracking
and detection quality. Adding more image-level features only provides marginal
information for keyframe selection.

Inspired by the above observations, we propose an adaptive policy to adjust
the keyframe interval D online. The task can be formulated as an RL problem
with the following state space, action space, and reward function. The state vec-
tor S is constructed from the same object-level features as leveraged in temporal
aggregation. For each feature x, we encode the temporal minimal (xmin), max-
imal (xmax), average (xmean), variance (xvar), and difference (xt − xt−1) in S
to facilitate RL training. Given the state of current frame, the agent learns to
predict an action a from the action space:

at =


0 (trigger detection) : Dt = 1

1 (shorten interval) : Dt = max(1, αDt−1)

2 (fix interval) : Dt = Dt−1

, (4)

where α is a constant multiplier. The detection model is applied if and only if the
tracking duration dt ≥ Dt. For the instant reward R, we calculate the average
IOU ratio between the predicted boxes b′ and ground truth boxes b̂ as follows:

Rt = IOU(bt
′, b̂t). (5)

We adopt the standard training scheme of the Asynchronous Advantage Actor-
Critic (A3C) [26] model, which is shown to be effective in both continuous and
discrete domains. The readers are encouraged to refer to the original paper since
we omit the model details here. Considering that there is no ordering of the
objects, we use PointNet [27] with 3 fully-connected layers for both the policy
and value networks. The model is originally designed for point cloud data to
preserve order invariance. In our work we consider each object as a point data
and set a maximum number of objects according to the dataset distribution.
Exceeding objects are pruned by their confidence scores.

Even though the state space and action space are low-dimensional, the di-
versity of video sequences makes it a challenging environment for RL training.
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The same action in the same state may lead to distinct rewards and next states
in different videos, i.e., the reward and state transition are stochastic from the
perspective of the RL agent. Combining the time and accuracy constraints in the
reward function is yet another critical issue. Liu et al. [21] add a speed reward to
the accuracy reward with a specific weighting for each speed-accuracy tradeoff
point. We observe that the simple weighted sum is likely to cause unstable train-
ing results. A slight difference in speed reward can easily lead to a local optimal,
where the policy applies detection either most excessively or least frequently.
Furthermore, the policy needs to be trained with a new reward setting whenever
a new tradeoff point is desired.

We propose the following strategies to stabilize the training process and pro-
duce a more general policy. First, we mimic the concept of imitation learning
by pre-training the policy network with expert supervision. Considering that
exhaustive search for optimal keyframes is not feasible, a greedy algorithm is
proposed to approximate an oracle policy for supervision. As described in Algo-
rithm 1, we start from a keyframe set with fixed intervals, then iteratively replace
a keyframe with the highest tracking score by a non-keyframe with the lowest
tracking score. The pre-training steps using the oracle keyframes are described in
the supplemental material. To train a general policy for various speed-accuracy
tradeoffs, a base interval Dbase to deviate from is randomly initialized within
a range of 5 to 30 frames. The ratio between the tracking duration and base
interval, d/Dbase, is encoded in the state vector, so the agent is aware of the
relative detection rate compared to the base frequency. To compensate for the
varying reward distribution between diverse videos, we calculate the temporal
difference of IOU scores instead of the raw values. It allows the agent to focus
on policy optimization according to temporal dynamics. Finally, we add a long-
term penalty at the end of an episode to constrain the policy from excessive or
passive detection. The modified reward function Rt

′ can be expressed as:

Rt
′ =

{
Rt −Rt−1 + λ

(
1

Dbase
−mean(η)

)
if t = end of episode

Rt −Rt−1 otherwise
, (6)

where η denotes the detection history and λ is weight of long-term penalty. We
detail the training process in Algorithm 2.

To compare with the RL policy, we propose a heuristic scheduler by mapping
the tracking score to the keyframe interval:

Dt = min(Dt−1, µs̃tDbase), (7)

where µ is a weighting parameter, s̃t is the temporally minimal tracking score
since the last detection. It follows our intuition to decrease/increase the detection
frequency with tracking quality. At inference time, one can easily search for the
best speed-accuracy tradeoff for a specific application by setting Dbase.
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Algorithm 1 Greedy Keyframe Scheduling

Inputs: video length L, base keyframe interval Dbase, number of iterations Niter

Output: K - keyframe set of size bL/Dbasec

1: K ← {k|mod(k,Dbase) = 0, 0 ≤ k < L}
2: Rmax ← Run the framework with K and compute mAP
3: for i = 0 : Niter do
4: kmax ← A keyframe with maximal tracking score
5: kmin ← A non-keyframe with minimal tracking score
6: R ← Run the framework with K 6 {kmax} ∪ {kmin} and compute mAP
7: if R > Rmax then
8: K ← K 6 {kmax} ∪ {kmin}
9: Rmax ← R

10: return K

Algorithm 2 RL Training for Keyframe Scheduling

Definitions: timestep t, tracking duration d, keyframe interval D, episode length L,
state S, action a, reward R, detection history η
Output: keyframe policy π

1: Pre-train π with the oracle supervision
2: repeat
3: Randomly initialize base detection interval Dbase

4: Sample video frames {I0, I1, ..., IL}
5: t← 0, d0 ← 0, D0 ← Dbase

6: S0 ← Run detection on I0 and extract object-level features
7: S1 ← Track objects from I0 to I1 and propagate S0

8: for t = 1 : L do
9: at ← arg max π(St)

10: Dt ← Update interval based on at and Dt−1

11: dt ← dt−1 + 1
12: if dt ≥ Dt then
13: Run detection on It and update St

14: Add 1 to η
15: Dt ← Dbase

16: dt ← 0
17: else
18: Add 0 to η

19: Rt ← Compute reward based on St and η
20: St+1 ← Track objects from It to It+1 and propagate St

21: Add (St, at, Rt, St+1) to reply buffer

22: Sample batch B from reply buffer
23: Update π with B using A3C training
24: until convergence
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4 Performance Evaluation

4.1 Experiment Settings

We evaluate model performance on the Imagenet 2015 VID dataset [32] with 30
object classes. Following the work by Liu et al. [21], the detection models are
trained on the Imagenet VID, Imagenet DET [32], and COCO [19] training sets.
We sample 1 per 30 frames from the VID videos and use only the relevant classes
from the DET and COCO datasets, which amount to 37K frames from VID,
147K images from DET, and 43K images from COCO. For object tracking, KCF
does not require any pre-training, and we directly employ the SiamFC model
trained on the GOT-10k dataset [14]. The temporal aggregation module and RL
policy are trained by randomly sampling video sequences of 30 frames. We set a
maximum of 10 objects per frame for PointNet since most VID videos contain
less than 10 objects. The sequences where no object is detected are ignored to
prevent unnecessary training. For evaluation, we calculate the mAP@0.5IOU
on the VID validation set. All training and evaluation are done with an input
resolution of 320 × 320. Based on our ablation studies, we set γ = 1 for heuristic
aggregation and α = 0.5, λ = 1, µ = 1 for the keyframe schedulers.

4.2 Quantitative Comparisons

We compare our framework with the single-image baselines and previous meth-
ods in Table 1. While there are numerous related works in video processing, ac-
tion recognition, frame interpolation, etc, we focus on comparing methods with
similar settings: online, real-time, mobile-focused, and based on single-image de-
tection. Existing methods evaluate model performance in terms of the raw mAP
and inference time. However, we find the metrics not directly comparable since
they are built upon different single-image baselines and tested on different plat-
forms. With a better baseline, one can reach higher accuracy regardless of the
temporal design for videos. Considering our focus to improve from single-image
detection, we report the speed-up ratio and mAP gain (both absolute and rela-
tive values) compared to each baseline. Despite the difference in baseline models,
the performance of our single-image detectors lie between the baselines of the
other approaches [38,20], which makes the comparison more convincing. Com-
bining YOLOv3-SPP and KCF at a detection interval of Dbase = 7, we achieve
63.2% mAP at 31.4 fps. At Dbase = 15, our framework maintains a reasonably
high accuracy while having a 11.9× speed-up ratio. Note that the flow-guided
approach [38] does not train the detectors on the COCO dataset, but its optical
flow model requires pre-training on the Flying Chairs dataset [3]. Among all the
real-time models, the memory-guided approach [21] achieves competitive accu-
racy based on its well-trained baseline (f0). It can further produce a significant
speed-up ratio by asynchronous inference and model quantization. Our method
reaches comparable speed without any network optimization. In Fig. 3a we plot
the speed-accuracy tradeoff curves, which show that the proposed framework
performs favorably against the state-of-the-art methods.
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Table 1: Performance comparison on the Imagenet VID validation set. α is the
feature extractor width multiplier described in [12], and β is the flow network
width multiplier. The models of [38], [20,21], and ours are evaluated on HuaWei
Mate 8 phone (*), Pixel 3 phone (†), and Intel Xeon E5 CPU, respectively. We
mark the models with real-time inference speed (above 30fps) in red. All of our
models adopt KCF trackers and RL keyframe scheduler.

Approach Model mAP Speed mAP gain Speed-up
(fps) ratio

Flow-guided [38] (α = 0.5) 48.6 16.4* - -
(α = 0.5) + Flow (β = 0.5) 51.2 52.6* +2.6/×1.05 ×3.2
(α = 1.0) 58.3 4.0* - -
(α = 1.0) + Flow (β = 1.0) 61.2 12.5* +2.9/×1.05 ×3.1

Memory-guided [20] (α = 0.35) 42.0 14.4† - -

(α = 0.35) + LSTM 45.1 14.6† +3.1/×1.07 ×1.0
(α = 1.4) 60.5 3.7† - -

(α = 1.4) + LSTM 64.1 4.1† +3.6/×1.06 ×1.1

Memory-guided [21] Non-interleaved (f0) 63.9 4.2† - -

Interleaved + Adaptive 61.4 26.6† −2.5/×0.96 ×6.3
Interleaved + Adaptive + Async 60.7 48.8† −3.2/ ×0.95 ×11.6

Ours CenterNet 52.0 12.1 - -
CenterNet + Heuristic (Dbase = 7) 54.7 57.8 +2.7/×1.05 ×4.8
CenterNet + LSTM (Dbase = 7) 56.4 52.3 +4.4/×1.08 ×4.3
CenterNet + LSTM (Dbase = 15) 53.3 95.2 +1.3/×1.03 ×7.8
YOLOv3 58.6 6.0 - -
YOLOv3 + Heuristic (Dbase = 7) 61.3 35.8 +2.7/×1.05 ×6.0
YOLOv3 + LSTM (Dbase = 7) 63.2 31.4 +4.6/×1.08 ×5.3
YOLOv3 + LSTM (Dbase = 15) 59.9 71.5 +1.3/×1.02 ×11.9
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Fig. 3: Visualization of the quantitative comparisons.

4.3 Qualitative Comparisons

In Fig. 4 we show the qualitative results on the VID validation set. The first two
videos contain an object with mild motions and occlusions, causing temporal
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inconsistency in the per-frame detections. The proposed aggregation effectively
picks up the missed detections and corrects the erroneous classification. In the
third video, the rapid motions and deformations make object tracking a tougher
task. Our adaptive keyframe scheduler overcomes such difficulty by triggering
more frequent detection. The importance of keyframe selection can also be ob-
served in video 2 and 3. With a better keyframe scheduler, we can initialize the
object trackers with a better object template, which results in more accurate
box estimations.

4.4 Speed-accuracy Tradeoffs

To vary how frequent the expensive feature extraction is performed, Liu et al.
[21] train an RL policy with a specific reward weighting. On the contrary, our
keyframe schedulers are generic to various detection rates as they encode the
base interval Dbase in the state vector. The average detection interval can be
adjusted online simply by setting Dbase. The mAP curves of different keyframe
policies are shown in Fig. 3b. Using a fixed detection interval, the mAP drops
linearly as the interval increases. The proposed heuristic scheduler mitigates the
accuracy drop by a clear margin. With the trained RL policy, we manage to
extend the keyframe interval to 15 frames and still match the performance of
the single-image baseline. We also plot the oracle curve obtained by running
the greedy algorithm (Algorithm 1) with Niter = 20. It demonstrates how the
performance gap from the oracle is narrowed down by our RL policy.

4.5 Ablation Studies

As discussed in the previous sections, our object-level aggregation disentangles
the binding between feature maps and temporal aggregation. We demonstrate
the advantage by reporting the accuracy without finetuning the detection models
on the VID dataset in Table 2. Unlike feature-level aggregation, our framework
provides a consistent mAP gain by simply training the aggregation module on
the VID dataset and not the entire feature extractor. In Table 3a we evaluate
the effectiveness of LSTM-based aggregation module and the three aggregation
heuristics: box coordinate refinement, class probability re-weighting, and confi-
dence reassignment. The confidence reassignment effectively stabilizes the detec-
tion predictions. It alone contributes to 3.5% mAP gain. The aggregation of class
probabilities (γ = 1.0) and box coordinates is able to produce an additional gain
of 2.7%. To validate that our framework applies to arbitrary detection and track-
ing models, we experiment with multiple combinations of the sub-modules. The
results in Table 3b show a consistent improvement by our method with either
of the detection models. With a deep object tracker (SiamFC), our framework
achieves higher mAP and still runs in real-time. The RL policy further produces
a considerable mAP gain while entailing minimal inference time.
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Fig. 4: Qualitative results on the Imagenet VID validation set (best viewed in
color). For each video sequence, the results of per-frame detection are presented
in the first row, our method (LSTM-based aggregation) with fixed keyframe
interval in the second row, and adaptive scheduling (RL) in the third row. The
frames where detection is applied are marked in red. Each detected object is
labeled by a colored bounding box with the class name, detection confidence,
and tracking score on the top. Missed detections can be observed in videos 1 and
3, and the objects are occasionally misclassified in videos 1 and 2. Our temporal
aggregation effectively picks up all the missed detections and corrects the false
classification. In video 3, the adaptive keyframe scheduler triggers detection more
intelligently, which leads to more accurate box predictions.
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Table 2: Validation with/without training the detectors on the video dataset. The
models are run with KCF trackers and LSTM-based aggregation at Dbase = 1.
The mAP scores are calculated only on the 14 relevant classes in COCO dataset.

Model Training data mAP mAP gain

CenterNet COCO 53.1 +3.7 / ×1.08
VID+DET+COCO 56.8 +4.3 / ×1.09

YOLOv3-SPP COCO 62.6 +6.4 / ×1.12
VID+DET+COCO 66.6 +6.6 / ×1.11

Table 3: Ablation studies on temporal aggregation and keyframe scheduling.

(a) Evaluation of our heuristic and
LSTM-based temporal aggregation mod-
ules. The models are run with YOLOv3-
SPP + KCF at Dbase = 1.

Confidence Cls prob Bbox mAP

- 58.6

X 62.1
X γ = 0.6 63.8
X γ = 0.8 64.1
X γ = 1.0 64.4
X γ = 1.0 X 64.8

LSTM-based 65.8

(b) Evaluation on different module com-
binations. All are run with LSTM-based
aggregation at Dbase = 7.

Detector Tracker Keyframe Speed mAP
scheduler (fps)

CenterNet KCF Fixed 58.8 53.2
Heuristic 57.8 53.6

RL 52.3 56.4

CenterNet SiamFC Fixed 45.9 55.3
Heuristic 45.8 55.5

RL 42.9 57.7

YOLOv3-SPP KCF Fixed 37.1 60.6
Heuristic 35.8 61.2

RL 31.4 63.2

YOLOv3-SPP SiamFC Fixed 23.8 62.0
Heuristic 23.8 62.3

RL 20.2 63.7

5 Concluding Remarks

We propose a framework to improve detection by tracking the objects across
video frames. Temporal information is exploited and aggregated by real-time
trackers, which makes the detection more consistent and efficient. Heuristic and
RL policies are proposed for adaptive keyframe scheduling. As shown in the ex-
perimental results, our method achieves competitive speed-accuracy tradeoffs on
the Imagenet VID 2015 dataset. Furthermore, the object-level aggregation allevi-
ates the dependence on feature maps, making it more generic to arbitrary detec-
tion and tracking models. Currently, we initiate a tracker for each object, which
linearly increases the inference time when multiple objects are being tracked. As
a future work, we can accelerate our model by multi-object tracking and running
the detection and tracking models in parallel.
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