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In this supplementary material, we present more implementation details of
our model, additional experimental results and more qualitative results which
are not shown in the main paper due to the space limitation. First, Section 1
gives more details on experiment settings. Second, Section 2 discuses different
design choices for the combination operator o in Equation 5 of the main paper.
Third, Section 3 shows results of using both MPJPE and PA-MPJPE as the
evaluation metrics in a comparison with state-of-the-art methods on the Hu-
man3.6M dataset. Next, Section 4 shows more results under the cross action
protocol. Finally, Section 5 demonstrates additional qualitative results.

1 Implementation Details

Training Data. Following many previous works [14,11,6, 18,20, 5], we show
results of using two different kinds of 2D keypoints as input for our model in the
experiments. They are 2D ground truth and 2D detections from an off-the-shelf
2D keypoint detector. Following those works [14, 3, 9], we use the smoothed CPN
model [4] which finetuned on the Human3.6M dataset by an eight-layer residual
fully-connected temporal model as our 2D keypoint detector, which is pretrained
on the COCO dataset. No extra 2D data has been used for mixed training. In
the ablation study (Section 5.1) of the main paper, we use 2D ground truth as
input. When comparing with previous works in Section 5.2, both inputs are used
and compared respectively. For data normalization, we use two methods. One is
provided by [14] called the Basic normalization and another is provided by [5]
called the Pizel normalization. Please refer to their code base [1,2] for detailed
implementation. By default, the Basic normalization is used in our ablation
study. When comparing with the state-of-the-arts ([5] in single pose and [14] in
temporal pose), we use the same data normalization method as each for a fair
comparison. For data augmentation, we follow [14,5] by using horizontal flip
data augmentation at both training and test stages.
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Training Setting. Amsgrad [17] is used as the optimizer. The initial learning
rate is 0.001 and it decays by 5% after each epoch of training. 80 epochs are
used in total. The total channel dimension of each connected/convolution layer
is 1024. Batch Normalization [7] and Leaky ReLU [19] activation are applied to
each connected/convolution layer. The final network consists of 8 stacked layers,
and every two layers (except for the first and last ones) are wrapped with a
residual connection as in [11, 14]. Batch size is 1024. L1 loss is used for training.

2 Design Choices for the Combination Operator

In Equation 5 of the main paper, we show how the low-dimensional global con-
texts can be brought back to the local group using a combination operator o. By
default, the combination operator o is implemented using multiplication in the
main paper. Here, we empirically evaluate the design choices of using addition,
multiplication and concatenation in Table 1. It is shown that both addition and
multiplication obtain favorable results. They surpass the F'C' and SF'S baselines,
indicating their effectiveness in recombining the low-dimensional global contexts.

Method FC |SFS||SR (add.)|SR (mult.)|SR (concat.)
MPJPE(mm)|46.8(39.4 36.4 36.6 38.3
Params.(M) [6.39(3.04| 1.33 0.88 1.34

Table 1. Comparison on different design choices for the combination operator under
the Subject protocol. MPJPE is used as the evaluation metric. 2D ground truth is used
as input. The third row shows the number of learnable parameters of different models.

3 More Results on Human3.6M

In Tables 8, 9, and 10 of the main paper, we compare our model with previous
works under different input settings (using 2D ground truth or detection, with or
without temporal information). We summarise them in Table 2 and 3 with more
detailed results on different actions. Our approach achieves the new state-of-the-
art with either 2D keypoint detection or 2D ground truth as input. Specifically,
we improve upon [5] from 36.3mm to 33.9mm (relative 6.6% improvement) with
2D ground truth input for single pose inputs. We improve upon [9] from 46.6mm
to 44.8mm (relative 3.9% improvement) with 2D temporal keypoint detection
input.

In Table 4 and 5, we compare with the previous works using the PA-MPJPE
metric where available. Our approach achieves the new state-of-the-art with ei-
ther 2D keypoint detection or 2D ground truth (denoted by 57) as input. Specifi-
cally, we improve upon [5] from 27.9mm to 24.3mm (relative 14.8% improvement)
with 2D ground truth input. We improve upon [14] from 36.5mm to 34.9mm (rel-
ative 4.4% improvement) with 2D keypoint detection input.
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
Luvizon et al. [10] 638 64.0 56.9 648 621 704 59.8 60.1 71.6 9.7 60.9 651 513 632 554 64.1
Martinez et al. [11]  51.8 562 58.1 59.0 69.5 784 552 581 740 94.6 623 59.1 651 495 524 62.9

Park et al.[12] 494 543 516 55.0 610 73.3 53.7 50.0 685 88.7 58.6 56.8 57.8 462 48.6 58.6
Wang et al. [18] 474 564 494 55.7 58.0 67.3 46.0 46.0 67.7 102.4 57.0 57.3 41.1 614 40.7 58.0
Zhao et al. [20] 473 60.7 514 60.5 611 49.9 47.3 681 862 55.0 67.8 61.0 421 60.6 453 57.6
Ciet al. [5] 46.8 523 44.7 504 529 689 49.6 464 602 78.9 51.2 50.0 54.8 404 433 52.7
Pavllo et al. [14] 471 506 490 51.8 53.6 61.4 494 474 593 674 524 49.5 553 39.5 427 51.8
Cai et al. [3] 46.5 488 47.6 509 529 61.3 483 458 59.2 644 51.2 484 53.5 392 412 506
Ours 44.5 48.2 47.1 47.8 51.2 568 50.1 45.6 59.9 664 52.1 45.3 542 39.1 40.3 49.9

Martinez et al. [11]y 37.7 444 40.3 421 482 549 444 421 546 58.0 451 464 476 364 404 455
Phamet al. [15)7 ~ 36.6 432 38.1 408 444 518 437 384 508 520 421 422 440 323 359 424
Zhao et al. [20]y 378 494 376 409 451 41.4 40.1 483 50.1 422 535 443 405 473 39.0 438
Wang et al. [18]y7 35.6 413 394 40.0 442 517 398 402 509 554 431 429 451 331 378 420

Ours-Basic 7 35.9 36.7 293 345 36.0 428 37.7 3L7 40.1 443 358 372 362 33.7 340 36.4
Ciet al-Pixel 5] 7 363 388 20.7 37.8 346 425 39.8 325 36.239.5 344 384 382 313 342 36.3
Ours-Pixel 7 32.9 34.5 27.6 31.7 33.5 425 35.1 29.5 389 459 33.3 34.9 34.4 26.5 27.1 33.9

Table 2. Detailed single pose comparison in terms of the mean per-joint position error
(MPJPE) on Human3.6M. Below the double line are results from 2d ground truth
inputs (indicated by v7) to explore the upper bound of these methods. Best results in
bold.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
Hossain et al. [16] 484 50.77 572 552 63.1 726 53.0 517 66.1 80.9 59.0 57.3 624 46.6 49.6 583
Lee et al. 3] 40.2 492 478 526 50.1 750 50.2 43.0 55.8 73.9 541 556 582 433 433 52.8
Cai et al. [3] 446 474 456 488 50.8 59.0 472 439 579 61.9 49.7 46.6 51.3 371 394 488
Pavllo et al. [14] 452 46.7 433 456 481 551 44.6 44.3 57.3 65.8 47.1 44.0 49.0 328 339 4638
Lin et al. [9] 425 44.8 42.6 442 485 571 42.6 414 56.5 64.5 474 430 481 33.0 351 46.6
Ours 431 471 439 41.6 45.8 49.6 46.5 40.0 53.461.1 46.1 42.6 46.6 31.5 32.6 44.8
Hossain et al. [16] 7 352 408 37.2 374 432 440 389 35.6 423 44.6 39.7 39.7 402 328 355 39.2
Lee et al. [8] v 321 366 343 37.8 445 499 409 362 44.1 456 353 359 37.6 303 355 384
Pavllo et al-243f [14] 7 - - - - - - - - - - - - - - 372
Ours-243f 7 34.8 321 28.530.7 31.4 36.9 356 30.5 38.940.5 32.5 31.0 29.9 22.5 24.5 32.0

Table 3. Detailed temporal pose comparison in terms of the mean per-joint position
error (MPJPE) on Human3.6M. Below the double line are results from 2d ground truth
inputs (indicated by v/) to explore the upper bound of these methods. Best results in
bold.
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
Martinez et al. [11] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 450 495 38.0 43.1 47.7
Fang et al.[6] 382 417 43.7 449 485 553 402 382 54.5 644 472 443 473 36.7 417 457
Park et al. [12] 383 425 415 433 475 53.0 393 371 541 643 46.0 420 448 347 387 450
Ci et al. [5] 369 416 38.0 41.0 419 511 382 37.6 49.1 621 43.1 399 435 322 370 422

Pavlakos et al. [13] 34.7 39.8 41.8 38.6 425 475 380 36.6 50.7 56.8 42.6 39.6 439 321 365 41.8
Pavllo et al.[14] 36.0 38.7 38.0 41.7 40.1 459 37.1 35.4 46.853.4 414 36.9 43.1 303 34.8 40.0

Ours 35.8 39.2 36.6 36.9 39.8 45.1 384 369 47.7 544 38.6 36.3 39.4 30.3 354 39.4
Ours-Basic 7 26.0 289 23.7 269 274 331 279 250 324 409 288 292 293 233 245 285
Ours-Pixel 17 241 28,6 242 26.6 263 351 27.7 245 328 39.1 27.8 28.0 29.6 223 23.0 28.0

Table 4. Comparison single pose results regarding PA-MPJPE after rigid transforma-
tion from the ground truth.5y indicates the use of 2D ground truth poses as input. Best
results in bold.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
Lee et al.[§] 380 393 46.3 444 49.0 55.1 402 41.1 53.2 689 51.0 39.1 33.9 564 385 46.2
Hossain et al.[16] 35.7 393 44.6 43.0 472 540 383 375 51.6 61.3 46.5 414 473 342 394 441
Cai et al.[3] 357 378 369 40.7 39.6 452 374 345 469 50.1 40.5 36.1 41.0 296 332 39.0
Lin et al. [9] 325 353 34.3 362 378 43.0 33.0 322 457 51.8 384 328 375 258 289 36.8
Pavllo et al.-243f [14] 34.1 36.1 344 37.2 364 42.2 344 33.6 45.0 525 374 338 378 25.6 273 36.5
Ours-243f 31.9 33.7 347 35.0 35.5 428 364 30.5 43.6 51.3 36.7 32.5 36.5 27.5 25.7 34.9
Ours-243f 7 23.7 25.2 229 23.1 24.0 28.7 25.0 22.1 31.832.8 24.8 23.5 23.4 17.0 18.3 24.3

Table 5. Comparison temporal pose results regarding PA-MPJPE after rigid transfor-
mation from the ground truth. 243 f means inputs contain 243 frame poses. 1/ indicates
the use of 2D ground truth poses as input. Best results in bold.

4 Cross Action Results Using 2D Ground Truth Input

In Table 7 of the main paper, we compare our cross-action results with [5] under
the same data settings. Here, we provide more results of using 2d ground truth
as input under the cross-action protocol. The FCN baseline [11] (with our imple-
mentation) and our SRNet are compared. Both MPJPE and PA-MPJPE (with
x ) are used as the evaluation metrics. Both Basic and Pizel [5] normalization
results of our method are reported.

In Table 6, our method gains improvements in terms of MPJPE from 80.6mm
to 64.3mm, by 16.3mm (relatively 20.2%). For PA-MPJPE, the improvement is
from 60.5mm to 49.4mm, by 11.1mm (relatively 18.3%).

5 Additional Qualitative Results

Besides the aforementioned quantitative results, we also present some qualitative
results. First, we visualize some hard poses, which are also rare in the subject
protocol evaluation, in Figure 1. Under this protocol, our method can predict
well even on challenging poses such as kowtow, side-lying and legs lifting. Next,
Figure 2 demonstrates some unseen poses in the cross-action protocol to verify
our method’s generalization ability. Finally, Figure 3 shows some qualitative
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
FCN-Pixel [11] 117.0 67.4 62.6 93.0 59.5 728 66.7 80.0 71.2 71.6 58.6 752 73.3 114.9 125.0 80.6
Ours-Basic 91.1 548 59.0 71.2 509 61.5 65.0 714 76.6 740 50.3 64.8 581 780 858 67.5
Ours-Pixel 86.2 53.0 55.0 70.5 47.9 57.9 63.1 68.4 71.272.9 47.5 59.4 56.3 70.8 83.8 64.3

FCN-Pixel[11] x 91.9 55.3 51.8 75.2 49.3 60.6 57.3 64.7 62.2 60.6 49.5 62.7 61.3 954 99.8 60.5
Ours-Basic x 65.9 424 46.3 545 39.8 46.6 50.6 55.8 584 574 393 49.6 450 56.7 61.8 51.3
Ours-Pixel x 61.7 42.0 44.2 53.1 38.5 45.2 49.5 53.6 55.555.5 37.9 46.4 43.8 54.7 59.7 49.4

Table 6. Cross Action comparison to the FCN baseline with 2D ground truth input

on Human3.6M in terms of mean per-joint position error (MPJPE) and PA-MPJPE
(denoted by X).

results with training only on the Human3.6M dataset and testing on unseen poses
and unseen camera angles. Nevertheless, our method is still able to reconstruct
many plausible 3D poses well.
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Fig. 1. Visualization results trained with the subject protocol settings on the Hu-
man3.6M dataset. (a), (e) are the original test images. (b), (f) show the 3D pose
predictions of temporal 3D pose baseline [14]. (c), (g) are the 3D pose predictions of
our method. (d), (h) are the 3D ground truth poses.
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Fig. 2. Visualization results for the cross-action protocol. (a), (b) are two kinds of
original training actions. (c), (d) show the 3D predicted results by FCN [11], our
method, and the 3D ground truth poses on two kinds of test actions. When training
action is “greet”, poses like in (a), test on the action “sit” to get those predictions
in (c). Similarly, when training action is “take photos” in (b), test on the action “sit

down” to show the differences between the FCN and our method in (d).
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Fig. 3. Visualization results for the MPI-INF-3DHP dataset. (a) are the original im-
ages. (b), (e) show the 3D predicted results by [11] from the front viewpoint and the
top viewpoint. (c), (f) show the prediction poses of our method, and (d), (g) are the
3D ground truth poses from the front viewpoint and the top viewpoint, separately.
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