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Abstract. The problem of action localization involves locating the ac-
tion in the video, both over time and spatially in the image. The cur-
rent dominant approaches use supervised learning to solve this problem.
They require large amounts of annotated training data, in the form of
frame-level bounding box annotations around the region of interest. In
this paper, we present a new approach based on continual learning that
uses feature-level predictions for self-supervision. It does not require any
training annotations in terms of frame-level bounding boxes. The ap-
proach is inspired by cognitive models of visual event perception that
propose a prediction-based approach to event understanding. We use a
stack of LSTMs coupled with a CNN encoder, along with novel atten-
tion mechanisms, to model the events in the video and use this model
to predict high-level features for the future frames. The prediction errors
are used to learn the parameters of the models continuously. This self-
supervised framework is not complicated as other approaches but is very
effective in learning robust visual representations for both labeling and
localization. It should be noted that the approach outputs in a stream-
ing fashion, requiring only a single pass through the video, making it
amenable for real-time processing. We demonstrate this on three datasets
- UCF Sports, JHMDB, and THUMOS’13 and show that the proposed
approach outperforms weakly-supervised and unsupervised baselines and
obtains competitive performance compared to fully supervised baselines.
Finally, we show that the proposed framework can generalize to egocen-
tric videos and achieve state-of-the-art results on the unsupervised gaze
prediction task. Code is available on the project page3.
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1 Introduction

We develop a framework for jointly learning spatial and temporal localization
through continual, self-supervised learning, in a streaming fashion, requiring only
a single pass through the video. Visual understanding tasks in computer vision
have focused on the problem of recognition [1, 3, 23, 25] and captioning [1, 9, 47,

3 https://saakur.github.io/Projects/ActionLocalization/
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46], with the underlying assumption that each input video is already localized
both spatially and temporally. While there has been tremendous progress in
action localization, it has primarily been driven by the dependence on large
amounts of tedious, spatial-temporal annotations. In this work, we aim to tackle
the problem of spatial-temporal segmentation of streaming videos in a continual,
self-supervised manner, without any training annotations.
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Fig. 1: The Proposed Approach has four core components: (i) feature extraction and
spatial region proposal, (ii) a future prediction framework, (iii) a spatial-temporal error
detection module and (iv) the error-based action localization process.

Drawing inspiration from psychology [13, 14, 52], we consider the underlying
mechanism for both event understanding and attention selection in humans to
be the idea of predictability. Defined as the surprise-attention hypothesis [13],
unpredictable factors such as large changes in motion, appearance, or goals of
the actor have a substantial effect on the event perception and human attention.
Human event perception studies [52, 2] have shown that longer-term, temporal
surprise have a strong correlation with event boundary detection. In contrast,
short-term spatial surprise (such as those caused by motion) has a more sub-
stantial effect on human attention and localization [14]. Our approach combines
both spatial and temporal surprise to formulate a computational framework to
tackle the problem of self-supervised action localization in streaming videos in
a continual manner.

We formulate our computational framework on the idea of spatial-temporal
feature anticipation to model predictability of perceptual features. The main
assumption in our framework is that expected, unpredictable features require
attention and often point to the actor performing the action of interest. In con-
trast, predictable features can belong to background clutter and are not relevant
to the action of interest. It is to be noted that unpredictability or surprise is not
the same as rarity. It refers to short-term changes that aid in the completion of
an overall task, which can be recurring [13]. We model the perceptual features
using a hierarchical, cyclical, and recurrent framework, whose predictions are
influenced by current and prior observations as well as current perceptual pre-
dictions. Hence, the predictive model’s output can influence the perception of
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the current frame being observed. The predictions are constantly compared with
the incoming observations to provide self-supervision to guide future predictions.

We leverage these characteristics to derive and quantify spatial-temporal
predictability. Our framework performs continuous learning to generate “atten-
tion maps” that overlap with the action being performed. Using these attention
maps, we leverage advances in region proposals [29, 31, 44, 54] to localize actions
in streaming videos without any supervision. Contrary to other attention-based
approaches [5, 28, 33], we do not use the object-level characteristics such as label,
role, and affordance in the proposal generation process.

Contributions: The contributions of our approach are three-fold: (i) we
are among the first to tackle the problem of self-supervised action localization
in streaming videos without any training data such as labels or bounding boxes,
(ii) we show that modeling spatial-temporal prediction error can yield consistent
localization performance across action classes and (iii) we show that the approach
generalizes to egocentric videos and achieves competitive performance on the
unsupervised gaze prediction task.

2 Related Work

Supervised action localization approaches tackle action localization through
the simultaneous generation of bounding box proposals and labeling each bound-
ing box with the predicted action class. Both bounding box generation and la-
beling are fully supervised, i.e., they require ground truth annotations of both
bounding boxes and labels. Typical approachesleverage advances in object de-
tection to include temporal information [7, 16, 18, 36, 37, 40, 43, 50] for proposal
generation. The final step typically involves the use of the Viterbi algorithm [7]
to link the generated bounding boxes across time.

Weakly-supervised action localization approaches have been explored
to reduce the need for extensive annotations [5, 26, 28, 33]. They typically only
require video-level labels and rely on object detection-based approaches to gener-
ate bounding box proposals. It is to be noted that weakly supervised approaches
also use object-level labels and characteristics to guide the bounding box se-
lection process. Some approaches [5] use a similarity-based tracker to connect
bounding boxes across time to incorporate temporal consistency.

Unsupervised action localization approaches have not been explored to
the same extent as supervised and weakly-supervised approaches. These ap-
proaches do not require any supervision - both labels or bounding boxes. The
two more common approaches are to generate action proposals using (i) super-
voxels [18, 38] and (ii) clustering motion trajectories [45]. It should be noted
that [38] also uses object characteristics to evaluate the “humanness” of each
super-voxel to select bounding box proposals. Our approach falls into the class
of unsupervised action localization approaches. The most closely related ap-
proaches (with respect to architecture and theme) to ours are VideoLSTM [28]
and Actor Supervision [5], which use attention in the selection process for gen-
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erating bounding box proposals, but require video-level labels. We, on the other
hand, do not require any labels or bounding box annotations for training.

While fully supervised approaches have more precise localization and achieve
better recognition, the required number of annotations is rather large. It is not
amenable to an increase in the number of classes and a decrease in the number of
training videos. While not requiring frame-level annotations, weakly supervised
approaches have the underlying assumption that there exists a large, annotated
training set that allows for effective detection of all possible actors (both human
and non-human) in the set of action classes. Unsupervised approaches, such as
ours, do not make any such assumptions but can result in poorer localization
performance. We alleviate this to an extent by leveraging advances in region pro-
posal mechanisms and self-learning robust representations for obtaining video-
level labels.

3 Self-Supervised Action Localization

In this section, we introduce our self-supervised action localization framework,
as illustrated in Figure 1. Our approach has four core components: (i) feature
extraction and spatial region proposal, (ii) a self-supervised future prediction
framework, (iii) a spatial-temporal error detection module, and (iv) the error-
based action localization process.

3.1 Feature Extraction and Spatial Region Proposal

The first step in our approach is feature extraction and the subsequent per-frame
region proposal generation for identifying possible areas of actions and associated
objects. Considering the tremendous advances in deep learning architectures for
learning robust spatial representations, we use pre-trained convolutional neural
networks to extract the spatial features for each frame in the video. We use
a region proposal module, based on these spatial features, to predict possible
action-agnostic spatial locations. We use class-agnostic proposals (i.e., the object
category is ignored, and only feature-based localizations are taken into account)
for two primary reasons. First, we do not want to make any assumptions on
the actor’s characteristics, such as label, role, and affordance. Second, despite
significant progress in object detection, there can be many missed detections,
especially when the object (or actor) performs actions that can transform their
physical appearance. It is to be noted that these considerations can result in a
large number of region proposals that require careful and robust selection but
can yield higher chances of correct localization.

3.2 Self-supervised Future Prediction

The second stage in our proposed framework is the self-supervised future pre-
diction framework. We consider the future prediction module to be a generative
model whose output is conditioned on two factors - the current observation and
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an internal event model. The current observation fSt is the feature-level encod-
ing of the presently observed frame, It. We use the same feature encoder as the
region proposal module to reduce the approach’s memory footprint and complex-
ity. The internal event model is a set of parameters that can effectively capture
the spatial-temporal dynamics of the observed event. Formally, we define the pre-
dictor model as P (f̂St+1|We, f

S
t ), where We represents the internal event model

and f̂St+1 is the predicted features at time t + 1. Note that features fSt is not a
one-dimensional vector, but a tensor (of dimension wf × hf × df ) representing
the features at each spatial location.

We model temporal dynamics of the observed event using Long Short Term
Memory Networks (LSTMs)[12]. While other approaches [21, 48, 49] can be used
for prediction, we consider LSTMs to be more suited for the following reasons.
First, we want to model the temporal dynamics across all frames of the observed
action (or event). Second, LSTMs can allow for multiple possible futures and
hence will not tend to average the outcomes of these possible futures, as can be
the case with other prediction models. Third, since we work with error-based
localization, using LSTMs can ensure that the learning process propagates the
spatial-temporal error across time and can yield progressively better predictions,
especially for actions of longer duration. Formally, we can express LSTMs as

it = σ(Wixt +Whiht−1 + bi); ft = σ(Wfxt +Whfht−1 + bf ) (1)

ot = σ(Woxt +Whoht−1 + bo); gt = φ(Wgxt +Whght−1 + bg) (2)

mt = ft ·mt−1 + it · gt; ht = ot · φ(mt) (3)

where xt is the input at time t, σ is a non-linear activation function, (·) represents
element-wise multiplication, φ is the hyperbolic tangent function (tanh) and Wk

and bk represent the trained weights and biases for each of the gates.
As opposed to [2], who also use an LSTM-based predictor and a decoder net-

work, we use a hierarchical LSTM model (with three LSTM layers) as our event
model. This modification allows us to model both spatial and temporal depen-
dencies, since each higher-level LSTMs act as a progressive decoder framework
that captures the temporal dependencies captured by the lower-level LSTMs.
The first LSTM captures the spatial dependency that is propagated up the pre-
diction stack. The updated hidden state of the first (bottom) LSTM layer (h1t )
depends on the current observation fSt , the previous hidden state (h1t−1) and
memory state (m1

t−1). Each of the higher-level LSTMs at level l take the output

of the bottom LSTM’s output hl−1
t and memory state ml−1

t and can be defined
as (hlt,m

l
t) = LSTM(hlt−1, h

l−1
t ,ml−1

t ). Note this is different from a typical hier-
archical LSTM model [35] in that the higher LSTMs are impacted by the output
of the lower level LSTMs at current time step, as opposed to that from the pre-
vious time step. Collectively, the event model We is described by the learnable
parameters and their respective biases from the hierarchical LSTM stack.

Hence, the top layer of the prediction stack acts as the decoder whose goal
is to predict the next feature fSt+1 given all previous predictions f̂S1 , f̂

S
2 , . . . f̂

S
t ,

an event model We and the current observation fSt . We model this prediction
function as a log-linear model characterized by
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log p(f̂st+1|hlt) =

t∑
n=1

f(We, f
S
t ) + log Z(ht) (4)

where hlt is the hidden state of the lth level LSTM at time t and Z(ht) is a
normalization constant. The LSTM prediction stack acts as a generative process
for anticipating future features.

The objective function for training the predictive stack is a weighted zero
order hold between the predicted features and the actual observed features,
weighted by the zero order hold difference. The prediction error at time t is

given by E(t) = 1
nf

∑wf

i=1

∑hf

j=1 eij , where

eij = m̂t(i, j)� ‖fSt+1(i, j)− f̂St+1(i, j)‖2`2 (5)

Each feature fSt has dimensions wf × hf × df and m̂t(i, j) is a function that
returns the zero order difference between the observed features at times t and
t+ 1 at location (i, j). Note that the prediction is done at the feature level and
not at the pixel level, so the spatial quantization is coarser than pixels.

3.3 Prediction Error-based Attention Map

At the core of our approach is the idea of spatial-temporal prediction error for
localizing the actions of interest in the video. It takes into account the quality of
the predictions made and the relative spatial alignment of the prediction errors.
The input to the error detection module is the quantity from Equation 5. We
compute a weight αij associated with each spatial location (i, j) in the predicted

feature f̂St+1 as

αij =
exp(eij)∑wk

m=1

∑hk

n=1 exp(emn)
(6)

where eij represents the weighted prediction error at location (i, j) (Equation 5).
It can be considered to be a function a(fSt , h

l
t−1) of the state of the top-most

LSTM and the input feature fSt at time t. The resulting matrix is an error-based
attention map that allows us to localize the prediction error at a specific spatial
location. And the average spatial error over time, E(t), is used for temporal
localization.

One may remark that the formulation of αij is very similar to Bahdanau
attention [4]. However, there are two key differences. First, our formulation is
not parametrized and does not add to the number of learnable parameters in the
framework. Second, our attention map is a characterization of the difficulty in
anticipating unpredictable motion. In contrast, Bahdanau attention is an effort
to increase the decoder’s encoding ability and does not characterize the unpre-
dictability of the future feature. We compare the use of both types of attention
in Section 5.4, where we see that error-based localization is more suitable for our
application.



Action Localization through Continual Predictive Learning 7

3.4 Extraction of Action Tubes

The action localization module receives a stream of bounding box proposals and
an error-based attention map to select an output tube. The action localization is
a selection algorithm that filters all region proposals from Section 3.1 and returns
the collection of proposals that have a higher probability of action localization.
We do so by assigning an energy term to each of the bounding box proposals
(Bit) at time t and choosing the top k bounding boxes with least energy as our
final proposals. The energy of a bounding box Bit is defined as

E(Bit) = wα φ(αij ,Bit) + wtδ(Bit, {Bj,t−1}) (7)

where φ(·) is a function that returns a value characteristic of the distance between
the bounding box center and location of maximum error, δ(·) is a function that
returns the minimum spatial distance between the current bounding box and
the closest bounding box from the previous time step. The constants wα and wt
are scaling factors. Note that δ(·) is introduced to enforce temporal consistency
in predictions, but we find that it is optional since the LSTM prediction stack
implicitly enforces the temporal consistency through its memory states. In our
experiments we set k = 10, wα = 0.75.

3.5 Implementation Details

In our experiments, we use a VGG-16 [34] network pre-trained on ImageNet as
our feature extraction network. We use the output of the last convolutional layer
before the fully connected layers as our spatial features. Hence the dimensions
of the spatial features are wf = 14, hf = 14, df = 512. These output features are
then used by an SSD [29] to generate bounding box proposals. Note that we take
the generated bounding box proposals without taking into account classes and
associated probabilities. We use a three-layer hierarchical LSTM model with the
hidden state size as 512 as our predictor module. We use the vanilla LSTM as
proposed in [12]. Video level-features are obtained by max-pooling the element-
wise dot-product of the hidden state of the top-most LSTM and the attention
values across time. We train with the adaptive learning mechanism proposed in
[2], with the initial learning rate set to be 1× 10−8 and scaling factors ∆−

t and
∆+
t as 1× 10−2 and 1× 10−3, respectively. The network was trained for 1 epoch

on a computer with one Titan X Pascal.

4 Experimental Setup

4.1 Data

We evaluate our approach on three publicly available datasets for evaluating the
proposed approach on the action localization task.

UCF Sports [32] is an action localization dataset consisting of 10 classes
of sports actions such as skating and lifting collected from sports broadcasts. It
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is an interesting dataset since it has a high concentration of distinct scenes and
motions that make it challenging for localization and recognition. We use the
splits (103 training and 47 testing videos) as defined in [26] for evaluation.

JHMDB [19] is composed of 21 action classes and 928 trimmed videos.
All videos are annotated with human-joints for every frame. The ground truth
bounding box for the action localization task is chosen such that the box encom-
passes all the joints. This dataset offers several challenges, such as increasing
amounts of background clutter, high inter-class similarity, complex motion (in-
cluding camera motion), and occluded objects of interest. We report all results
as the average across all three splits.

THUMOS’13 [22] is a subset of the UCF-101 [39] dataset, consisting of 24
classes and 3, 207 videos. Ground truth bounding boxes are provided for each of
the classes for the action localization task. It is also known as the UCF-101-24
dataset. Following prior works [28, 38], we perform our experiments and report
results on the first split.

We also evaluate the proposed approach’s generalization ability on egocentric
videos by evaluating it on the unsupervised gaze prediction task. There has been
evidence from cognitive psychology that there is a strong correlation between
gaze points and action localization [41]. Hence, the gaze prediction task would
be a reasonable measure of the generalization to action localization in egocentric
videos. We evaluate the performance on the GTEA Gaze [6] dataset, which
consists of 17 sequences of tasks performed by 14 subjects, with each sequence
lasting about 4 minutes. We use the official splits for the GTEA datasets as
defined in prior works [6].

4.2 Metrics and Baselines

For the action localization task, we follow prior works [28, 38] and report
the mean average precision (mAP) at various overlap thresholds, obtained by
computing the Intersection Over Union (IoU) of the predicted and ground truth
bounding boxes. We also evaluate the quality of bounding box proposals by
measuring the average, per-frame IoU, and the bounding box recall at varying
overlap ratios.

Since ours is an unsupervised approach, we obtain class labels by clustering
the learned representations using the k-means algorithm. While more compli-
cated clustering may yield better recognition results [38], the k-means approach
allows us to evaluate the robustness of learned features. We evaluate our ap-
proach in two settings Kgt and Kopt, where the number of clusters is set to the
number of ground truth action classes and an optimal number obtained through
the elbow method [24], respectively. From our experiments, we observe that
Kopt is three times the number of ground truth classes, which is not unreason-
able and has been a working assumption in other deep learning-based clustering
approaches [11]. Clusters are mapped to the ground truth clusters for evaluation
using the Hungarian method, as done in prior unsupervised approaches [20, 51].
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We also compare against other LSTM and attention-based approaches (Sec-
tion 5.3) to the action localization problem for evaluating the effectiveness of the
proposed training protocol.

For the gaze prediction task, we evaluate the approaches using Area Un-
der the Curve (AUC), which measures the area under the curve on saliency
maps for true positive versus false-positive rates under various threshold values.
We also report the Average Angular Error (AAE), which measures the an-
gular distance between the predicted and ground truth gaze positions. Since our
model’s output is a saliency map, AUC is a more appropriate metric compared
to average angular error (AAE), which requires specific locations.

5 Quantitative Evaluation

In this section, we present the quantitative evaluation of our approach on two
different tasks, namely action localization, and egocentric gaze prediction. For
the action localization task, we evaluate our approach on two aspects - the quality
of proposals and spatial-temporal localization.

5.1 Quality of Localization Proposals

We first evaluate the quality of our localization proposals by assuming perfect
class prediction. This allows us to independently assess the quality of localization
performed in a self-supervised manner. We present the results of the evaluation
in Table 1 and compare against fully supervised, weakly supervised, and unsu-
pervised baselines. As can be seen, we outperform many supervised and weakly
supervised baselines. APT [45] achieves a higher localization score. However, it
produces, on average, 1, 500 proposals per video, whereas our approach returns
approximately 10 proposals. A large number of localization proposals per video
can lead to higher recall and IoU but makes the localization task, i.e., action
labeling per video harder and can affect the ability to generalize across domains.
Also, it should be noted that our approach produces proposals in streaming fash-
ion, as opposed to many of the other approaches, which produce action tubes
based on motion computed across the entire video. This can make real-time
action localization in streaming videos harder.

5.2 Spatial-temporal Action Localization

We also evaluate our approach on the spatial-temporal localization task. This
evaluation allows us to analyze the robustness of the self-supervised features
learned through prediction. We generate video-level class labels through cluster-
ing and use the standard evaluation metrics (Section 4.2) to quantify the perfor-
mance. The AUC curves with respect to varying overlap thresholds are presented
in Figure 2. We compare against a mix of supervised, weakly-supervised, and
unsupervised baselines on all three datasets.
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Supervision Approach Average

Full
STPD[42] 44.6

Max Path Search [43] 54.3

Weak
Ma et al. [30] 44.6

GBVS [8] 42.1
Soomro et al. [38] 47.7

None
IME Tublets [18] 51.5

APT [45] 63.7
Proposed Approach 55.7

Table 1: Comparison with fully supervised and weakly supervised baselines on class-
agnostic action localization on UCF Sports dataset. We report the average localization
accuracy of each approach i.e. average IoU.

On the UCF Sports dataset (Figure 2(a)), we outperform all baselines
including several supervised baselines except for Gkioxari and Malik [7] at higher
overlap thresholds (σ > 0.4) when we set number of clusters k to the number
of ground truth classes. When we allow for some over-segmentation and use the
optimal number of clusters, we outperform all baselines till σ > 0.5.
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Fig. 2: AUC for the action localization tasks are shown for (a) UCF Sports, (b) JHMDB
and (c) THUMOS13 datasets. We compare against baselines with varying levels of
supervision such as Lan et al. [26], Tian et al. [40], Wang et al. [50], Gkioxari and
Malik [7], Jain et al. [18], Soomro et al. [36–38], Hou et al. [16], and VideoLSTM [28].

On the JHMDB dataset (Figure 2(b)), we find that our approach, while
having high recall (77.8%@σ = 0.5), the large camera motion and intra-class
variations have a significant impact on the classification accuracy. Hence, the
mAP suffers when we set k to be the number of ground truth classes. When
we set the number of clusters to the optimal number of clusters, we outper-
form other baselines at lower thresholds (σ < 0.5). It should be noted that the
other unsupervised baseline (Soomro et al. [38]) uses object detection proposals
from a Faster R-CNN backbone to score the “humanness” of a proposal. This
assumption tends to make the approach biased towards human-centered action
localization and affects its ability to generalize towards actions with non-human
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actors. On the other hand, we do not make any assumptions on the characteris-
tics of the actor, scene, or motion dynamics.

On the THUMOS’13 dataset (Figure 2(c)), we achieve consistent improve-
ments over unsupervised and weakly supervised baselines, at k = kgt and achieve
state-of-the-art mAP scores when k = kopt. It is interesting to note that we
perform competitively (when k = kgt) the weakly-supervised attention-based
VideoLSTM [28], which uses a convLSTM for temporal modeling along with
a CNN-based spatial attention mechanism. It should be noted that we have a
higher recall rate (0.47@σ = 0.4 and 0.33@σ = 0.5) at higher thresholds than
other state-of-the-art approaches on THUMOS’13 and shows the robustness of
the error-based localization approach to intra-class variation and occlusion.

Clustering quality. Since there is a significant difference in the mAP score
when we set a different number of clusters in k-means, we measured the ho-
mogeneity (or purity) of the clustering. The homogeneity score measures the
“quality” of the cluster by measuring how well a cluster models a given ground-
truth class. Since we allow the over-segmentation of clusters when we set k to the
optimal number of clusters, this is an essential measure of feature robustness.
Higher homogeneity indicates that intra-class variations are captured since all
data points in a given cluster belong to the same ground truth class. We observe
an average homogeneity score of 74.56% when k is set to the number of ground
truth classes and 78.97% when we use the optimal number of clusters. As can
be seen, although we over-segment, each of the clusters typically models a single
action class to a high degree of integrity.

Approach
Annotations

# Proposals
Average Recall mAP

Labels Boxes 0.1 0.2 0.3 0.4 0.5 @0.2

ALSTM [33] 3 7 1 0.46 0.28 0.05 0.02 - 0.06

VideoLSTM [28] 3 7 1 0.71 0.52 0.32 0.11 - 0.37

Actor Supervision [5] 3 7 ∼ 1000 0.89 - - - 0.44 0.46

Proposed Approach 7 7 ∼ 10 0.84 0.72 0.58 0.47 0.33 0.59

Table 2: Comparison with other LSTM-based and attention-based approaches on the
THUMOS’13 dataset. We report average recall at various overlap thresholds, mAP at
0.2 overlap threshold and the average number of proposals per frame.

5.3 Comparison with other LSTM-based approaches

We also compare our approach with other LSTM-based and attention-based
models to highlight the importance of the proposed self-supervised learning
paradigm. Since LSTM-based frameworks can have highly similar architectures,
we consider different requirements and characteristics, such as the level of anno-
tations required for training and the number of localization proposals returned
per video. We compare with three approaches similar in spirit to our approach
- ALSTM [33], VideoLSTM [28] and Actor Supervision [5] and summarize the
results in Table 2. It can be seen that we significantly outperform VideoLSTM
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and ALSTM on the THUMOS’13 dataset in both recall and mAP@σ = 0.2.
Actor Supervision [5] outperforms our approach on recall, but it is to be noted
that the region proposals are dependent on two factors - (i) object detection-
based actor proposals and (ii) a filtering mechanism that limits proposals based
on ground truth action classes, which can increase the training requirements and
limit generalizability. Also, note that returning a higher number of localization
proposals can increase recall at the cost of generalization.

5.4 Ablative Studies

The proposed approach has three major units that affect its performance the
most - (i) the region proposal module, (ii) future prediction module, and (iii)
error-based action localization module. We consider and evaluate several alter-
natives to all three modules.

We choose selective search [44] and EdgeBox [54] as alternative region pro-
posal methods to SSD. We use an attention-based localization method for action
localization as an approximation of the ALSTM [33] to evaluate the effectiveness
of using the proposed error-based localization. We also evaluate a 1-layer LSTM
predictor with a fully connected decoder network to approximate [2] on the
localization task. We evaluate the effect of attention-based prediction by intro-
ducing a Bahdanau [4] attention layer before prediction as an alternative to the
error-based action localization module.

These ablative studies are conducted on the UCF Sports dataset. The results
are plotted in Figure 3(a). It can be seen that the use of the prediction error-
based localization has a significant improvement over a trained attention-based
localization approach. We can also see that the choice of region proposal methods
do have some effect on the performance of the approach, with selective search and
EdgeBox proposals doing slightly better at higher thresholds (σ ∈ (0.4, 0.5)) at
the cost of inference time and additional bounding box proposals (50 compared
to the 10 from SSD-based region proposal). Using SSD for generating proposals
allows us to share weights across the frame encoder and region proposal tasks
and hence reduce the memory and computational footprint of the approach.
We also find that using attention as part of the prediction module significantly
impacts the architecture’s performance. It could, arguably, be attributed to the
objective function, which aims to minimize the prediction error. Using attention
to encode the input could impact the prediction function.

5.5 Unsupervised Egocentric Gaze Prediction

Finally, we evaluate the ability to generalize to egocentric videos by quantifying
the model’s performance on the unsupervised gaze prediction task. Given that
we do not need any annotations or other auxiliary data, we employ the same
architecture and training strategy for this task. We evaluate on the GTEA gaze
dataset and compare it with other unsupervised models in Table 3. As can be
seen, we obtain competitive results on the gaze prediction task, outperforming all
baselines on both the AUC and AAE scores. It is to be noted that we outperform
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Itti et al. [17] GBVS [10] AWS-D [27] Center Bias OBDL [15] Ours

AUC 0.747 0.769 0.770 0.789 0.801 0.861

AAE 18.4 15.3 18.2 10.2 15.6 13.6

Table 3: Comparison with state-of-the-art on the unsupervised egocentric gaze predic-
tion task on the GTEA dataset.

the center bias method on the AUC metric. Center bias exploits the spatial bias
in egocentric images and always predicts the center of the video frame as the
predicted gaze position. The AUC metric’s significant improvement indicates
that our approach predicts gaze fixations that are more closely aligned with
the ground truth than the center bias approach. Given that the model was not
designed explicitly for this task, it is a remarkable performance, especially given
the performance of fully supervised baselines such as DFG [53], which achieves
10.6 and 88.3 for AUC and AAE.
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Fig. 3: Qualitative analysis of the proposed approach on UCF Sports dataset (a) abla-
tive variations on AUC. (a) class-wise AUC, and (c) class-wise bounding box recall at
different overlap thresholds.

5.6 Qualitative Evaluation

We find that our approach has a consistently high recall for the localization task
across datasets and domains. We consider that an action is correctly localized
if the average IoU across all frames is higher than 0.5, which indicates that
most, if not all, frames in a video are correctly localized. We illustrate the recall
scores and subsequent AUC scores for each class in the UCF sports dataset in
Figures 3(b) and (c). For many classes (7/10 to be specific), we have more than
80% recall at an overlap threshold of 0.5. We find, through visual inspection,
that the spatial-temporal error is often correlated with the actor, but is usually
not at the center of the region of interest and thus reduces the quality of the
chosen proposals. We illustrate this effect in Figure 4. The first row shows the
input frame, the second shows the error-based attention, and the last row shows
the final localization proposals. If more proposals are returned (as is the case
with selective search and EdgeBox), we can obtain a higher recall (Figure 3(b))
and higher mAP.
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Successful Localization

Unsuccessful Localization

Fig. 4: Qualitative Examples: We present the error-based attention location and the
final prediction, for both successful and unsuccessful localizations. Green BB: Predic-
tion, Blue BB: Ground truth

6 Conclusion

In this work, we introduce a self-supervised approach to action localization,
driven by spatial-temporal error localization. We show that the use of self-
supervised prediction using video frames can help learn highly robust features
and obtain state-of-the-art results on localization without any training annota-
tions. We also show that the proposed framework can work with a variety of
proposal generation methods without losing performance. We also show that
the approach can generalize to egocentric videos without changing the train-
ing methodology or the framework and obtain competitive performance on the
unsupervised gaze prediction task.
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