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1 Implementation Details

The encoder-decoder model architecture is used in the stage of normal estima-
tion. In the stage of shape and pose estimation, we use ResNet50 [1] and the
average-pooled output is directly regressed to an 85-dimension vector. The po-
larization image and the predicted normal map are concatenated as the input
to estimate the SMPL shape parameters. ResNet50 is trained from scratch.

We synthesize a polarization image (polarizers of 0, 45, 90 and 135 degree)
given the rendered depth and color image. In detail, from the depth image, we
obtain the normal map and calculate the zenith and azimuth angle, and from
the color image, we get the gray image and take it as the polarization image of 0
degree polarizer, denoted by I(0). Assuming diffuse reflection of the human body
surface, we can calculate the degree of polarization p according to the equation,
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with the zenith angle and refractive index known. Then the upper and lower
bound of the illumination intensity I,,4. and I, can be solved in closed-form
with the constraints,
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Finally, we can use the equation,
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to get the image for polarizer ¢,,; of degree 45, 90 and 135. To make it close to
the real-world applications, we add Gaussian noise with ¢ = 1/255 to each pixel
of the synthetic polarization image and then quantize the intensity value to 8
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bits. Due to the fact that we only have geometric information for human body,
the synthetic polarization images only have values on human body part.

We first train the normal estimation model for 20 epochs by setting A\. and
An to be 2 and 1 respectively. The learning rate starts at 0.001 and decays to
0.0001 after 15 epochs. Then we train the shape estimation model for 30 epochs
by setting Ag, Ag, Ay and Ay to be 0.2, 0.5, 100 and 3 respectively. The learning
rate starts at 0.001 and decays to 0.0001 after 5 epochs. Adam optimizer [2] is
used to train our model.

To deform the SMPL based human mesh model towards the predicted nor-
mal map, first we integrate a depth map from the predicted normal map with
the projected SMPL mesh as the coarse depth. In detail, we define a objective
function as

and we get the detailed depth via minimization of this function.
The first term, F, (D), is used to enforce the predicted normal to be perpen-
dicular to the tangents of the optimized depth surface,

En(D) = Z Tini + Tin,. (6)
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The tangents T, and T, are defined as below,
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In the above function, f, and f, are the focal length and p, and p, are the
camera center of the camera.
For the second term Eq(D), we set the boundary constraints so that the
optimized depth to be close to the base depth D;,
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Finally we want to preserve smoothness for the integrated surface and add
the smoothness constraints for neighboring pixels in the third term E¢(D),

E(D)= Y |IDi - Djl> (10)
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We find a linear least squares solution of the objective Eq. (5) and get the
detailed depth map.
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2 More results

We show the results of normal estimation and shape estimation on SURREAL
dataset in Fig. 1 and 2 respectively. We display the corresponding color image in
the first column for better demonstration. The results of Linear [3] and Physics
[4] are also shown. The synthetic polarization images (displayed the first channel
as a gray image) are shown in the second column, which are the input to estimate
normal map and also the shape and pose. Due to the fact that we only have
geometric information for human body, the synthetic polarization images only
have values on human body part.

A video® is presented to give a more comphrehensive view of our detailed
shape. The video shows the predicted detailed human shape from different view
angles. On the one hand, compared with PIFu [5] and Depth Human [6], we can
see that our method is more robust to complex poses especially when we change
the angle of view. On the other hand, compared with HMD [7], our method can
recover more reliable clothing details of human body.

color image polarization ours Linear [3] Physics [4] ours ours
image (color image) (no physical priors)

Fig. 1. The figure shows the results of normal estimation on SURREAL dataset. The
first column is color image for better visualization. The second column is the synthetic
polarization image as the input to estimate normal map. The third column is the result
from ours (color image). The fourth and fifth columns are the results from Linear [3]
and Physics [4]. The sixth column is ours (no physical priors). Compared with ours
(color image), we can see that the better surface normal is predicted by ours.

5 The video, named detailed_shape_demo.avi, is submitted in the supplementary ma-
terial.
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color image polarization ours ours color image polarization ours ours
image (w/o normal) image (w/o normal)

Fig. 2. The figure shows the results of shape and pose estimation on SURREAL
dataset. We show the color image in the first column for better visualization. The
second column is polarization image, which is the input to estimate the shape. The
third column is the result from ours (w/o normal). We can see that normal map is an
informative priors to learn to predict better human shape from a polarization image.

3 Polarization Human Shape and Pose Dataset (PHSPD)

More details can be found on the site 6.

3.1 Data Acquisition

Our acquisition system synchronizes four cameras, one polarization camera and
three Kinects V2 in three different views (each Kinect v2 has a depth and a
color camera). The layout is shown in Fig. 3. The other task is multi-camera
synchronization. As one PC can only control one Kinect V2, we develop a soft
synchronization method. Specifically, each camera was connected with a desktop
(the desktop with the polarization camera is the master and the other three ones
with three Kinects are clients). We use socket to send message to each desktop.
After receiving certain message, each client will capture the most recent frame
from the Kinect into the desktop memory. At the same time, the master desktop
sends a software trigger to the polarization camera to capture one frame into
the buffer. Fig. 3 shows the synchronization performance of the system that we
develop. We let a bag fall down and compare the position of the bag in the same
frame from four views. We can find that the positions of the bag captured by
four cameras are almost the same in terms of its distance to the ground.

Our dataset has 12 subjects, 9 male and 3 female subjects. Each subject is
required to do 3 different groups of actions (18 different actions in total) for 4
times plus one free-style group. Details are shown in Tab. 1. So each subject has

5 https://jimmyzou.github.io/publication /2020-PHSPDataset
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Fig. 3. Left figure: the layout of our multi-camera system. Three Kinects are placed
around a circle of motion area with one polarization camera. Right figure: the synchro-
nization result of our multi-camera system. The same frame of the three-view color
images and one-view polarization image are displayed. Note that the layout of our
multi-camera system has been changed to the left figure, but other settings are the
same.

‘group #‘ actions ‘
1 warming-up, walking, running, jumping, drinking, lifting dumbbells
2 sitting, eating, driving, reading, phoning, waiting

3 presenting, boxing, posing, throwing, greeting, hugging, shaking hands

Table 1. The table displays the actions in each group. Subjects are required to do
each group of actions for four times, but the order of the actions each time is random.

subject # of original = # of annotated # of discarded
gender

# frames frames frames
1 female 22561 22241 320 (1.4%)
2 male 24325 24186 139 (0.5%)
3 male 23918 23470 448 (1.8%)
4 male 24242 23906 336 (1.4%)
5 male 24823 23430 1393 (5.6%)
6 male 24032 23523 509 (2.1%)
7 female 22598 22362 236 (1.0%)
8 male 23965 23459 506 (2.1%)
9 male 24712 24556 156 (0.6%)
10 female 24040 23581 459 (1.9%)
11 male 24303 23795 508 (2.1%)
12 male 24355 23603 752 (3.1%)

total - 287874 282112 5762 (2.0%)

Table 2. The table shows the detail number of frames for each subject and also the
number of frames that have SMPL shape and 3D joint annotations.
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13 short videos and the total number of frames for each subject is around 22K.
Overall, our dataset has 287K frames with each frame including one polarization
image, three color and three depth images. Quantitative details of our dataset
are shown in Tab. 2

3.2 Annotation Process

The reason that we use multi-camera system to acquire image data is that multi-
camera system provides much more information than a single-camera system.
So the annotation of SMPL human shape and 3D joint position is more reliable
using information of three-view Kinects v2.

After camera calibration and plane segmentation of depth images, now we
have a point cloud of human fused from three-view depth image and noisy 3D
joint position by Kinect SDK at hand. The annotation SMPL human shape and
3D joint position has three main steps. First step is to filter out accurate 3D
joint position by three Kinects in three views. For each view, we get the 2D joint
estimation by OpenPose [8] and also the 2D Kinect joint by projecting the noisy
Kinect 3D joint to the color image.

Then we compare the 2D distance between these two estimated joints. If the
distance is larger than 50 pixel distance, we regard the joint estimated by the
Kinect as incorrect one. As we have the joint estimation from three views, we
simply average the correct joint position of three views and consider it as the
initial guess of the position of the joint. If none of the three-view estimated joint
is correct, we consider it as a missing joint. In this way, we get the initial guess
of 3D joint positions for each frame and we discard the frame with more than 2
joints missing (14 in total). The next step is similar to [9], but instead of fitting
to the 2D joints which have inherent depth ambiguity, we fit SMPL model to
the initial guess of 3D joints.

Furthermore, as we have the point cloud of a human from three-view depth
cameras, our final step is to further iteratively optimize SMPL parameters by
minimizing the distance between vertices of SMPL shape to their nearest point.
Finally, we have the annotated SMPL shape parameters and 3D joint positions.

Besides, we render the boundary of SMPL shape on the image to get the
mask of background, and calculate the target normal using three depth images
based on [10]. Although the target normal is noisy, our experiment result shows
our model can still learn to predict good and smooth normal maps.

The annotation process is shown in Fig. 4. Starting from the initial guess of
3D pose, we fit SMPL shape to the initial 3D pose and further fit to the point
cloud of human mesh. Finally, we get annotated human shape and pose. Besides,
we also show our annotated shape on multi-view images (one polarization image
and three-view color image) and the human pose in 3D coordinate space in Fig 5.
We also have a video 7 to show our annotation results.

" The video, named annotation_demo.avi, is submitted in the supplementary material.
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initial guess initial shape initial shape render final shape fitted  final shape rendered ~final 3D pose projected
of 3D pose ‘with point cloud on the image to point cloud on the image on the image

Fig. 4. The figure shows our annotation process. The first column shows the initial
guess of 3D pose, which is projected on the polarization image. After fitting the SMPL
shape to the initial pose, we show the initial shape with the point cloud of human mesh
(black points) in the second column and the rendered shape on the image in the third
column. The fourth and fifth columns show the annotated shape after fitting to the
point cloud of human mesh. The sixth column shows the corresponding annotated 3D
pose.
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polarization image polarization image color image view 1 color image view 2 color image view 3 pose displayed in 3D
with rendered shape  with rendered shape  with rendered shape  with rendered shape

Fig. 5. The figure shows our annotated shapes and poses. The first column is the polar-
ization image for reference. The second to the fifth columns show the annotated shape
rendered on the polarization image and three-view color images. The sixth column
shows the annotated pose in 3D space.
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