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Abstract. This paper tackles the problem of estimating 3D body shape
of clothed humans from single polarized 2D images, i.e. polarization im-
ages. Polarization images are known to be able to capture polarized re-
flected lights that preserve rich geometric cues of an object, which has
motivated its recent applications in reconstructing surface normal of the
objects of interest. Inspired by the recent advances in human shape esti-
mation from single color images, in this paper, we attempt at estimating
human body shapes by leveraging the geometric cues from single po-
larization images. A dedicated two-stage deep learning approach, SfP,
is proposed: given a polarization image, stage one aims at inferring the
fined-detailed body surface normal; stage two gears to reconstruct the
3D body shape of clothing details. Empirical evaluations on a synthetic
dataset (SURREAL) as well as a real-world dataset (PHSPD) demon-
strate the qualitative and quantitative performance of our approach in
estimating human poses and shapes. This indicates polarization camera
is a promising alternative to the more conventional color or depth imag-
ing for human shape estimation. Further, normal maps inferred from
polarization imaging play a significant role in accurately recovering the
body shapes of clothed people.

Keywords: Human Pose and Shape Estimation, Clothed 3D Human
body, Shape from Polarization

1 Introduction

Compared to the task of color-image based pose estimation [1–20] that predicts
3D joint positions of an articulated skeleton, human shapes provide much richer
information of a human body in 3D and are visually more appealing. It, on the
other hand, remains a challenging problem, partly owing to the relative high-
dimensional space of human body shapes. The issue is somewhat alleviated by
the emerging low-dimensional modelling of human shape, such as SCAPE [21]
and SMPL [22], statistical models that are learned from large sets of carefully
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scanned 3D body shapes. Based on these low-dimensional human shape represen-
tations, a number of end-to-end deep learning methods [23–37] are subsequently
developed to estimate human shapes directly from color images. The predicted
human shapes, however, are usually naked and lacking in surface details, since
e.g. SMPL model is learned from naked human body scans.

Volume-based techniques [38, 39] are widely used in capturing surface de-
tails of a clothed human body from a single image. Due to finite computational
resource, the estimated human shapes from these methods are usually of low
resolution. Saito et al. [40] consider to remedy this by predicting a pixel-aligned
implicit surface function that captures more detailed body surface. It however
relies on a large training set of detailed 3D human bodies, and the method is
still unable to handle complex poses. In the meantime, the methods of [41] and
[42] aim to exploit additional geometric cues arising from color image inputs;
[41] instead focuses on predicting fine depth maps, and [42] takes on the shading
aspect. Unfortunately, accurate and reliable prediction of these geometric cues
from a color image is yet another challenging issue - it remains unclear how much
one can leverage from such cues. Motivated by these efforts and their limitations,
we consider in this paper to work with a new 2D imaging modality, polarization
camera, that is known at better preserving fine-scale geometric properties of 3D
objects, including human shapes. The intuition comes from basic physics prin-
ciple: when a light ray reflects off an object, it is polarized and conveys ample
geometric cues concerning local surface details of the object, usually represented
as surface normal [43, 44]. It may be found to note some biological species are
even able to directly perceive light polarization [45, 46], which significantly fa-
cilitates their 3D sensing. Empirically, our experiments support that the surface
normal maps obtained out of the input 2D polarization images could play an
instrumental role in producing accurate and reliable 3D clothed human shapes.

As shown in Fig. 1, our approach, also called SfP, contains two stages. Stage 1
concentrates on predicting accurate surface normal maps from single polarization
images5 by exploiting the associated physics laws as priors. It is then fed into
stage 2 in reconstructing the final clothed human shape.

Unlike existing efforts in normal map prediction [41, 42], our approach pre-
dicts normal maps by explicitly incorporating the underlying physical laws of
polarization imaging, which results in more reliable performance. To achieve
this, there are two main challenges we need to overcome, namely π-ambiguity of
the azimuth angle and the possibly large noise in practical applications. To this
end we introduce two ambiguous normal maps n1 and n2 (Sec. 3.1) as a physical
prior, based on the assumption that the light reflected by human clothing is
mostly diffused. Different from [44], each pixel is then classified into one of the
three types: the two ambiguous normal maps and background. This is followed
by a refinement step to deliver the final surface normal prediction of n̂, that
accounts for the possibly-noisy fused normal map output owing to environmen-
tal noise and the digital quantization of the polarization camera. Based on the

5 In this paper, an polarization image has four channels with each channel correspond-
ing to a specific polarizer degree of (0, 45, 90 and 135).
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Fig. 1. Given a single polarization image, a two-stage process is executed in our ap-
proach. (1) Stage 1, in blue, estimates the surface normal from the polarization image
based on the physical assumption that reflected light from an object is polarized. Af-
ter calculating the two ambiguous normal maps, (n1, n2), as physical priors from the
polarization image (see Sec. 3.1 for details), image pixels are classified as belonging to
either of the two normals or a background, thus obtaining the fused normal n3. Un-
fortunately, this normal is often noisy, thud a further step is carried out in regressing
a final accurate surface normal n̂, by integrating these physical normal maps and the
raw polarization image. (2) Stage 2, in orange, concatenates the polarization image and
the surface normal as the input to estimate clothed body shape in two steps. The first
step focuses on estimating the parameters of SMPL, a rough & naked shape model pa-
rameterized by Θ; the pose (3D joint positions) J is directly obtained as a by-product
of the rigged shape model. The next step deforms the SMPL shape guided by the final
surface normal of stage 1, to reconstruct the refined 3D human shape with clothing
details.

raw polarization image and output of stage 1, stage 2 concerns the estimation
of clothed human shape. It starts from predicting a coarse SMPL shape model,
which is then deformed by leveraging the geometric details from surface normal,
our stage 1 output, to form the final human shape. Empirically our two-stage
pipeline is shown to be capable of accurately reconstructing human shapes, while
retaining clothing details such as cloth wrinkles.

To summarize, there are two main contributions in this work. (1) A new
problem of inferring high-resolution 3D human shapes from a single polarization
image is proposed and investigated. This lead us to curate a dedicated Polariza-
tion Human Shape and Pose Dataset (PHSPD). (2) A dedicated deep learning
approach, SfP, is proposed6, where the detail-preserving surface normal maps

6 Our project website is https://jimmyzou.github.io/publication/2020-polarization-
clothed-human-shape
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are obtained following the physical laws, and are shown to significantly improve
the reconstruction performance of clothed human shapes. Empirical evaluations
on a synthetic SURREAL dataset as well as a real-world dataset demonstrate
the applicability of our approach. Our work provide sound evidence in engag-
ing 2D polarization camera to estimate 3D human poses and shapes, a viable
alternative to conventional 2D color or 3D depth cameras.

2 Related Work

Shape from polarization (SfP) focuses on the inference of shape (normally rep-
resented as surface normal) from the polarimetric information in the multiple
channels of a polarization image, captured under linear polarizers with differ-
ent angles. The main issue of SfP is angle ambiguity. Previous methods are
mainly physics-based that rely on other additional information or assumptions
to elucidate the possible ambiguities, such as smooth object surfaces [47], coarse
depth map [48, 43] and multi-view geometric constraint [49, 50]. The recent work
of [44] proposes to blend physical priors (ambiguous normal maps) with deep
learning in uncovering the normal map. Using physical priors as part of the in-
put, deep learning model can then be trained to account for the ambiguity and
be noise-resilient. We improve upon [44] by classifying ambiguous normal and
background for each pixel, and regressing the normal given the ambiguous and
classified physical priors.

3D human pose estimation from single images has been extensively investigated
in the past five years, centering around color or depth imaging. Many of the stud-
ies [51–57] utilize dictionary-based learning strategies. More recent efforts aim
to directly regress 3D pose using deep learning techniques, including CNNs [1–3]
and Graph CNNs [58, 59]. In prticulr, several recent efforts [4–12, 12–20] look
into a common framework of estimating 2D pose (either 2D joint positions or
heatmap), which is then lifted to 3D. Ideas from self-supervised learning [20, 17]
and adversarial learning [11, 18] also gain attentions in e.g. predicting 3D pose
under additional constraints imposed from re-projection or adversarial losses.

Human shape estimation from single images has drawn growing attentions re-
cently, thanks to development of human shape models of SCAPE and SMPL [21,
22]. These two statistical models learn low-dimensional representations of hu-
man shape from large corpus of human body scans. Together with deep learning
techniques, it has since been feasible to estimate human body shapes from single
color or depth images. Earlier activities focus more on optimizing the SCAPE
or SMPL model parameters toward better fitting to various dedicated visual or
internal representations, such as foreground silhouette [23–25] and pose [26, 27].
Deep learning based approaches are more commonplace in recent efforts [28–
31], which typically learn to predict the SMPL parameters by incorporating
the constrains from 2/3D pose, silhouette, as well as adversarial learning losses.
[32] takes the body pixel-to-surface correspondence map as proxy representation
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and then performs estimation of parameterized human pose and shape. In [33],
optimization-based methods [26] and regression-based methods [28] are com-
bined to form a self-improved fitting loop. point cloud is considered as input
in [60] to regress SMPL parameters. Instead of single color images, our work
is based on single polarization image; rather than inferring coarse human body
shape, we aim to recover high-res human shapes.

As for the estimation of clothed human shape, volume-based methods [38–40]
are proposed to reconstruct textured body shapes. they unfortunately suffer from
the low resolution issue of volumetric representation. Our work is closely related
to [42], which combines the robustness of parametric model and the flexibility of
free-form 3D deformation in a hierarchical manner. The major difference is, the
clothing details of our work are provided by the reliable normal map estimated
from the polarization image, whereas the network in [42] deforms depth image
by employing the shading information trained on additional data, that are inher-
ently unreliable due to the lack of ground-truth information of surface normal,
albedo and environmental lighting. Our work is also related to [41] which recov-
ers detailed human shape from a color image, by iteratively incorporating both
rough depth map and estimated surface normal for improved surface details.

3 The Proposed SfP Approach

There are two main stages in our approach: (1) estimate surface normal from
a single polarization image; (2) estimate human pose and shape from the esti-
mated surface normal and the raw polarization image, followed by body shape
refinement from the estimated surface normal.

3.1 Surface Normal Estimation

The reflected light from a surface mainly includes three components [50], the
polarized specular reflection, the polarized diffuse reflection, and the unpolarized
diffuse reflection. A polarization camera has an array of linear polarizer mounted
right on top of the CMOS imager, similar to the RGB Bayer filters. During
the imaging process of a polarization camera, a pixel intensity typically varies
sinusoidally with the angle of the polarizer [43]. In this work, we assume that the
light reflected off human clothes is dominated by polarized diffuse reflection and
unpolarized diffuse reflection. For a specific polarizer angle φpol, the illumination
intensity at a pixel with dominant diffuse reflection is

I(φpol) =
Imax + Imin

2
+

Imax − Imin

2
cos(2(φpol − ϕ)). (1)

Here ϕ is the azimuth angle of surface normal, Imax and Imin are the upper and
lower bounds of the illumination intensity. Imax and Imin are mainly determined
by the unpolarized diffuse reflection, and the sinusoidal variation is mainly de-
termined by the polarized diffuse reflection. Note that there is π-ambiguity in
the azimuth angle ϕ in Eq. (1), which means that ϕ and π+ϕ will result in the
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same illumination intensity of the pixel. As for the zenith angle θ, it is related
to the degree of polarization ρ, where

ρ =
Imax − Imin

Imax + Imin
. (2)

According to [47], when diffuse reflection dominates, the degree of polarization
ρ is a function of the zenith angle θ and the refractive index n,

ρ =
(n− 1

n )2 sin2 θ

2 + 2n2 − (n+ 1
n )2 sin2 θ + 4 cos θ

√
n2 − sin2 θ

. (3)

In this paper, we assume the refractive index n = 1.5 since the material of human
clothes is mainly cotton or nylon. With n known, the solution of θ in Eq. (3) is
a close-form expression of n and ρ.

Taking into account the π-ambiguity of ϕ, we have two possible solutions to
the surface normal for each pixel, that form the physical priors. We propose to
train a network to classify each pixel into three categories: background, ambigu-
ous normal n1(ϕ, θ) and ambiguous normal n2(π+ϕ, θ) with probability p0, p1,
and p2 respectively. Then we have the fused normal as follows,

n3 = (1− p0) · p1n1 + p2n2

‖p1n1 + p2n2‖2
, (4)

where (1− p0) is a soft mask of the foreground human body. Unfortunately, due
to the environmental noise and the digital quantization of camera in real-world
applications, the fused normal map n3 is noisy and non-smooth. Thus taking the
fused noisy normal as an improved physical prior, a denoising network is further
trained to take both the polarization image and the physical priors (n1,n2,n3)
as input, and to produce a smoothed normal n̂. The loss function for normal
estimation consists of the cross entropy (CE) loss of classification and the L1
loss of the cosine similarity,

Ln =
1

HW

H∑
i=1

W∑
j=1

[
λcCE(yi,j , pi,j) + λn(1− 〈n̂i,j ,ni,j〉)

]
, (5)

where λc and λn are the weights of each loss, yi,j is the label indicating which
category the pixel (i, j) belongs to, and 〈n̂i,j ,ni,j〉 denotes the cosine similarity
between the predicted and target normal vectors of pixel (i, j). Note that the
category label yi,j is created by discriminating whether the pixel is background
or which ambiguous normal has higher cosine similarity with the target normal.
λc and λn is 2 and 1 respectively in our experiment.

3.2 Human Pose and Shape Estimation

To start with, the SMPL [22] representation is used for describing 3D human
shapes, which is a differentiable function M(β,θ) ∈ R6,890×3 that outputs a
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triangular mesh with 6,890 vertices given 82 parameters [β,θ]. The shape pa-
rameter β ∈ R10 is the linear coefficients of a PCA shape space that mainly
determines individual body features such height, weight and body proportions.
The PCA shape space is learned from a large dataset of body scans [22]. θ ∈ R72

is the pose parameter that mainly describes the articulated pose, consisting of
one global rotation of the body and the relative rotations of 23 joints in axis-
angle representation. Finally, our clothed body shape is produced by first ap-
plying shape-dependent and pose-dependent deformations to the template pose,
then using forward-kinematics to articulate the body shape back to its current
pose, and deforming the surface mesh by linear blend skinning. J ∈ R24×3 are
the 3D joint positions that can be obtained by linear regression from the output
mesh vertices.

In addition to the SMPL parameters, we also need to predict the global
translation t ∈ R3. Thus for the task of human pose and shape estimation, the
output vector is of 85-dimension, Θ̂ = [β̂, θ̂, t̂]. Given Θ̂, we can also obtain the
predicted 3D joint positions Ĵ. To this end, the loss function is defined as

Ls = λβ‖β − β̂‖22 + λθ‖θ − θ̂‖22 + λt‖t− t̂‖22 + λJ‖J− Ĵ‖22, (6)

where λβ , λθ, λt and λJ are weights of each component in the loss function,
which are fixed to 0.2, 0.5, 100, and 3, respectively.

The reconstructed SMPL human shape thus far is naked 3D shape and lack-
ing fine surface details. Our goal is to refine this intermediate naked shape under
the guidance of our smoothed surface normal estimate. It is carried out as fol-
lows. The SMPL body shape is rendered on the image plane to form a base depth
map. The technique in [61] is then engaged here to obtain an optimized depth
map from the predicted surface normal and the base depth map. It is carried
out under three constraints: first, the predicted normal should be perpendicu-
lar to the local tangent of the optimized depth surface; second, the optimized
depth should be close to the base depth; Third, a smoothness constraint is en-
forced on nearby pixels of the optimized depth map. This depth map is obtained
as a solution of a linear least-squares system. Weights of the normal term, the
depth data term, and the smoothness term are empirically set to 1.0, 0.06, and
0.55, respectively. Finally, our clothed body shape is produced by upsampling &
deforming the SMPL mesh according to the Laplacian of the optimized depth
map.

3.3 Polarization Human Pose and Shape Dataset

To facilitate empirical evaluation of our approach in real-world scenarios, a
home-grown dataset is curated, referred as Polarization Human Shape and Pose
Dataset, or PHSPD. A complete description of this PHSPD dataset is provided
in [62]. In data Requisition stage, a system of four soft-synchronized cameras are
engaged, consisting of a polarization camera and three Kinects V2, with each
Kinect v2 having a depth and a color cameras. 12 subjects are recruited in data
collection, where 9 are male and 3 are female. Each subject performs 3 different
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groups of actions (out of 18 different action types) 4 times, plus an addition
period of free-form motion at the end of the session. Thus for each subject, there
are 13 short videos (of around 1,800 frames per video with 10-15 FPS); the total
number of frames for each subject amounts to 22K. Overall, our dataset consists
of 287K frames, each frame here contains a synchronized set of images - one
polarization image, three color and three depth images.

The SMPL shape parameters and the 3D joint positions of a body shape are
obtained from the image collection of current frame as follows. For each frame,
its initial 3D pose estimation is obtained by integrating the Kinect readouts as
well as the corresponding 2D joint estimation from OpenPose [63] across the
depth and color sensors. Then the body shape, i.e. parameters of the SMPL
model, is estimated as optimal fit to the initial pose estimate [26]. The 3D point
cloud of body surface acquired from three depth cameras are now utilized in
our final step, resulting in the estimation of refined body shape with clothing
details [64], by iteratively minimizing the distance of SMPL shape vertex to its
nearest point of the 3D point cloud. Exemplar clothed human shapes are shown
in Fig. 2.

Fig. 2. Exemplar 3D poses and SMPL shapes in the real-world PHSPD dataset. We
render the SMPL shape on four images (one polarization image and three-view color
images) and we also show the pose in 3D space.

4 Empirical Evaluations

Empirical evaluations are carried out on two major aspects. (1) For normal es-
timation, we report the mean angle error (MAE), which measures the angle
between the target and estimated normal map, eangle = arccos(〈ni,j , n̂i,j〉) for



3D Human Shape Reconstruction from a Polarization Image 9

pixel (i, j), where 〈·, ·〉 denotes cosine similarity. (2) For human pose and shape
estimation, we report the mean per joint position error (MPJPE) and the 3D
surface distance error. MPJPE is defined as the average distance between pre-
dicted and annotated joints of the test samples. In both SURREAL and PHSPD
datasets, there are 24 annotated 3D joints. We also report the MPJPE for 20
joints by removing the hand and foot joints. The 3D surface error measures the
distance between the predicted mesh and the ground truth mesh, by averaged
distance of vertex pairs, as follows: for each vertex of the human body mesh,
its closest vertex in ground truth mesh is identified to form its vertex pair; the
average distance of all such vertex pairs is then computed.

For the real-world PHSPD dataset, subject 4 is chosen to form the validation
set (23,786 samples); the test set contains those of subjects 7, 11, and 12 (69,283
samples); the train set has everything else (186,746 samples).

We also demonstrate the effectiveness of our SfP approach on SURREAL [29],
a synthetic dataset of color images rendered from motion-captured human body
shapes. Polarization images can be synthesized using color and depth images
(details are in supplementary material). We choose subset ”run1” and select
one frame with a gap of ten frames. Finally, the train set has 245,759 samples,
validation set has 14,528 samples and test set has 52,628 samples.

4.1 Evaluation of Surface Normal Estimation

In this task, our approach is compared with a recent work Physics [44], a tra-
ditional method Linear [65], and three ablation variants of our method as base-
lines. Ours (color image) uses only color image for estimating the normal map.
Ours (no physical priors) does not incorporate the ambiguous normal maps as
the physical priors and employs the polarization image as the only input. Ours
(no fused normal) is similar to Physics [44], in which we use the two ambiguous
normal maps as the only priors, discarding the fused normal maps.

SURREAL PHSPD

Linear [65] 20.03 34.97
Physics [44] 7.45 21.45

ours (color image) 19.49 25.02
ours (no physical priors) 13.89 24.71
ours (no fused normal) 7.43 21.65

ours 7.10 20.75

Table 1. Comparison of surface normal estimation evaluated in MAE. The competing
methods include Linear [65], Physics [44], ours, and three ablation variants of our
method.

Through both the quantitative results of Table 1 and the visual results of
Fig. 3, it is observed that our method has consistently outperforms the state-
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of-the-art surface normal prediction methods [44, 65] in both SURREAL and
PHSPD datasets. The poor performance of [65] may be attributed to its unreal-
istic assumption of noise-free environment in the captured images. Let us look at
the three ablation baselines of our approach: using only color images delivers rel-
atively similar performance to that of removing physical priors when compared
in PHSPD. Intuitively, it is challenging for neural networks to encode informa-
tion of ambiguous normal maps (physical priors) directly from raw polarization
images. Therefore, removing the physical priors results in similar performance
to that of using only color images. [44] and ours (no fused normal) both utilize
ambiguous normal as a physical prior, thus produce similar results. By incor-
porating the fused normal which discriminates the ambiguity of azimuth angle
estimation, the results of our full-fledged approach surpasses those of [44].

polarization 
image

oursPhysics [44] ours
(no physical priors)

Linear [65]color image ours
(color image)

Fig. 3. Exemplar results of normal map prediction by five competing methods: [65,
44], ours (no physical priors), ours (color image), and ours. Original color images and
polarization images are shown in the first and third column with pixelated faces.
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4.2 Evaluation of Pose and Shape Estimation

The focus of this section is qualitative and quantitative evaluations on estimating
poses & SMPL shapes, as well as our final estimation of clothed human shapes.

In pose estimation, it is of interest to inspect the effect of engaging surface
normal maps in our SfP approach. Besides our SfP approach, the competing
methods consist of HMR [28] and a ablation variant of SfP, ours (w/o normal).
The latter is obtained by engaging only the polarization image, without consid-
ering normal map estimation. Since HMR is trained on single color images, it is
re-trained using the first three channels of a polarization image. In addition to
HMR that works on color images, for fair comparison, HMR is also re-trained
on the polarization images of our PHSPD dataset, as HMR (polarization). From
Table 2, it is observed that our method produces the lowest MPJPE values of all
competing methods; the results of ours (w/o normal) is comparable to those of
HMR (polarization). The quantitative results confirm that the polarization im-
ages is capable of producing accurate estimation of human poses. Moreover, the
visual results in Fig. 4 provide qualitative evidence that further performance gain
is to be expected, when we have access to the normal maps. Similar observation
is again obtained in Table 3, when quantitative examination is systematically
carried out over w/ and w/o estimated normal map, on color and polarization
images, in both datasets. Note the performance gain is particularly significant
for polarization images, which may attribute to the rich geometric information
encoded in the normal map representation. On color images, there is still no-
ticeable improvement, also less significant. Our explanation is that the normal
maps estimated from color images are not as reliable as those obtained from the
polarization image counterparts.

SURREAL PHSPD

GT-t GT-t Pred-t

HMR [28] 116.68/136.32 82.96/91.46 -
HMR (polarization) - 77.57/88.74 97.24/106.20
ours (w/o normal) 83.43/94.00 84.44/96.42 93.38/104.48

ours 67.25/75.94 66.32/74.46 74.58/81.85

Table 2. Quantitative evaluations using MPJPE evaluation metric on both SURREAL
and PHSPD datasets. The unit of the error is millimeter. GT-t means the camera
translation is known and Pred-t means the predicted camera translation is used to
compute the joint error. We report the MPJPE results of 20/24 joints, which removes
two hand and two foot joints following similar settings of previous work [28, 66].

To evaluate the effectiveness of our approach on clothed human shape recov-
ery, the state-of-the-art methods on human surface reconstruction from single
color images are recruited. They are PIFu [40], Depth Human [41] and HMD [42].
Quantitative results are obtained in the PHSPD dataset by computing the 3D
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SURREAL PHSPD

ours (w/o normal) ours ours (w/o normal) ours

polarization image 83.43/94.00 67.25/75.94 84.44/96.42 66.32/74.46
improvement 16.18/18.06 18.12/21.96

color image 88.53/100.32 80.70/91.51 85.67/80.34 77.72/70.07
improvement 7.82/8.81 7.95/10.27

Table 3. Qualitative ablation study of our SfP approach (w/ vs. w/o the estimated
surface normal). MPJPE is the evaluation metric with millimeter unit. Experiments are
carried out on both color and polarization images of SURREAL and PHSPD datasets.

polarization image oursours 
(w/o normal)

HMR 
(polarization)

polarization image oursours 
(w/o normal)

HMR 
(polarization)

Fig. 4. Exemplar shape estimation results. The first column is polarization images.
HMR (polarization) means the HMR model is retrained on polarization images of our
PHSPD dataset. Ours (w/o normal) means the model is trained without the normal
map as a part of the input.

surface error of the predicted human mesh with respect to the ground-truth
mesh. Scaled rigid ICP is performed before the evaluation so as to scale and
transform the predicted mesh into the same coordinates as the ground-truth sur-
face. The results are displayed in Table 4. PIFu [40] performs the worst, partly
as it does not take human pose into consideration when predicting the implicit
surface function inside a volume. The 3D surface error from HMD [42] and
Depth Human [41] are relatively small; our SfP approach achieves the best per-
formance, which is partly due to its exploitation of the estimated normal maps.
Note the comparison methods of PIFu [40], Depth Human [41] and HMD [42]
only work with color images as input. In this experiment, for each of the polar-
ization images used by the two SfP variants, namely our (w/o deform) and ours,
the closet color image captured in the multi-camera setup of PHSPD is taken as
its corresponding input to the three comparison methods.

Exemplar visual results are presented in Fig. 5, where the predicted body
shapes are overlaid onto the input images. It is observed that the body shapes
predicted by PIFu and Depth Human are generally well-aligned with the input
image as they are actually predicting the implicit function value or depth value
for each pixel of the foreground human shape. Meanwhile, it does not necessarily
indicate accurate alignment of 3D surface mesh, as is evidenced in Table 4. For
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PIFu
[40]

Depth Human
[41]

HMD
[42]

ours
(w/o deform)

ours

3D surface error(mm) 73.13 51.02 51.71 41.10 38.92

Table 4. Quantitative evaluation of clothed human shape recovery performance meth-
ods in the PHSPD dataset.

PIFu and Depth Human, the exterior surfaces tend to be overly smooth. Besides,
in Depth Human, only a partial mesh with respect to the view in the input
image is produced. HMD, on the other hand, does not work well, as evidenced
by the often error-prone surface details. This may be attributed to the less
reliable shading representation, given the new environmental lighting and texture
ambiguities existed in these color images. Our SfP approach is shown capable of
producing reliable prediction of clothed body shapes, which again demonstrates
the applicability of polarization imaging in shape estimation, as well as the
benefit of engaging the surface normal maps in our approach.

Qualitative results presented in Fig. 6 showcase the robust test performance
in novel settings. Note the polarization images are intentionally acquired from
unseen human subjects at new geo-locations, so the background scenes are very
different from those in the training images.

5 Conclusion

This paper tackles a new problem of estimating clothed human shapes from single
2D polarization images. Our work demonstrate the applicability of engaging
polarization cameras as a promising alternative to the existing imaging sensors
for human pose and shape estimation. Moreover, by exploiting the rich geometric
details in the surface normal of the input polarization images, our SfP approach
is capable of reconstructing clothed human body shapes of surface details.
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color image PIFu [40] Depth Human [41] HMD [42] polarization
image

ours (w/o deform) ours

Fig. 5. Exemplar estimation results of clothed body shapes. The first and fifth column
are color images and polarization images, respectively. PIFu [40], Depth Human [41]
and HMD [42] are the results based on color input images. Ours (w/o deformation)
and ours are the results with the polarization image as the input.

Fig. 6. Exemplar estimation results of clothed body shapes, obtained on polarization
images from novel test scenarios (new human subject and scene context).
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