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Abstract. Human-object interaction (HOI) detection aims to detect
and recognise how people interact with the objects that surround them.
This is challenging as different interaction categories are often distin-
guished only by very subtle visual differences in the scene. In this paper
we introduce two methods to amplify key cues in the image, and also a
method to combine these and other cues when considering the interac-
tion between a human and an object. First, we introduce an encoding
mechanism for representing the fine-grained spatial layout of the human
and object (a subtle cue) and also semantic context (a cue, represented
by text embeddings of surrounding objects). Second, we use plausible
future movements of humans and objects as a cue to constrain the space
of possible interactions. Third, we use a gate and memory architecture as
a fusion module to combine the cues. We demonstrate that these three
improvements lead to a performance which exceeds prior HOI methods
across standard benchmarks by a considerable margin.

1 Introduction

Human-Object Interaction (HOI) detection—which focuses specifically on rela-
tions involving humans—requires not only to retrieve human and object loca-
tions but also to infer the relations between them. Thus, for a given image, the
objective of HOI is to identify all triplets of the form <human, verb, object>.
The ability to predict such triplets robustly is central to enabling applications
in robotic manipulations [15] and surveillance event detection [1].

Driven by impressive progress on instance detection and recognition, there
has been growing interest in the HOI detection problem. However, the majority
of existing methods [9, 30, 38] first detect all human and object instances and
then infer their pairwise relations using the appearance feature of the detected
instances and their coarse layout (position of human and object boxes). Despite
their general efficacy, the performance of prior work may still be limited by some
particular design choices, which we discuss next.

First, although recent works have sought to introduce some fine-grained spa-
tial configuration descriptors and context cues from the whole image into the
HOI detection, the encoding mechanisms have limitations. Specifically, (1) Some



2 Yang et al.

Top: <person, walk with, bicycle>
Bottom: <person, ride, bicycle>

Top: <person, eat, cake>
Bottom: <person, cut, cake>

Top: <person, catch, frisbee>
Bottom: <person, throw, frisbee>

 

Global: Car

 
Local: Face + Hand

 

Global: Kitchen

 

Local: Knife + Hand

Top: person with bike 
Bottom: person rides bike 

 

Top: eating a carrot 
Bottom: cutting a carrot 

Top: catch frisbee  
Bottom: throw frisbee 

Global: Street

Local: Spoon + Hand

Global: Kitchen

Local: Knife + Hand

 

Global: Car

 
Local: Face + Hand

 

Global: Kitchen

 

Local: Knife + Hand

Top: person with bike 
Bottom: person rides bike 

 

Top: eating a carrot 
Bottom: cutting a carrot 

Top: catch frisbee  
Bottom: throw frisbee 

Fig. 1: (Left): Interactions with similar spatial layouts can be resolved through
fine-grained spatial information. (Centre): Global and local context encode the
scene and other local objects to provide strong clues for the interaction taking
place; (Right): Plausible motion estimation distinguishes between interactions
for which dynamics play an important role.

approaches [24, 14, 38, 45] use human pose to distinguish the fine-grained rela-
tion (going beyond the standard human and object coarse boxes). However, these
approaches encode human pose via key-point estimation (plus post-processing),
which is problematic as it loses boundary and shape information. For example
in Figure 1(left), encoding the fine-grained spatial information as key points
exhibits ambiguity when distinguishing the differences between ‘riding a bicy-
cle’ and ‘walking with a bicycle’. We argue that the boundaries of both human
parts and objects should be encoded explicitly, due to their critical ability to
reveal interaction boundaries and support inference of relations. Thus we im-
prove the encoding mechanism for the fine-grained information by leveraging
the fine-grained human parsing and object semantic segmentation masks, to
better capture the geometric relations between them. (2) Some approaches use
the visual appearance feature from other image regions or the whole image as the
auxiliary context information. However, there are a limited number of triplets
in existing HOI datasets—this is insufficient to capture the full intra-class ap-
pearance variations of relationships (making it harder to generalise). We draw
inspiration from classical recognition techniques (e.g. the use of context for de-
tection [7]) and argue that the semantic categories of other objects present in
the surrounding neighbourhood of the candidate instance pair (local context)
and the scene category (global context) provide valuable cues for distinguishing
between different interactions, but the detailed visual appearance of them is of-
ten not crucial for HOI detection. For instance, as shown in Fig.1(middle), the
surrounding neighbourhood in the ‘eating a cake’ category will likely comprise a
spoon-like tool, whereas for the ‘cutting a cake’ category, it is a knife-like tool.
But the colour and design of the spoon/knife do not provide useful cues when
inferring its relation with the human. Instead of using visual appearance fea-
tures directly, we encode categories via a semantic embedding (word2vec). This
enables the model to leverage language priors to capture possible co-occurrence
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and affordance relations between objects and predicates. As we show through
careful ablation studies in Sec. 4, these mechanisms for encoding fine-grained
spatial configuration and contextual cues bring consistent improvements to HOI
detection performance, highlighting the importance of studying these choices.

Second, plausible motion—the set of probable movements most likely to fol-
low a static image—is not currently accounted for when detecting human ob-
ject interactions. Nevertheless, humans can trivially enumerate plausible future
movements (what may happen next in an image) and characterise their relative
likelihood.

The inference of plausible motions brings two benefits: the first is saliency—it
provides a natural attention over the key object and human body parts present
in an image; the second is that it constrains the space of relations to the subset
that is consistent with these dynamics. For example in Fig. 1(right), it is clear
that the object and arm highlighted by motion are concerned with throwing or
catching the frisbee, not concerned with eating or writing on it. Furthermore, if
the estimation of the direction is also correct then that would distinguish whether
the person is throwing or catching the frisbee. Note that while the plausible
motion can elucidate a salient signal for human object interaction detection, it
can be difficult to learn directly from the image alone. We benefit here from
recent work on motion hallucination [10], that has learnt to predict local optical
flow from a static image to reveal plausible future movement by identifying which
regions of pixels will move (together with their velocity) in the instant following
image capture. To the best of our knowledge, this work represents the first study
of the utility of plausible motion as an additional cue for HOI detection.

In this paper, we aim to tackle the challenges described above with a unified
framework that amplifies important cues for HOI detection (as shown in Fig. 2).
We design a novel multi-expert fusion module, where different features (i.e.,
plausible motion, enhanced fine-grained spatial configuration and context cues)
are viewed as cooperative experts to infer the human object interaction. As
different cues and their relationships will have different contribution for detecting
the human object interaction, we use the gate and memory mechanism to fuse the
available cues sequentially, select the discriminative information and gradually
generate the representation for the whole scene step by step. By doing so, the
final representation is more discriminate than those from existing methods that
lack a reasoning mechanism, and this leads to better HOI detection performance.

The contributions of this work are summarised as follows:

(1) We propose a mechanism for amplifying fine-grained spatial layout and
contextual cues, to better capture the geometric relations and distinguish the
subtle difference between relation categories.

(2) We are the first to explore the utility of the plausible motion estimation
(which regions of pixels will move) as an additional cue for HOI detection.

(3) We propose a gate and memory mechanism to perform sequential fusion
on these available cues to attain a more discriminative representation.

(4) Our approach achieves state-of-the-art performance on two popular HOI
detection benchmarks: V-COCO and HICO-DET.
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2 Related Work

Visual Relationship Detection. Visual Relationship Detection (VRD) aims
to detect objects and simultaneously predict the relationship between them.
This topic has attracted considerable attention, supported by the recent devel-
opment of large-scale relationship datasets such as VRD [26], Visual Genome
[21] and Open Images [22]. However, detecting subtle differences between visual
relationship remains difficult and the task is made yet more challenging by the
distribution of visual relations, which is extremely long-tailed. Several recent
works have proposed various mechanisms to address this problem [26, 43, 20, 5,
42, 23]. Our work focuses on one particular class of visual relationship detection
problem: detecting human object interaction (HOI). HOI detection poses addi-
tional challenges over VRD: a human can also perform multiple actions with one
or more objects simultaneously and the range of human actions we are interested
in are typically more fine-grained and diverse than for other generic objects.
Human Object Interaction (HOI) Detection. HOI detection aims to detect
and recognise how each person interacts with the objects that surround them—it
provides the fundamental basis for understanding human behaviour in a complex
scene. Recently, driven by the release of relevant benchmarks, HOI detection has
attracted significant attention [9, 12, 24, 14, 38, 45, 40, 33, 41].

The earlier works typically focused on tackling HOI by utilizing human
and object visual appearance features or by capturing their spatial relationship
through their coarse layout (box locations) [9, 12]. Recently, several methods [24,
14] have been developed that use human pose configuration maps to distinguish
fine-grained relations. Wan et al. [38] and Fang et al. [6] use human pose cues to
zoom into the relevant regions of the image via attention mechanism. Zhou et
al. [45] encode human pose through graph neural networks and message passing.
Note however, that each of these approaches encode human pose via keypoint
estimation (either draw rectangle around the key point or link the keypoint into
skeleton), which removes detailed information about the boundary and shape
of the human, in particular, about human parts. By contrast, we argue that
the boundaries of both human parts and objects are crucial. We are the first to
leverage fine-grained human parsing and object semantic segmentation masks to
better capture the geometric relations between them—such cues enable discrim-
ination between subtly different relation categories.

More recently, although some approaches [28, 12, 31, 9, 39] have sought to use
contextual cues from the whole image (global context), they do so by learning a
spatial attention map in pixel space based on instance visual appearance to high-
light image regions, making optimisation challenging when training data is lim-
ited. By contrast, we draw inspiration from classical recognition techniques [34,
29] and argue that the semantic categories of other objects present in the sur-
rounding neighbourhood of the candidate instance pair (local context) and the
scene information (global context) provide valuable cues for resolving ambigu-
ity between different interactions, but the detailed visual appearance of them is
often not crucial. Instead of using visual appearance features, we are the first
to encode context information via a semantic embedding, i.e., word2vec, that
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enables us to leverage the language priors to capture which objects might afford
or co-occur with particular predicates.

The prediction of plausible motion has received limited attention for HOI
detection. Nevertheless, estimation of current movement—when coupled with an
understanding of the dynamics of an interaction—provides a cue for assessing
the degree to which the configuration of humans and objects is probable for that
interaction. We are the first to leverage flow prediction from a static image to
infer the motion most plausible for a given image (i.e., which regions of pixels will
move, together with their velocity, in the instant following image capture) as an
auxiliary cue for HOI detection. Our approach is related to a wide body of work
on visual future prediction [36, 8, 35] and draws on techniques for flow prediction
from static images [37, 10]. Differently from prior work, our objective is to infer
plausible motion as an auxiliary cue for HOI detection in static images. In this
sense, our method bridges static image HOI detection with video-level action
understanding by transferring a motion prior learned from videos to images.

Current approaches predominately use either late or early fusion strategy
to combine multi-stream features when inferring relations, while the relation-
ship between different streams is often overlooked. Specifically, Late fusion are
adopted by [12, 19, 33, 41], where interaction predictions are performed on each
stream independently and then summed at inference time. A wide body of work,
i.e., [9, 14, 24, 30, 40] use the early fusion strategy, where multi-stream features
are concatenated first and then use it to predict the score (sometimes with at-
tention mechanism as in [38, 39, 31, 45]). In this work, we are the first to use the
gate and memory mechanism to fuse the available cues for HOI detection, i.e.,
select the discriminative information and gradually generate the representation
for the whole scene step by step.

3 Method

We now introduce our proposed Fine-grained layout-Context-Motion Network
(FCMNet), for localising and recognising all human-object interaction instances
in an image. We first provide a high-level overview of FCMNet in Sec. 3.1,
followed by a detailed description of the model architecture in Sec. 3.2. Finally,
Sec. 3.3 describes the training and inference procedures.

3.1 Overview

Our approach to human-object interaction detection comprises two main stages:
(1) human and object detection and (2) interaction prediction. First, given an
image I, we use Faster R-CNN [32] (Detectron implementation [11]) to detect
all person instances p = (p1, p2, ..., pm) and object instances o = (o1, o2, ..., on),
generating a set of bounding boxes b = (b1, b2, ..., bm+n) where m denotes the
total number of detected person and n denotes the number of detected objects.
We use bH ∈ R4 and bO ∈ R4 to denote the human and object bounding boxes.
HOI proposals are then generated by enumerating all pairs of candidate human
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Fig. 2: The proposed FCMNet framework. The backbone module first detects
all human and object boxes and encodes their representations; For each candi-
date pair of human-object boxes <bH , bO>, the spatial encoder encodes coarse
and fine-grained layouts to capture the spatial configuration between them; the
context encoder accumulates other readily available auxiliary information in the
other region of the image, including local and global context; the motion encoder
infer the likely movement of humans and objects (i.e. which regions of pixels will
move together with their velocity in the instant following image capture) via
flow prediction from the static image as an approximation to plausible motion.
Finally, the fusion module combines all available knowledge about the candidate
pair <bH , bO> to predict the final interaction score for the candidate pair and
outputs the detected triplet <human, verb, object>.

and object bounding boxes. Next, we process each human-object bounding box
pair <bH , bO> with FCMNet to predict an interaction action score SH,O ∈ RA,
where A represents the number of interaction classes. FCMNet encodes three
image cues independently via the spatial encoder, context encoder, and motion
encoder. Finally, a fusion module combines the outputs of these encoders and
generates a robust HOI detection. Fig. 2 shows an overview of the model.

3.2 Model Architecture

FCMNet contains the following five modules: (1) a backbone module that detects
human and object boxes and encodes their representations; (2) a spatial encoder
that leverages both coarse and fine-grained layout information; (3) a context
encoder that accumulates auxiliary information in other regions of the image;
(4) a motion encoder that predicts which regions of pixels would move in the
instant following image capture via flow prediction; (5) a fusion module that
combines all cues to predict the final interaction score and outputs the detected
triplet <human, verb, object>. We next provide details of each component.

(1) Backbone module: We adopt Faster R-CNN (with a ResNet-50 trunk) to
detect all human and object instances. To encode a detected human box bH , we
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extract instance level visual appearance feature fH using standard techniques:
we apply ROI pooling, pass the result through a residual block and then per-
form global average pooling. For the object box bO, we do not keep the visual
appearance feature but instead use the word2vec instead to encode the seman-
tic knowledge of the object category, denoted by fO. The motivation for this
design choice is that the intra-class variation for each object category can be
considerable, but detailed visual appearance of the object is often not crucial
for the interaction category: for example, the colour and design of the “frisbee”
do not provide useful cues when inferring its relation with the human. Using
the word2vec semantic embedding for the object enables the model to leverage
language priors to capture which objects might afford similar predicates and
therefore generalise to previously unseen or rare HOI instances [41].

(2) Spatial Encoder: The spatial encoder is designed to encode the spatial
relationship between the human and object instance at both a coarse and fine-
grained level. The encoding methods for each granularity are described next.

Coarse Layout representation: We use the two-channel binary image
representation advocated by [9] to describe the interaction pattern at a coarse
level. Specifically, we take the union of the human and object instance boxes as
the reference box and construct two binary images (as separate channels) within
it: the first channel has value 1 within the human bounding box and 0 elsewhere;
the second channel has value 1 within the object box and 0 elsewhere.

Fine-grained Layout representation: Instead of encoding the fine-grained
information via key point estimation, we compute a human parse (segmentation
masks for the human parts) of the detected human and a segmentation mask
for the detected object instance to provide fine-grained layout information. The
primary hypothesis underpinning our design is that the shape and boundary of
both the human and object can greatly help disambiguate different actions with a
similar coarse spatial layout. The reason is that these fine-grained cues can re-
veal the interaction boundary explicitly when inferring the relations. Moreover,
fine-grained human parsing both reflects the human’s pose and keeps much of
the valuable information of their visual appearance. In our work, we use Mask-
RCNN [16] to extract the segmentation mask of the object, and use MMAN [27]
to extract the segmentation mask of all visible human parts. These two masks
are stacked to form the fine-grained layout representation. Specifically, the first
channel contains a set of discrete intensity values uniformly ranging from 0.05
to 0.95 to indicate different human parts; the second channel is a binary map
that has a value of 1 within the object mask area. Examples of the information
conveyed by each channel information can be found in Fig. 2.

We show in our ablation experiments (in Sec. 4.2) that each of the channels
forming the coarse and fine-grained layout representations yield improvements
in HOI detection performance. Changing the encoding mechanism of the fine-
grained information outperforms the one encoding via key point estimation in
the literature. In all other experiments, we stack coarse (two channels) and fine-
grained (two channels) layout representations together as the input to the spatial
encoder unless otherwise specified. The spatial encoder extracts the instance
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spatial relationship fSP via a small CNN. The CNN comprises two convolutional
layers (the first of which uses an SE block [17] to learn more powerful features)
and is trained end-to-end.
(3) Context Encoder: The context encoder is designed to uncover comple-
mentary cues conveyed in other regions of the image. Instead of using visual
appearance to encode the contexts information directly, we change the encoding
mechanism by using semantic categories. It comprises a global context encod-
ing, i.e., the estimated scene, and a local context encoding, namely the semantic
categories of other objects present in the surrounding neighbourhood of the can-
didate instance pair.

Global Context: For the global context representation fG, we use a DenseNet-
161 model [18] pretrained on Places365 [44] to extract scene features. After that
we encode the scene class (with largest likelihood) using word2vec. The global
context embedding fG (scene feature) is therefore a 300-dimensional vector.

Local Context: During inference of the relationship between the candidate
pair containing object oi with human h, all the other detected objects oj where
j 6= i in the neighbourhood can be considered to provide local context. In par-
ticular, their semantic category and position relative to the candidate object oi

are both valuable cues for distinguishing between different interactions. For ex-
ample, the objects present in the neighbourhood of an ‘eating a cake’ interaction
will likely comprise a spoon-like tool, whereas for the ‘cutting a cake’ interac-
tion, it is a knife-like tool. The distance between the knife and the cake is also
important (if it is far away from the cake, it is very unlikely that the knife is
being used to cut the cake).

Motivated by this observation, we first use word2vec to encode the semantic
knowledge of each object oj in the neighbourhood, and then concatenate the
resulting embedding with its spatial relationship fR (computed with respect
to the candidate object oi). Following prior work [46] on visual relationship
detection, the spatial geometric relationship feature fR between candidate object
oi and its neighbour oj is encoded as follows:

fR = [(
xi1 − x

j
1

xj2 − x
j
1

), (
yi1 − y

j
1

yj2 − y
j
1

), log(
xi2 − xi1
xj2 − x

j
1

), log(
yi2 − yi1
yj2 − y

j
1

)], (1)

where (xi1, x
i
2, y

i
1, y

i
2) and (xj1, x

j
2, y

j
1, y

j
2) are the normalised box coordinates of

the candidate object oi and its neighbour oj . This geometric feature fR is a
measure of the scales and relative positioning of the two object entities.

To account for the variable number of objects present in the neighbourhood
of an interaction, we use NetVLAD [2] to aggregate all object representations
when forming the local context embedding fL. During the end-to-end training,
the NetVLAD aggregation module can learn to discriminatively select which
information should be promoted (or demoted). Finally, the output of the Context
Encoder, fC , is generated by concatenating the global context fG and local
context fL embeddings.
(4) Motion Encoder: The Motion Encoder aims to infer the likely movements
of humans and objects in a given image, and provide cues to detect and recognise
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their interactions. We draw inspiration from the work of [36] which sought to
learn models from video that were capable of synthesising plausible futures from
a singe static image and in particular, the more recent work of [10] for static
image flow prediction. In our work, we focus on the latter task of predicting local
optical flow as a proxy for plausible future movements of objects. We adopt the
Im2Flow model [10] to predict flow from the static image to encode plausible
scene motion. The flow describes which pixel regions will move (together with
their direction and velocity) in the instant following image capture. Concretely,
we first predict the flow information of the image and then use the plausible
motion encoder (a CNN with learnable parameters) to extract plausible motion
features fM . Qualitative examples of the predicted flow can be seen in Fig. 1
(right) and Fig. 2.
(5) Fusion Module: The fusion module combines the outputs of the backbone,
spatial, context and motion encoders into a single feature embedding and uses
it to predict a score for the interaction sH,O of the candidate instance pair
<bH , bO>. The design of the fusion module is shown in Fig. 2. Specifically, we
perform fusion by putting the sequence of available features f∗ = {f1, ..., fk} =
{fH , fO, fSP , fC , fM}, one by one into GRUs [4]3. The description of the whole
scene gradually accumulate and update in the memory cell mk (hidden state),
where the lower index k is the number of reasoning steps. At each step k, we
start with calculate the update gate zk as:

zk = σz(Wzfk + Uzmk−1) + bz, (2)

where Wz, Uz and bz are weights and bias and σz is a sigmoid activation function.
The update gate zk analyzes the description of the whole scene at last step mk−1

and the current input feature fk to decide how much the current step updates
its memory cell. The new added information fk at step k helping grow the
description of the whole scene is computed as follows:

m̂i = σm(Wmfk + Um(rk ◦mk−1) + bz), (3)

where Wm, Um and bm are weights and bias and σm is a tanh activation function.
◦ is an element-wise multiplication. rk is the reset gate that decides what content
to forget based on the reasoning between the mk−1 and fk, can be computed as

rk = σr(Wrfk + Urmk−1) + br, (4)

where Wr, Ur and br are weights and bias and σr is a sigmoid activation func-
tion. Then the description of the whole scene mk at the current step is a linear
interpolation using the update gate zk between the previous description mk−1

and the new added content m̂k:

mk = (1− zk) ◦mk−1 + zk ◦ m̂k, (5)

3 Empirically, we observe the feature ordering to GRU is not sensitive to the HOI
detection performance. So we use this order in all experiments.
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where ◦ is an element wise multiplication. Lastly, we take the memory cell mk at
the end of sequence f∗ as the final representation to predict the relation category:
the output of the fusion module is the interaction score SH,O for the candidate
pair <bH , bO>. The proposed gate and memory mechanism allows the model to
dynamically select which information should be highlighted or suppressed in the
final representation, rendering it more discriminative for the final objective.

3.3 Training and Inference

Since a human can concurrently perform different actions and interact with one
or more objects, e.g. “eating a cake and reading a book while sitting on the
coach”, HOI detection represents a muli-label classification problem in which
each predicate is independent and not mutually exclusive. During training, a
binary sigmoid classifier is used for each predicate that minimises the cross-
entropy between the prediction score sH,O and the ground truth label.

During inference, all human and object instances are first detected in each
image. Each human and object box pair <bH , bO> is then passed through the
network to produce a score saH,O for each predicate class a ∈ 1, ..., A, where A
denotes the total number of predicate classes. The final relation score is then
combined with the detection scores of the human and object instances sH and
sO that represent the detection quality of the instance boxes bH and bO. The
final HOI score SH,O for the candidate box pair <bH , bO> is then calculated as:

SH,O = sH,O · sH · sO (6)

4 Experiments

We first introduce the dataset used, evaluation metric and implementation de-
tails in Sec. 4.1. Next, we conduct a detailed ablation study in Sec. 4.2 to verify
the effectiveness of each proposed component and present some qualitative re-
sults to demonstrate the strengths and failure cases of our approach. Finally we
report our HOI detection results quantitatively and compare with state-of-the-
art approaches on two benchmarks: V-COCO [13] and HICO-DET[3].

4.1 Experimental Setup

Datasets: We evaluate our proposed approach on two HOI detection bench-
marks: V-COCO [13] and HICO-DET [3]. V-COCO contains 5400 images in the
training and validation split and 4946 images in the test set. It is annotated with
26 common action category labels and the bounding boxes for human and object
instances. HICO-DET comprises 47,776 images (38,118 images in the train-
ing set and 9,658 in the test set) with more than 150K <human, verb, object>
triplets. It is annotated with 600 HOI categories over 80 object classes and 117
unique verbs. HICO-DET is both larger and more diverse than V-COCO.
Evaluation Metric: We follow the standard evaluation setting in [9] and use
mean average precision to measure HOI detection performance. Formally, a



Amplifying Key Cues for Human-Object-Interaction Detection 11

triplet of <human, verb, object> is considered as true positive if and only if:
(1) the predicted bounding box of both human and object instance overlap with
the ground truth bounding box with IoU greater than 0.5, and (2) the predicted
HOI matches the ground truth HOI category. For the V-COCO dataset, we eval-
uate mAProle following [9]. For the HICO-DET dataset, mAP performance is
reported for three different HOI category sets: (1) all 600 HOI categories (Full),
(2) 138 categories with less than 10 training samples (Rare) and (3) the remain-
ing 462 categories with more than 10 training samples (Non-Rare).
Implementation details: Following [9], we build our approach on the Faster-
RCNN [32] object detector (without FPN) with the ResNet-50 backbone to en-
able a fair comparison with other prior approaches. The human parse masks
are obtained with a Macro-Micro Adversarial Net [27], trained on the LIP
dataset [27]. Object masks are obtained with Mask-RCNN [16] pretrained on MS-
COCO [25]. Global scene features are extracted using a DenseNet-161 model [18]
pretrained on Places365 [44]. The object and scene semantic embeddings are ob-
tained from Google News trained word2vec embeddings. We adopt the Im2Flow
model [10] to predict flow from the static image to encode plausible motion. All
pretrained models described above are kept frozen during the training in this
paper. More implementation details can be found in the extended arXiv version
of this paper.

4.2 Ablation Studies

In this section, we empirically investigate the sensitivity of the proposed method
to different design choices. As the HICO-DET dataset is both larger and more
diverse than V-COCO, we perform all ablation studies on HICO-DET. We study
four aspects of FCMNet: the contribution of the network components, fine-
grained spatial encodings, context features and fusion strategies. Finally, we
present some qualitative examples to illustrate the challenging and failure cases.

Architectural variants: We conduct an ablation study by examining the
effectiveness of each proposed component in our network structure. We use com-
binations of human,object embeddings and coarse layout spatial configuration
(instance boxes) as our baseline (Base). As shown in Table 1, each proposed
module yields improved performance under all three HICO-DET settings. By
looking at the first four rows in Table 1, we can observe that the fine-grained
spatial configuration information contributes the most significant performance
gain as an individual module, suggesting that fine-grained shape and boundary of
the human parts and object can greatly help disambiguate different actions with
a similar coarse spatial layout. The FCMNet which includes all proposed mod-
ules (human and object features, spatial encoder with coarse and fine-grained
layout, context encoder, motion encoder and fusion) at the same time achieves
the best performance, which verifying the effectiveness of the proposed compo-
nents. More ablation studies can be found in the extended arXiv version of this
paper.

Fine-grained spatial configuration encoding: We compare the perfor-
mance of using different forms of fine-grained spatial information in Table 2. To
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Table 1: Ablation Study on
Different Network Components

Methods Full Rare Non-Rare

Baseline (Base) 14.8 12.3 15.7
Base+ Fine 17.6 15.4 18.3
Base + Context 16.2 14.1 16.9
Base + Motion 16.5 14.4 17.2
FCMNet (ours) 20.4 17.3 21.6

Table 2: Ablation Study on
Different Fine-grained Information

Methods Full Rare Non-Rare

Baseline (Base) 14.8 12.3 15.7
Base +HS 15.8 12.9 16.8
Base +HP 17.1 14.7 18.0
Base +OM 16.2 14.0 17.1
Base +HP+OM 17.6 15.4 18.3

Table 3: Ablation Study on
Different Context Information

Methods Full Rare Non-Rare

Baseline (Base) 14.8 12.3 15.7
Base+Local(w2v) 15.7 13.7 16.4
Base+Global(w2v) 15.1 13.0 16.2
Base+Both(visual) 15.2 12.8 15.9
Base+Both(w2v) 16.2 14.1 16.9

Table 4: Ablation Study on
Different Fusion Strategy

Methods Full Rare Non-Rare

Baseline 14.8 12.3 15.7
Late Fusion 18.1 15.3 19.0

Concatenation 17.9 14.9 20.0
Fusion (Attention) 19.7 16.6 20.1

FCMNet (ours) 20.4 17.3 21.6

enable a fair comparison, we use the same model architecture, i.e., with only
human and object features and a spatial encoder. We observe that each of the
investigated fine-grained spatial encoding, i.e., Human Parts (HP) and Object
Mask (OM), improves performance. Since prior work ([38, 14]) has shown that
encoding fine-grained information via human key-point estimation is also useful
to convey pose, we also compare with the Human skeleton (HS) configuration
(following [38, 14]) in this table. It can be seen that using human parts infor-
mation outperforms human skeletons. Using both proposed fine-grained spatial
encoding HP and OM concurrently outperforming the baseline by 2.8 mAP in
the Full setting, which demonstrates the effectiveness of the proposed encoding
mechanism for fine-grained spatial configuration.

Context features: We compare the performance of using different contex-
tual information in Table 3. It can be seen that both local context (features of
the objects in the neighbourhood) and global context (the scene) contribute to
improved performance. Encoding the context via word2vec outperforms the one
using the visual appearance directly.

Fusion Mechanism: We compare the performance of using different fusion
mechanisms in Table 4. The proposed fusion design strongly outperforms late
fusion, simple concatenation and fusion with attention mechanism, demonstrat-
ing the utility of providing the model with a gate and memory mechanism for
filtering its representation of the candidate pair using all available information
gradually. Nevertheless, both late fusion, concatenation, fusion with attention
and proposed fusion module boost performance, verifying that the different en-
coders capture valuable complementary information for HOI detection.
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<walk, bicycle> <ride, bicycle> <lie on, bed> <read, book> <wash, surfboard><carry, backpack>

Fig. 3: Samples of human object interactions detected by FCMNet. The first four
illustrate correct detections; the last two shows failure cases.

Table 5: Performance comparison on the V-COCO dataset. The scores are re-
ported in mAP(role) as in the standard evaluation metric and the best score is
marked in bold. Our approach sets a new state-of-the-art on this dataset.

Method Feature Backbone AProle

InteractNet [12] ResNet-50-FPN 40.0
BAR-CNN [19] Inception-ResNet 41.1

GPNN [31] ResNet-152 44.0
iHOI [40] ResNet-50-FPN 45.8

Xu et al. [41] ResNet-50 45.9
iCAN [9] ResNet-50 44.7

Wang et al. [39] ResNet-50 47.3
RPNN [45] ResNet-50 47.5
Li et al. [24] ResNet-50 47.8
PMFNet [38] ResNet-50-FPN 52.0

Baseline (Ours) ResNet-50 45.3
FCMNet (Ours) ResNet-50 53.1

Qualitative Visual Examples: In Fig. 3, we present qualitative examples
to illustrate strengths and failure cases on the HICO-DET dataset. We highlight
the detected human and object with red and blue bounding boxes respectively.
The first four samples are some challenging cases where our proposed approach
produce correct detection. It indicates our model can distinguish subtle visual
differences between interactions (first two) and be able to detect co-occurrence
relations (third and fourth). The last two show some failure cases.

4.3 Results and Comparisons

In this section, we compare our FCMNet with several existing approaches for
evaluation. We use combinations of humans, objects embeddings and coarse
layout spatial configuration (instance boxes) as our baseline—the final FCMNet
model integrates all the proposed modules.

For the VCOCO dataset, we present the quantitative results in terms of
AProle in Table 5. Our baseline achieves competitive performance with an AProle

of 45.3 (placing it above approximately half of the listed prior work). Different
from those approaches, we use word2vec embeddings to represent the object
rather than the visual embedding from ROI pooling, which turns out to be very
effective for HOI detection in small datasets like V-COCO. Using the word2vec
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Table 6: Performance comparison on the HICO-DET dataset. Mean average
precision (mAP) is reported for the default and Known object setting. The best
score is marked in bold. Our approach sets a new state-of-the-art on this dataset.

Method Feature Backbone
Default Known Object

Full Rare Non-Rare Full Rare Non-Rare

InteractNet [12] ResNet-50-FPN 9.94 7.16 10.77 - - -
GPNN [31] ResNet-152 13.11 9.34 14.23 - - -
iHOI [40] ResNet-50-FPN 13.39 9.51 14.55 - - -

Xu et al. [41] ResNet-50 14.70 13.26 15.13 - - -
iCAN [9] ResNet-50 14.84 10.45 16.15 16.43 12.01 17.75

Wang et al. [39] ResNet-50 16.24 11.16 17.75
Li et al. [24] ResNet-50 17.03 13.42 18.11 19.17 15.51 20.26

Gupta et al [14] ResNet-152 17.18 12.17 18.68 - - -
RPNN [45] ResNet-50 17.35 12.78 18.71 - - -

PMFNet [38] ResNet-50-FPN 17.46 15.65 18.00 20.34 17.47 21.20

Baseline (Ours) ResNet-50 14.77 12.27 15.65 16.07 13.97 16.82
FCMNet (Ours) ResNet-50 20.41 17.34 21.56 22.04 18.97 23.12

semantic embedding for the object representation enables us to leverage language
priors to capture which objects might afford similar actions when the training
data is limited. Our full FCMNet model (with all components proposed in Sec-
tion 3) achieves 53.1 mAP, which outperforms prior approaches by a considerable
margin.

For the HICO-DET dataset, we present quantitative results in terms of
mAP in Table 6. We report results on two different settings of Default and
Known Objects. Note that our baseline still performs well and surpasses nearly
half of existing approaches. FCMNet improves upon our baseline by 5.64 mAP
on the default setting (full split) and sets a new state-of-the-art on this dataset
for both the default and Known object setting.

5 Conclusions

We have presented FCMNet, a novel framework for human object interaction
detection. We illustrated the importance of the encoding mechanism for the
fine-grained spatial layouts and semantic contexts, which enables to distinguish
the subtle differences among interactions. We also show that the prediction of
plausible motion greatly help to constrain the space of candidate interactions by
considering their motion and boost performance. By combining these cues via
a gate and memory mechanism, FCMNet outperforms state-of-the-art methods
on standard human object interaction benchmarks by a considerable margin.
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