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Abstract. The past few years have witnessed fast development in video
quality enhancement via deep learning. Existing methods mainly focus
on enhancing the objective quality of compressed video while ignoring its
perceptual quality. In this paper, we focus on enhancing the perceptual
quality of compressed video. Our main observation is that enhancing the
perceptual quality mostly relies on recovering high-frequency sub-bands
in wavelet domain. Accordingly, we propose a novel generative adversari-
al network (GAN) based on multi-level wavelet packet transform (WPT)
to enhance the perceptual quality of compressed video, which is called
multi-level wavelet-based GAN (MW-GAN). In MW-GAN, we first ap-
ply motion compensation with a pyramid architecture to obtain tempo-
ral information. Then, we propose a wavelet reconstruction network with
wavelet-dense residual blocks (WDRB) to recover the high-frequency de-
tails. In addition, the adversarial loss of MW-GAN is added via WPT
to further encourage high-frequency details recovery for video frames.
Experimental results demonstrate the superiority of our method.

Keywords: Video perceptual quality enhancement · Wavelet packet
transform · GAN

1 Introduction

Nowadays, a large amount of videos are available on the Internet, such as Y-
ouTube and Facebook, which exerts huge pressure on the communication band-
width. According to the Cisco Visual Networking Index [7], video causes 75% of
Internet traffic in 2017, and this figure is predicted to reach 82% by 2022. As a re-
sult, video compression has to be applied to save the communication bandwidth

?
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Fig. 1. Objective quality enhancement (traditional works) vs. perceptual quali-
ty enhancement(our work). State-of-the-art image [21] and video [41, 34, 42, 12]
quality enhancement methods mainly focus on objective quality enhancement,
but ignore perceptual quality, which leads to low perceptual quality with high
LPIPS [44] and perceptual index (PI) [2]. As the first attempt to enhance the
perceptual quality of compressed video, our method achieves better perceptual
quality with lower LPIPS and PI. Zoom in for best view.

[32]. However, compressed video inevitably suffers from compression artifacts,
which severely degrades the quality of experience (QoE) [22, 1]. Therefore, it is
necessary to study on quality enhancement on compressed videos.

Recently, there have been extensive works for enhancing the quality of com-
pressed images and videos [23, 11, 14, 9, 13, 37, 43, 21, 33, 41, 40, 42, 28]. Among
them, a four-layer convolutional neural network (CNN) called AR-CNN was pro-
posed in [9] to improve the quality of JPEG compressed images. Then, Zhang
et al. proposed a denoising CNN (DnCNN) [43] for image denoising and JPEG
image deblocking, through a residual learning strategy. Later, a multi-frame
quality enhancement network (MFQE) was proposed in [42, 12] to improve the
objective quality of compressed video, through leveraging the information from
neighboring frames. Most recently, Yang et al. [39] have proposed a quality-
gated convolutional long short-term memory (QG-ConvLSTM) network, which
takes advantage of the bi-directional recurrent structure to fully exploit the use-
ful information in a large range of frames. Unfortunately, the existing methods
mainly focus on improving the objective quality of compressed images/videos
while ignoring the perceptual quality. Actually, high objective quality, i.e., peak
signal-to-noise ratio (PSNR), is not always consistent with the human visual
system (HVS) [20]. Besides, according to the perception-distortion tradeoff [3],
improving objective quality will inevitably lead to a decrease of perceptual qual-
ity. As illustrated in Figure 1, although the frames generated by state-of-the-art
methods [21, 41, 34, 42, 12] have high PSNR values, they are not perceptually
photorealistic with high LPIPS value [44] and perceptual index (PI) [2], due to
the lack of high-frequency details and fine textures.

In this paper, we propose a multi-level wavelet-based generative adversarial
network (MW-GAN) for perceptual quality enhancement of compressed video,
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which recovers the high-frequency details via wavelet packet transform (WPT)
[24] at multiple levels. The key insight to adopt WPT is that the high-frequency
details are usually missing due to the compression and they can be regarded as
the high-frequency sub-bands after WPT. Our MW-GAN has a generator and a
discriminator. Specifically, the generator is composed of two main components:
motion compensation and wavelet reconstruction. Motion compensation is first
developed to compensate the motion between the target frame and its neighbors
with a pyramid architecture following [12]. Then, the wavelet reconstruction net-
work consisting of a bunch of wavelet-dense residual blocks (WDRB) is adopted
to reconstruct the sub-bands of the target frame. Besides, WPT is also con-
sidered in the discriminator of MW-GAN, such that the generator is further
encouraged to recover high-frequency details. As shown in Figure 1, our method
is able to generate photorealistic frames with sufficient texture details.

To the best of our knowledge, our work is the first attempt to enhance the
perceptual quality of compressed video, using a wavelet-based GAN. The main
contributions of this paper are as follows: (1) We investigate that the high-
frequency sub-bands in wavelet domain is highly related to the perceptual qual-
ity of compressed video. (2) We propose a novel network architecture called
MW-GAN, which learns to recover the high-frequency information in wavelet
domain for perceptual quality enhancement of compressed video. (3) Extensive
experiments have been conducted to demonstrate the ability of the proposed
method in enhancing the perceptual quality of compressed video.

2 Related Work

Quality enhancement of compressed images/videos. In the past few years,
extensive works [23, 11, 14, 17, 5, 9, 13, 37, 43, 21, 4, 33, 41, 42, 12] have been pro-
posed to enhance the objective quality of compressed images/videos. Specifical-
ly, for compressed images, Foi et al. [11] applied point-wise shape-adaptiveDCT
(SADCT) to reduce the blocking and ringing effects caused by JPEG compres-
sion. Then, regression tree fields (RTF) were adopted in [14] to reduce JPEG
image blocking effects. Moreover, [17] and [5] utilized sparse coding to remove
JPEG artifacts. Recently, deep learning has also been successfully applied for
quality enhancement. Particularly, Dong et al. [9] proposed a four-layer AR-
CNN to reduce the JPEG artifacts of images. Afterwards, D3 [37] and deep
dual-domain convolutional network (DDCN) [13] were proposed for enhancing
the quality of JPEG compressed images, utilizing the prior knowledge of JPEG
compression. Later, DnCNN was proposed in [43] for multiple tasks of image
restoration, including quality enhancement. Li et al. [21] proposed a 20-layer
CNN for enhancing image quality, which achieves state-of-the-art performance
on objective quality enhancement of compressed images.

For the compressed videos, Wang et al. [34] proposed a deep CNN-based
auto decoder (DCAD) which applies 10 CNN layers to reduce the distortion of
compressed video. Later, DS-CNN [41] was proposed for video quality enhance-
ment, in which two sub-networks are used to reduce the artifacts of intra- and
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inter-coding frames, respectively. Besides, Yang et al. [42] proposed a multi-
frame quality enhancement network (MFQE) to take advantage of neighbor
high-quality frames. Most recently, a quality-gated convolutional long short-
term memory (QG-ConvLSTM) [39] network was proposed to enhance video
quality via learning the “forget” and “input” gates in the ConvLSTM [38] cell
from quality-related features. Then, Guan et al. [12] proposed a new method
for multi-frame quality enhancement called MFQE 2.0, which is an extended
version of [42] with substantial improvement and achieved state-of-the-art per-
formance. All the above methods aim at minimizing the pixel-wise loss, such as
mean square error (MSE), to obtain high objective quality. However, according
to [20], MSE cannot always reflect the perceptually relevant differences. Actual-
ly, minimizing MSE encourages finding pixel-wise averages of plausible solutions,
leading to overly-smooth images/videos with poor perceptual quality [26, 16, 10].

Perception-driven super-resolution. To the best of our knowledge, there
exists no work on perceptual quality enhancement of compressed video. The clos-
est work to ours is the perception-driven image/video super-resolution that aims
to restore perception-friendly high-resolution images/videos from low-resolution
ones. Specifically, Johnson et al. [16] proposed to minimize perceptual loss de-
fined in the feature space to enhance the perceptual image quality in single
image super-resolution. Then, contextual loss [27] was developed to generate
images with natural image statistics via using an objective that focuses on the
feature distribution. SRGAN [20] was proposed to generate natural images us-
ing perceptual loss and adversarial loss. Sajjadi et al. [30] developed a similar
method with the local texture matching loss. Later, Wang et al. [35] proposed
spatial feature transform to effectively incorporate semantic prior in an image
and improve the recovered textures. They also developed an enhanced version of
SRGAN (ESRGAN) [36] with a deeper and more efficient network architecture.
Most recently, TecoGAN [6] was proposed to achieve state-of-the-art perfor-
mance in video super-resolution, in which a spatial-temporal discriminator and
a ping-pong loss are applied. Similar to super-resolution, perceptual quality is
also important for quality enhancement of compressed video. To the best of our
knowledge, our MW-GAN in this paper is the first attempt in this direction.

3 Motivation for WPT

The wavelet transform allows the multi-resolution analysis of images [15], and it
can decompose an image into multiple sub-bands, i.e., low- and high-frequency
sub-bands. As verified in [8], the high-frequency sub-bands play an importan-
t role in enhancing the perceptual quality of a super-resolved image. Here, we
further verify that the high-frequency sub-bands are also crucial for the per-
ceptual quality enhancement of compressed video. Specifically, given a lossless
video frame, a series of compressed frames are obtained via HM16.5 [32] at
low-delay configuration, with the quantization parameter (QP) of 22, 27, 32
and 37. The corresponding wavelet sub-bands are achieved via WPT using haar
filter at one level. For each frame, we obtain four sub-bands called LL, LH, H-
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Fig. 2. Histograms of the wavelet sub-bands (zoom in for details). Compressed
frames with higher QP have lower perceptual quality (i.e., higher PI) while high-
frequency wavelets fade with degraded energy alongside the increase of the QP
value. Besides, the state-of-the-art method [12] obtains low perceptual quality,
due to the failure of enhancing high-frequency sub-bands. Similar results can be
found for other state-of-the-art methods [42, 21, 41, 34].

L and HH. Here, LL is the low-frequency sub-band, LH, HL and HH are the
sub-bands with high-frequency information at horizontal, vertical and diagonal
directions, respectively. Figure 2 shows the histograms of wavelet coefficients of
the LH, HL and HH sub-bands. As we can see, the compressed frames with
higher QP values tend to have lower perceptual quality (i.e., higher PI) and
insufficient high-frequency wavelet coefficients. Moreover, although the state-
of-the-art method [12] can obtain high objective quality, it fails to recover the
high-frequency sub-bands in wavelet domain, leading to low perceptual quality.
In order to measure the richness of high-frequency wavelet coefficients, we fur-
ther calculate the wavelet energy by summing up their squared coefficients. As
shown in Table 1, the compressed frames with higher QP values tend to have
lower wavelet energy in high-frequency sub-bands. All these demonstrate that
the high-frequency wavelet sub-bands play an important role in enhancing the
perceptual quality of compressed video.

Based on the above investigation, we propose our MW-GAN as follows. (1)
Since high-frequency wavelet sub-bands are crucial for the perceptual quality,
the generator of our MW-GAN directly outputs these wavelet sub-bands. (2)
To restore the high-frequency wavelet sub-bands as much as possible, a wavelet-
dense residual block (WDRB) is proposed in our MW-GAN to further recover
the wavelet sub-bands. (3) The WPT is also applied in the discriminator of our
MW-GAN for perceptual quality enhancement by encouraging the generated
results to be indistinguishable from the ground-truth in wavelet domain.
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Table 1. Wavelet energy of the high-frequency sub-bands (LH, HL, HH) per
frame across the MFQE2.0 dataset [12]. Frames with higher QP values tend to
have lower wavelet energy in high-frequency sub-bands.

Wavelet Compressed frame MFQE2.0 [12] Ground-
sub-bands QP=22 QP=27 QP=32 QP=37 QP=22 QP=27 QP=32 QP=37 truth

LH 1106.8 1043.3 956.1 835.4 872.0 844.2 809.9 715.9 1189.7
HL 1189.3 1130.2 1048.1 940.5 994.3 973.9 937.8 872.1 1273.0
HH 138.4 115.9 93.8 70.7 130.9 110.4 92.6 65.3 176.2

4 The Proposed MW-GAN

The architecture of the proposed MW-GAN is shown in Figure 3. To enhance
the perceptual quality of a video frame Vt, we simultaneously train a generator
GθG

parameterized by θG and a discriminator DθD
parameterized by θD in an

adversarial manner. The ultimate goal is to obtain the enhanced frame Ôt with
high perceptual quality, similar to its ground-truth Ot. To take advantage of
the temporal information in adjacent frames, the generator GθG

takes both Vt

and its neighbor frames {Vt±n}Nn=1 as inputs. The details about the generator
GθG

are introduced in Section 4.1. To further encourage high perceptual quality,
we propose a multi-level wavelet-based discriminator, which distinguishes the
generated wavelet sub-bands from the ground-truths, as introduced in Section
4.2. Finally, we present the loss functions to train the MW-GAN in Section 4.3.

4.1 Multi-level wavelet-based generator

The generator GθG
of our MW-GAN is mainly composed of two parts: motion

compensation and wavelet reconstruction. Given the 2N+1 frames as inputs, we
first perform motion compensation across frames to align content across frames.
After that, wavelet reconstruction is applied to reconstruct the target wavelet
sub-bands using the information of sub-bands from both current and compen-
sated frames. Finally, the output reconstructed sub-bands are used to obtain the
enhanced frame through IWPT.

Motion compensation: To take advantage of the temporal information
across frames, we adopt the motion compensation network with a pyramid ar-
chitecture following [42]. To obtain better performance, we further make some
modifications. First, for flow estimation, it is crucial to have large-size filters in
the first few layers of the network to capture intense motion. Thus, the kernel
sizes of the first two convolutional layers at each pyramid level are 7×7 and 5×5,
respectively, instead of 3 × 3 in [42]. Second, we replace the pooling operation
at each pyramid level by WPT. Since WPT is invertible, this pooling operation
is able to make all information of the original frames be preserved, meanwhile
efficiently enlarging the receptive field for flow estimation.

Wavelet reconstruction: Given the current and compensated frames, we
further propose a wavelet reconstruction network to reconstruct the wavelet sub-
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Fig. 3. Framework of our MW-GAN. Perceptual quality is enhanced via recov-
ering wavelet sub-bands in wavelet domain. Specifically, we propose a genera-
tor with motion composition and WDRB to capture both temporal and high-
frequency information. Then a multi-level wavelet-based discriminator is pro-
posed to evaluate generated results in both pixel and wavelet domain.

bands Ŝt, which contains a cascade of wavelet-dense residual blocks (WDRB) .
Specifically, WPT is first applied to generate sub-bands as inputs. Then, sev-
eral convolutional layers are applied to extract corresponding feature maps. To
further capture high-frequency details and reduce the computational cost, we
develop the wavelet-based residual block (WDRB) with a residual-in-residual
structure, as shown in Figure 4. Similar to [36], in our WDRB, several dense
blocks are applied in the main path of the residual block to enhance the feature
representation with high capacity. In addition, we adopt WPT and IWPT in the
main path to learn the residual in wavelet domain. With this simple yet effective
design, the receptive field is further enlarged without losing information, thus
enabling the network to capture more high-frequency details. The efficiency of
the WDRB is also investigated in the ablation study. The final output of GθG

are the wavelet sub-bands Ŝt, and the enhanced frame Ôt can be obtained by
combining Ŝt via IWPT. Assuming that ω−1(·) denotes the IWPT operation,
the output of the generator can be summarized as follows,

Ŝt = GθG
(Vt, {Vt±n}Nn=1),

Ôt = ω−1(Ŝt).
(1)

4.2 Multi-level wavelet-based discriminator

In this section, a multi-level wavelet-based discriminator is proposed to encour-
age the generated results indistinguishable from the ground-truth. The structure
of our discriminator is illustrated in Figure 4. Specifically, the discriminator takes
the generated frames (obtained via IWPT) or the real ones (ground-truth) as in-
put. Then, WPT is applied to both generated and real frames for obtaining their
wavelet sub-bands at multiple levels. After that, wavelet sub-bands of different
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Fig. 4. Details about our framework. Top: Architecture of the proposed WDRB;
Down: Architecture of the multi-level wavelet-based discriminator in MW-GAN.

levels are fed into the corresponding pyramid level. Each pyramid level employs
a fully convolutional architecture, in which a group of convolutional layers with
different dilations are applied to extract features with various receptive fields.
Subsequently, the input wavelet sub-bands at each level are mapped into a single
channel of the score map with the same size as the input, which measures the
similarity between the generated and real frames. Let ωl(·) denote the l-th level
WPT. The output of the discriminator is a set of score maps of different sizes,
which can be formulated as follows,

Dl
θD

(Ot) = fl(ωl(Ot)), (2)

where fl(·) is the corresponding map function at the l-th level of the discrimina-
tor, L is the total number of the pyramid levels and Dl

θD
(Ot) is the output score

map at l-th level. Note that the l = 0 indicates that there is no WPT operation.
The advantage of the proposed multi-level wavelet-based discriminator is ef-

ficiency and efficacy. (1) The computational cost can be significantly reduced
by adopting WPT, since the calculation of wavelet sub-bands can be regarded
as forwarding through a single convolutional layer. In contrast, the traditional
methods need to extract multi-scale features via a sequence of convolutional lay-
ers, thus consuming expensive computational complexity. (2) Our discriminator
can distinguish the generated and real frames in both pixel (l = 0) and wavelet
domains (l > 0), leading to better generative results.

4.3 Loss functions

In this section, we propose a loss function for training the MW-GAN. Specifically,
we formulate the loss of the generator LG(θM ;θG) as the weighted sum of a
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motion loss LM (θM ), a wavelet loss LW (θG) and an adversarial loss LAdv(θG).
Then, LG(θM ;θG) can be written as,

LG(θM ;θG) = LW (θG) + αLM (θM ) + βLAdv(θG), (3)

where α and β are the coefficients to balance different loss terms. In the following,
we explain the different components of the loss functions.

Motion loss: Since it is hard to obtain the ground-truth of optical flow,
the motion compensation network MθM

parameterized by θM is directly trained
under the supervision of the ground-truth Ot. That is, the neighboring frames
{Vt±n}Nn=1 are first wrapped using the optical flow estimated by MθM

; then the
loss between the compensated frames {MθM

(Vt±n)}Nn=1 and the ground-truth
Ot is minimized. Here, we adopt Charbonnier penalty function [19] as the motion
loss, defined by:

LM (θM ) =
1

2N

N∑
n=1

√
‖MθM

(Vt±n)−Ot‖2F + ε2m, (4)

where εm is a scaling parameter and is empirically set to 1× 10−3.
Wavelet loss: The wavelet loss function models how close the predicted sub-

bands Ŝt are to the ground truth St. It is defined by a weighted Charbonnier
penalty function in wavelet domain as follows:

LW (θG) =

√∥∥∥W1/2 � (Ŝt − St)
∥∥∥2
F

+ ε2w, (5)

where � represents dot product, Ŝt = {ŝ1t , ŝ2t , . . . , ŝ
nw
t } are the predicted sub-

bands with the number of nw in total and St are their corresponding ground-
truths. In addition, W = {w1, w2, . . . , wnw

} is the weight matrix to balance the
importance of each sub-band and εw is a scaling parameter set to 1× 10−3.

Adversarial loss: In addition to the above two loss functions, another im-
portant loss of the GAN is the adversarial loss. Note that we follow [25] to adopt
`2 loss for training. Recall that Dl

θD
(Ot) represents the outputs of the discrim-

inator in (2) at the l-th level, taking Ot as input. Then, the discriminator loss
can be defined as:

LD(θD) =
1

2L
EOt

[

L−1∑
l=0

‖Dl
θD

(Ot)− 1‖2F ] +
1

2L
EÔt

[

L−1∑
l=0

‖Dl
θD

(Ôt)‖2F ], (6)

where EÔt
[·] represents the average for all Ôt in the mini-batch and L is the

number of the pyramid levels in the discriminator. Note that 1 ∈ RWl×Hl ,
where Wl and Hl are the width and height of the score map at the l-th level,
respectively. Symmetrically, the adversarial loss for generator is as follow:

LAdv(θG) =
1

2L
EÔt

[

L−1∑
l=0

‖Dl
θD

(Ôt(θG))− 1‖2F ]. (7)
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5 Experiments

In this section, the experimental results are presented to validate the effective-
ness of our MW-GAN method. Section 5.1 introduces the experimental settings.
Section 5.2 compares the results between our method and other state-of-the-art
methods over the test sequences of JCT-VC [29]. In Section 5.3, the mean opin-
ion score (MOS) test is performed to compare the subjective quality of videos
by different methods. Finally, the ablation study is presented in Section 5.4.

5.1 Settings

Datasets: We train the MW-GAN model using the database introduced in
[12]. Following [12], except the 18 common test sequences of Joint Collaborative
Team on Video Coding (JCT-VC) [29], the other 142 sequences are randomly
divided into non-overlapping training set (106 sequences) and validation set (36
sequences). All 160 sequences are compressed by HM16.5 [32] under Low-Delay
configuration, setting QP to 32. Note that different from existing methods [21,
4, 33, 41, 42, 39, 12] that train models for each QP individually, we only train our
MW-GAN under QP= 32, and we test on both QP= 32 and QP= 37. The
results show the generalization ability of our method.

Parameter settings: Here, we mainly introduce the settings and hyperpa-
rameters of our experiments. Specifically, the total number of levels L of each
component in MW-GAN is set to 3 and the generator takes 3 consecutive frames
as inputs for a better tradeoff between performance and efficiency. The training
process is divided into two stages. We first train our model without adversarial
loss (i.e., β = 0). The motion loss weight α is initialed as 10 and decayed by a
factor of 10 every 5 × 104 iterations to encourage the learning of motion com-
pensation first. The iteration number and mini-batch size are 3 × 105 and 32,
respectively, and the input frames are cropped to 256×256. The Adam algorithm
[18] with the step size of 2.5 × 10−4 is adopted; the learning rate is initialized
as 2× 10−4 and decayed by a factor of 2 every 1× 105 iterations. In the second
stage, the pre-trained model is employed as an initialization for the generator.
The generator is trained using the loss function in (3) with α = 1 × 10−2 and
β = 5 × 10−3. The iteration number and mini-batch size are 6 × 105 and 32,
respectively, and the cropped size is reduced to 128 × 128. The learning rate is
set to 1 × 10−4 and halved every 1 × 105 iterations. Note that the above hy-
perparameteres are tuned over the training set. We apply the Adam algorithm
[18] and alternately update the generator and discriminator network until con-
vergence. The wavelet sub-bands are obtained by wavelet packet decomposition
with haar filter. More details can be found in the supplementary material.

5.2 Quantatative comparison

In this section, we evaluate the performance of our method in terms of learned
perceptual image patch similarity (LPIPS) [44] and perceptual index (PI) [2],
which are metrics widely used for perceptual quality evaluation. For results in
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Table 2. Overall ∆LPIPS and ∆PI between enhanced and compressed frames
on the test set of JCT-VC [29] at QP= 32 and QP= 37. Our MW-GAN achieves
the best perceptual quality across all the test sequences.

QP Video sequence
Li et al. [21] DCAD [34] DS-CNN [41] MFQE [42] MFQE 2.0 [12] Ours
∆LPIPS ∆PI ∆LPIPS ∆PI ∆LPIPS ∆PI ∆LPIPS ∆PI ∆LPIPS ∆PI ∆LPIPS ∆PI

32

A
Traffic 0.021 0.501 0.019 0.419 0.017 0.373 0.016 0.441 0.014 0.430 -0.032 -1.123

PeopleOnStreet 0.020 0.865 0.020 0.668 0.019 0.663 0.017 0.807 0.017 0.794 -0.020 -0.558

B

Kimono 0.038 0.479 0.034 0.403 0.033 0.332 0.034 0.440 0.036 0.443 -0.069 -1.561
ParkScene 0.010 0.299 0.010 0.377 0.009 0.291 0.012 0.239 0.010 0.346 -0.032 -0.159

Cactus 0.032 0.264 0.028 0.264 0.027 0.236 0.028 0.248 0.028 0.274 -0.109 -0.953
BQTerrace 0.028 0.384 0.025 0.413 0.025 0.362 0.026 0.418 0.026 0.447 -0.099 -0.326

BasketballDrive 0.036 0.534 0.031 0.501 0.032 0.462 0.032 0.595 0.032 0.618 -0.106 -0.921

C

RaceHorses 0.023 0.504 0.022 0.536 0.021 0.469 0.025 0.489 0.027 0.566 -0.021 -0.579
BQMall 0.022 0.457 0.019 0.507 0.018 0.426 0.021 0.467 0.021 0.499 -0.033 -0.908

PartyScene 0.032 0.436 0.027 0.381 0.024 0.347 0.025 0.408 0.025 0.412 -0.075 -0.765
BasketballDrill 0.027 0.782 0.023 0.926 0.026 0.842 0.027 0.772 0.025 0.929 -0.047 -0.532

D

RaceHorses 0.019 0.628 0.018 0.657 0.017 0.581 0.021 0.657 0.021 0.685 -0.005 -0.199
BQSquare 0.012 0.285 0.012 0.599 0.011 0.382 0.013 0.344 0.011 0.570 -0.037 -0.525

BlowingBubbles 0.013 0.492 0.014 0.585 0.011 0.458 0.012 0.394 0.009 0.472 -0.039 -0.241
BasketballPass 0.020 0.537 0.016 0.564 0.016 0.517 0.020 0.574 0.019 0.594 -0.021 -0.794

E
FourPeople 0.012 0.265 0.010 0.231 0.010 0.234 0.010 0.238 0.008 0.219 -0.040 -1.129

Johnny 0.010 0.308 0.010 0.339 0.013 0.215 0.012 0.363 0.010 0.259 -0.065 -1.171
KristenAndSara 0.016 0.278 0.015 0.316 0.016 0.360 0.015 0.338 0.014 0.352 -0.026 -1.305

Average 0.022 0.461 0.020 0.483 0.019 0.419 0.020 0.457 0.020 0.495 -0.049 -0.764

37 Average 0.027 0.541 0.026 0.621 0.024 0.562 0.027 0.617 0.024 0.614 -0.046 -0.993

terms of other evaluation metrics, please see the supplementary material. We
compare our method with Li et al. [21], DS-CNN [41], DCAD [34], MFQE [42]
and MFQE 2.0 [12]. Among them, Li et al. is the latest quality enhancement
methods for compressed images. DCAD and DS-CNN are single-frame enhance-
ment methods for compressed videos, while MFQE and MFQE 2.0 are state-
of-the-art multi-frame quality enhancement methods for compressed videos. All
these methods are trained over the same training set as ours for fair comparison.

Table 2 reports the ∆LPIPS and ∆PI results which are calculated between
enhanced and compressed frames averaged over each test sequence. Note that
∆LPIPS < 0 and ∆PI < 0 indicate improvement in perceptual quality. As shown
in this table, our MW-GAN outperforms all 6 compared methods in terms of
perceptual quality, for all test sequences, while all the compared methods fail to
enhance the perceptual quality of compressed video. Specifically, at QP= 32, the
average ∆LPIPS and ∆PI in our MW-GAN are −0.049 and −0.764, respectively,
while other methods [43, 21, 41, 34, 42, 12] all have positive ∆LPIPS and ∆PI
values. Furthermore, our MW-GAN also gains the largest decrease of ∆LPIPS
with−0.046 and∆PI with−0.993 at QP= 37, verifying the generalization ability
of our MW-GAN for perceptual quality enhancement of compressed video.

5.3 Subjective Comparison

In this section, we mainly focus on the subjective evaluation of our method. Fig-
ure 5 visualizes the enhanced video frames of Traffic at QP= 32, BasketballPass
at QP= 32, BQTerrace at QP = 37 and RaceHorses at QP= 32. We can observe
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Fig. 5. Qualitative comparison on the test sequences of JCT-VC [29]. Our MW-
GAN can generate much more realistic results (Zoom in for best view).

that our MW-GAN method outperforms other methods with sharper edges and
more vivid details. For instance, the car in Traffic, the face in BasketballPass, the
pedestrians in BQTerrace and the horse in RaceHorses can be finely restored
in our MW-GAN, while the existing PSNR-oriented methods generate blurry
results with low perceptual quality.

To further evaluate the subjective quality of our method, we also conduct a
mean opinion score (MOS) test at QP= 37. Specifically, we asked 15 subjects
to rate an integral score from 1 to 100 following [31] on the enhanced videos.
The higher score indicates better perceptual quality. The subjects are required
to rate the scores for compressed video sequences, raw sequences, sequences
enhanced by Li et al. [21], MFQE [42], MFQE 2.0 [12], our MW-GAN method.
Table 3 presents ∆MOS which is calculated between enhanced and compressed
sequences. As can be seen, our MW-GAN method obtains the highest ∆MOS
score for each class of sequences, and it obtains an average increase of 4.55 in
terms of MOS, considerably better than other methods.

Table 3. ∆MOS calculated between enhanced and compressed sequences at QP
= 37 over the test sequences of JCT-VC [29]. Our MW-GAN obtains the highest
∆MOS score for each class of sequences.

Sequence Li et al. [21] MFQE [42] MFQE 2.0 [12] Ours
A -0.47 -0.83 -1.21 4.74
B 1.86 1.42 0.82 3.95
C -4.76 -2.74 -5.07 4.05
D -1.08 -0.30 -1.90 5.15
E 1.11 1.04 0.70 4.86

Average -0.69 -0.28 -1.33 4.55
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5.4 Ablation study

In this section, we mainly analyze the effectiveness of WPT applied in each
component of our MW-GAN.

Effectiveness of WDRB in generator: In our generator, the multi-level
WPT is achieved via adopting WDRB. Thus, it is essential to validate the effec-
tiveness of the proposed WDRB. Here, we conduct the test with two strategies.
(1) MW-GAN-RRDB: We directly replace the WDRB by the residual-in-residual
dense block (RRDB) proposed in [36]. Note that the channels of the first convolu-
tional layer before the first RRDB are increased to keep the structure of RRDB
unchanged. (2) MW-GAN-CNN: We directly replace the WPT and IWPT in
WDRB by average pooling and upsampling layers. Note that the above two s-
trategies all lead to parameter increasing. Figure 6 shows the results of the above
two ablation strategies over different classes of test sequences at QP= 32. We can
see from this figure that WDRB has a positive impact on the perceptual quality,
leading to 0.170 and 0.126 decrease in ∆PI compared with MW-GAN-CNN and
MW-GAN-RRDB, respectively. Therefore, we can conclude that WDRB plays
an effective role in MW-GAN.

Effectiveness of WPT in the discriminator: To evaluate the effective-
ness of the multi-level wavelet-based discriminator, we add a baseline without
WPT in the discriminator, i.e., MW-GAN-D w/o WPT. Specifically, we replace
WPT in the discriminator with an average pooling layer that extracts features
with the same size as wavelet sub-bands and keeps other components unchanged
for a fair comparison. As Figure 6 shows, without WPT in the discriminator,
the ∆PI score increases by average 0.192 over the whole test set, which indicates
the effectiveness of the proposed multi-level wavelet-based discriminator.

A B C D E

0.4

0.6

0.8

1

1.2

-
P

I

 MW-GAN
 MW-GAN-RRDB

 (mean value)
 (mean value)

 MW-GAN-CNN
 MW-GAN-Dw/oWPT

 (mean value)
 (mean value)

Fig. 6. Comparison between our MW-GAN and corresponding baselines on the
test sequences of JCT-VC [29] according to −∆PI between enhanced and com-
pressed sequences. Effectiveness of the proposed MW-GAN can be verified.
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6 Generalization ability

In this section, we mainly focus on the generalization ability of the proposed
MW-GAN. For more details, please see our supplementary material.

Transfer to H.264. To further verify the generalization capability of our
MW-GAN, we also test on the video sequences compressed by other standards.
Specifically, we compress the test sequences of JCT-VC with H.264 (the JM
encoder with the low-delay P configuration) at QP= 32 and QP= 37. Then,
we directly test the performance of our method over the above test sequences
without fine-tuning. Consequently, the average PI decrease of test sequences is
0.548 at QP= 32 and 0.527 at QP=37, which implying the generalization ability
of our MW-GAN approach across different compression standards.

Performance on other sequences. In addition to the common-used test
sequences of JCT-VC, we also test the performance of our and other methods
over the test set in [42], which is different from the test sequences of JCT-VC.
Results show that our method has 0.039 LPIPS decrease and 1.058 PI decrease
at QP= 32, while other methods all increase the PI value, which again indicates
the superiority of our method according to the perceptual quality enhancement.

Perception-distortion tradeoff. Our work mainly focuses on enhancing
perceptual quality of compressed video. However, according to the perception-
distortion tradeoff [3], improving perceptual quality fully will inevitably lead to
a decrease of PSNR. We further evaluate the objective quality of the frames
generated by our method over the test sequences of JCT-VC. Results show that
our method leads to 1.040 dB PSNR decrease at QP= 32 and 0.651 dB PSNR
decrease at QP= 37. It is promising future work for perception-distortion tradeoff
of compressed video quality enhancement, while at the current stage we mainly
focus on perceptual quality enhancement (w/o considering PSNR) as the first
attempt in this direction.

7 Conclusion

In this paper, we have proposed MW-GAN as the first attempt for perceptual
quality enhancement of compressed video, which embeds WPT in both genera-
tor and discriminator for recovering high-frequency details. First, we find from
the data analysis that perceptual quality is highly related to the high-frequency
sub-bands in wavelet domain. Second, we design a wavelet-based GAN to recov-
er high-frequency details in wavelet domain. Specifically, a WDRB is proposed
in our generator for wavelet sub-band reconstruction and a multi-level wavelet-
based discriminator is applied to further encourage high-frequency recovery. Fi-
nally, the ablation experiments showed the effectiveness of each component of
MW-GAN. More importantly, both quantitative and qualitative results in exten-
sive experiments verified that our MW-GAN outperforms other state-of-the-art
methods according to perceptual quality enhancement of compressed video.
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