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In this supplementary material, we present more implementation details of
our model, additional experimental results and more qualitative results which
are not shown in the main paper due to the space limitation. First, Section 1
gives more details on experiment settings. Second, Section 2 discuses different
design choices for the combination operator ◦ in Equation 5 of the main paper.
Third, Section 3 shows results of using both MPJPE and PA-MPJPE as the
evaluation metrics in a comparison with state-of-the-art methods on the Hu-
man3.6M dataset. Next, Section 4 shows more results under the cross action
protocol. Finally, Section 5 demonstrates additional qualitative results.

1 Implementation Details

Training Data. Following many previous works [14, 11, 6, 18, 20, 5], we show
results of using two different kinds of 2D keypoints as input for our model in the
experiments. They are 2D ground truth and 2D detections from an off-the-shelf
2D keypoint detector. Following those works [14, 3, 9], we use the smoothed CPN
model [4] which finetuned on the Human3.6M dataset by an eight-layer residual
fully-connected temporal model as our 2D keypoint detector, which is pretrained
on the COCO dataset. No extra 2D data has been used for mixed training. In
the ablation study (Section 5.1) of the main paper, we use 2D ground truth as
input. When comparing with previous works in Section 5.2, both inputs are used
and compared respectively. For data normalization, we use two methods. One is
provided by [14] called the Basic normalization and another is provided by [5]
called the Pixel normalization. Please refer to their code base [1, 2] for detailed
implementation. By default, the Basic normalization is used in our ablation
study. When comparing with the state-of-the-arts ([5] in single pose and [14] in
temporal pose), we use the same data normalization method as each for a fair
comparison. For data augmentation, we follow [14, 5] by using horizontal flip
data augmentation at both training and test stages.
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Training Setting. Amsgrad [17] is used as the optimizer. The initial learning
rate is 0.001 and it decays by 5% after each epoch of training. 80 epochs are
used in total. The total channel dimension of each connected/convolution layer
is 1024. Batch Normalization [7] and Leaky ReLU [19] activation are applied to
each connected/convolution layer. The final network consists of 8 stacked layers,
and every two layers (except for the first and last ones) are wrapped with a
residual connection as in [11, 14]. Batch size is 1024. L1 loss is used for training.

2 Design Choices for the Combination Operator

In Equation 5 of the main paper, we show how the low-dimensional global con-
texts can be brought back to the local group using a combination operator ◦. By
default, the combination operator ◦ is implemented using multiplication in the
main paper. Here, we empirically evaluate the design choices of using addition,
multiplication and concatenation in Table 1. It is shown that both addition and
multiplication obtain favorable results. They surpass the FC and SFS baselines,
indicating their effectiveness in recombining the low-dimensional global contexts.

Method FC SFS SR (add.) SR (mult.) SR (concat.)

MPJPE(mm) 46.8 39.4 36.4 36.6 38.3

Params.(M) 6.39 3.04 1.33 0.88 1.34

Table 1. Comparison on different design choices for the combination operator under
the Subject protocol. MPJPE is used as the evaluation metric. 2D ground truth is used
as input. The third row shows the number of learnable parameters of different models.

3 More Results on Human3.6M

In Tables 8, 9, and 10 of the main paper, we compare our model with previous
works under different input settings (using 2D ground truth or detection, with or
without temporal information). We summarise them in Table 2 and 3 with more
detailed results on different actions. Our approach achieves the new state-of-the-
art with either 2D keypoint detection or 2D ground truth as input. Specifically,
we improve upon [5] from 36.3mm to 33.9mm (relative 6.6% improvement) with
2D ground truth input for single pose inputs. We improve upon [9] from 46.6mm
to 44.8mm (relative 3.9% improvement) with 2D temporal keypoint detection
input.

In Table 4 and 5, we compare with the previous works using the PA-MPJPE
metric where available. Our approach achieves the new state-of-the-art with ei-
ther 2D keypoint detection or 2D ground truth (denoted by 5) as input. Specifi-
cally, we improve upon [5] from 27.9mm to 24.3mm (relative 14.8% improvement)
with 2D ground truth input. We improve upon [14] from 36.5mm to 34.9mm (rel-
ative 4.4% improvement) with 2D keypoint detection input.
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Luvizon et al. [10] 63.8 64.0 56.9 64.8 62.1 70.4 59.8 60.1 71.6 91.7 60.9 65.1 51.3 63.2 55.4 64.1
Martinez et al. [11] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Park et al.[12] 49.4 54.3 51.6 55.0 61.0 73.3 53.7 50.0 68.5 88.7 58.6 56.8 57.8 46.2 48.6 58.6
Wang et al. [18] 47.4 56.4 49.4 55.7 58.0 67.3 46.0 46.0 67.7 102.4 57.0 57.3 41.1 61.4 40.7 58.0
Zhao et al. [20] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Ci et al. [5] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Pavllo et al. [14] 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Cai et al. [3] 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Ours 44.5 48.2 47.1 47.8 51.2 56.8 50.1 45.6 59.9 66.4 52.1 45.3 54.2 39.1 40.3 49.9

Martinez et al. [11]5 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Pham et al. [15]5 36.6 43.2 38.1 40.8 44.4 51.8 43.7 38.4 50.8 52.0 42.1 42.2 44.0 32.3 35.9 42.4
Zhao et al. [20]5 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Wang et al. [18]5 35.6 41.3 39.4 40.0 44.2 51.7 39.8 40.2 50.9 55.4 43.1 42.9 45.1 33.1 37.8 42.0
Ours-Basic 5 35.9 36.7 29.3 34.5 36.0 42.8 37.7 31.7 40.1 44.3 35.8 37.2 36.2 33.7 34.0 36.4
Ci et al.-Pixel [5] 5 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3
Ours-Pixel 5 32.9 34.5 27.6 31.7 33.5 42.5 35.1 29.5 38.9 45.9 33.3 34.9 34.4 26.5 27.1 33.9

Table 2. Detailed single pose comparison in terms of the mean per-joint position error
(MPJPE) on Human3.6M. Below the double line are results from 2d ground truth
inputs (indicated by 5) to explore the upper bound of these methods. Best results in
bold.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Hossain et al. [16] 48.4 50.77 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Lee et al. [8] 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
Cai et al. [3] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Pavllo et al. [14] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Lin et al. [9] 42.5 44.8 42.6 44.2 48.5 57.1 42.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6
Ours 43.1 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 46.6 31.5 32.6 44.8

Hossain et al. [16] 5 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Lee et al. [8] 5 32.1 36.6 34.3 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 37.6 30.3 35.5 38.4
Pavllo et al.-243f [14] 5 - - - - - - - - - - - - - - - 37.2
Ours-243f 5 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0

Table 3. Detailed temporal pose comparison in terms of the mean per-joint position
error (MPJPE) on Human3.6M. Below the double line are results from 2d ground truth
inputs (indicated by 5) to explore the upper bound of these methods. Best results in
bold.
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Martinez et al. [11] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Fang et al.[6] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Park et al. [12] 38.3 42.5 41.5 43.3 47.5 53.0 39.3 37.1 54.1 64.3 46.0 42.0 44.8 34.7 38.7 45.0
Ci et al. [5] 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2
Pavlakos et al. [13] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Pavllo et al.[14] 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0
Ours 35.8 39.2 36.6 36.9 39.8 45.1 38.4 36.9 47.7 54.4 38.6 36.3 39.4 30.3 35.4 39.4

Ours-Basic 5 26.0 28.9 23.7 26.9 27.4 33.1 27.9 25.0 32.4 40.9 28.8 29.2 29.3 23.3 24.5 28.5
Ours-Pixel 5 24.1 28.6 24.2 26.6 26.3 35.1 27.7 24.5 32.8 39.1 27.8 28.0 29.6 22.3 23.0 28.0

Table 4. Comparison single pose results regarding PA-MPJPE after rigid transforma-
tion from the ground truth.5 indicates the use of 2D ground truth poses as input. Best
results in bold.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Lee et al.[8] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 33.9 56.4 38.5 46.2
Hossain et al.[16] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Cai et al.[3] 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Lin et al. [9] 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo et al.-243f [14] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Ours-243f 31.9 33.7 34.7 35.0 35.5 42.8 36.4 30.5 43.6 51.3 36.7 32.5 36.5 27.5 25.7 34.9

Ours-243f 5 23.7 25.2 22.9 23.1 24.0 28.7 25.0 22.1 31.8 32.8 24.8 23.5 23.4 17.0 18.3 24.3

Table 5. Comparison temporal pose results regarding PA-MPJPE after rigid transfor-
mation from the ground truth. 243f means inputs contain 243 frame poses.5 indicates
the use of 2D ground truth poses as input. Best results in bold.

4 Cross Action Results Using 2D Ground Truth Input

In Table 7 of the main paper, we compare our cross-action results with [5] under
the same data settings. Here, we provide more results of using 2d ground truth
as input under the cross-action protocol. The FCN baseline [11] (with our imple-
mentation) and our SRNet are compared. Both MPJPE and PA-MPJPE (with
×) are used as the evaluation metrics. Both Basic and Pixel [5] normalization
results of our method are reported.

In Table 6, our method gains improvements in terms of MPJPE from 80.6mm
to 64.3mm, by 16.3mm (relatively 20.2%). For PA-MPJPE, the improvement is
from 60.5mm to 49.4mm, by 11.1mm (relatively 18.3%).

5 Additional Qualitative Results

Besides the aforementioned quantitative results, we also present some qualitative
results. First, we visualize some hard poses, which are also rare in the subject
protocol evaluation, in Figure 1. Under this protocol, our method can predict
well even on challenging poses such as kowtow, side-lying and legs lifting. Next,
Figure 2 demonstrates some unseen poses in the cross-action protocol to verify
our method’s generalization ability. Finally, Figure 3 shows some qualitative
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

FCN-Pixel [11] 117.0 67.4 62.6 93.0 59.5 72.8 66.7 80.0 71.2 71.6 58.6 75.2 73.3 114.9 125.0 80.6
Ours-Basic 91.1 54.8 59.0 71.2 50.9 61.5 65.0 71.4 76.6 74.0 50.3 64.8 58.1 78.0 85.8 67.5
Ours-Pixel 86.2 53.0 55.0 70.5 47.9 57.9 63.1 68.4 71.2 72.9 47.5 59.4 56.3 70.8 83.8 64.3

FCN-Pixel[11] × 91.9 55.3 51.8 75.2 49.3 60.6 57.3 64.7 62.2 60.6 49.5 62.7 61.3 95.4 99.8 60.5
Ours-Basic × 65.9 42.4 46.3 54.5 39.8 46.6 50.6 55.8 58.4 57.4 39.3 49.6 45.0 56.7 61.8 51.3
Ours-Pixel× 61.7 42.0 44.2 53.1 38.5 45.2 49.5 53.6 55.5 55.5 37.9 46.4 43.8 54.7 59.7 49.4

Table 6. Cross Action comparison to the FCN baseline with 2D ground truth input
on Human3.6M in terms of mean per-joint position error (MPJPE) and PA-MPJPE
(denoted by ×).

results with training only on the Human3.6M dataset and testing on unseen poses
and unseen camera angles. Nevertheless, our method is still able to reconstruct
many plausible 3D poses well.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Visualization results trained with the subject protocol settings on the Hu-
man3.6M dataset. (a), (e) are the original test images. (b), (f) show the 3D pose
predictions of temporal 3D pose baseline [14]. (c), (g) are the 3D pose predictions of
our method. (d), (h) are the 3D ground truth poses.
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(a) Training Action : Greet (b) Training Action : Take Photos

(c) Test Action: Sit (d) Test Action: Sit Down

Fig. 2. Visualization results for the cross-action protocol. (a), (b) are two kinds of
original training actions. (c), (d) show the 3D predicted results by FCN [11], our
method, and the 3D ground truth poses on two kinds of test actions. When training
action is “greet”, poses like in (a), test on the action “sit” to get those predictions
in (c). Similarly, when training action is “take photos” in (b), test on the action “sit
down” to show the differences between the FCN and our method in (d).

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Visualization results for the MPI-INF-3DHP dataset. (a) are the original im-
ages. (b), (e) show the 3D predicted results by [11] from the front viewpoint and the
top viewpoint. (c), (f) show the prediction poses of our method, and (d), (g) are the
3D ground truth poses from the front viewpoint and the top viewpoint, separately.
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