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Abstract. The goal of face attribute editing is altering a facial image
according to given target attributes such as hair color, mustache, gender,
etc. It belongs to the image-to-image domain transfer problem with a set
of attributes considered as a distinctive domain. There have been some
works in multi-domain transfer problem focusing on facial attribute edit-
ing employing Generative Adversarial Network (GAN). These methods
have reported some successes but they also result in unintended changes
in facial regions - meaning the generator alters regions unrelated to the
specified attributes. To address this unintended altering problem, we pro-
pose a novel GAN model which is designed to edit only the parts of a
face pertinent to the target attributes by the concept of Complemen-
tary Attention Feature (CAFE). CAFE identifies the facial regions to be
transformed by considering both target attributes as well as “complemen-
tary attributes”, which we define as those attributes absent in the input
facial image. In addition, we introduce a complementary feature match-
ing to help in training the generator for utilizing the spatial information
of attributes. Effectiveness of the proposed method is demonstrated by
analysis and comparison study with state-of-the-art methods.

Keywords: Face Attribute Editing, GAN, Complementary Attention
Feature, Complementary Feature Matching

1 Introduction

Since the advent of GAN by Goodfellow et al. [8], its application literally ex-
ploded into a variety of areas, and many variants of GAN emerged. Conditional
GAN (CGAN) [25], one of the GAN variants, adds an input as a condition on
how the synthetic output should be generated. An area in CGAN receiving a
particular attention in the media is “Deep Fake” in which an input image is
transformed into a new image of different nature while key elements of the origi-
nal image are retained and transposed [11, 25]. GAN based style transfer is often
the method of choice for achieving the domain transfer of the input to another
domain in the output, such as generating a hypothetical painting of a well known
artist from a photograph. CycleGAN [40] has become a popular method in image
domain transfer, because it uses cycle-consistency loss from a single image input
in training, and thus its training is unsupervised.
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Fig. 1: Face editing results of AttGAN [10], StarGAN [6], STGAN [21] and
our model given a target attribute Blond hair. While AttGAN, StarGAN and
STGAN deliver blond hair, they also create unwanted changes (e.g. halo, differ-
ent hair style, etc.) in resultant images.

Nevertheless, single domain translation models [31, 37] including CycleGAN
are incapable of learning domain transfer to multiple domains. Thus, in these ap-
proaches, multiple models are required to match the number of target domains.
One of the multi-domain transfer problems is manipulation of one’s facial char-
acteristics. The goal of facial attribute editing is to convert specific attributes of
a face, such as wearing eyeglasses, to a face without eyeglasses. Other attributes
may include local properties e.g., beard as well as global properties e.g., face
aging. Obviously this requires multiples of domain transfer models if a single
domain transfer concept is to be used. The number of single domain transfer
models required in such a case is a function of the attribute combination since
these facial attributes are mostly independent. Even for relatively small number
of attributes, single domain transfer approaches would require a significantly
high number of separate models. A model such as CycleGAN, therefore, would
become impractical. To address the multi-domain transfer problem, StarGAN [6]
and AttGAN [10], have been proposed by introducing a target vector of multi-
ple attributes as an additional input. These target attribute vector based GAN
models have shown some impressive images, but, they often result in unintended
changes - meaning the generator alters regions unrelated to specified attributes
as shown in Fig. 1. It stems from these models driven to achieve higher objec-
tive scores in classifying attributes at the expense of affecting areas unrelated
to the target attribute. Some methods [31, 37] have used a strategy that adds
only the values of attribute-specific region to an input image, but these methods
have achieved limited success. Hence, changing only pertinent regions remains as
an important but challenging problem. Their limitation stems from considering
only structural improvement in the generator. However, more effective approach
may be possible by exploring decision making process of the discriminator.

Visual explanation [7, 30, 34, 39], which is known effective in interpreting
Convolutional Neural Network (CNN) by highlighting response areas critical in
recognition, is considered here to address the problem. Our model is mainly mo-
tivated by Attention Branch Network (ABN) [7] which extends response-based
visual explanation to an attention mechanism. In ABN, the attention branch
takes mid-level features then extracts attention feature maps. Attention feature
maps are then downsampled through a global average pooling layer (GAP) [20]
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and subsequently utilized as class probability. However, the problem with the re-
sponse based visual explanation methods is that they can only extract attention
feature maps of the attributes already present in the image. Thus, these methods
are effective only in manipulations of existing attributes, such as removing beard
or changing hair color.

To address this issue, we propose a method of identifying the regions of at-
tributes that are not present in an input image, via a novel concept of Comple-
mentary Attention FEature (CAFE). With the idea of creating a complementary
attribute vector, CAFE identifies the regions to be transformed according to the
input attributes even when the input image lacks the specified attributes. With
CAFE, our discriminator can generate and exploit the spatial attention feature
maps of all attributes. We will demonstrate CAFE’s effectiveness both in local
as well as in global attributes in generating plausible and realistic images.

Our contributions are as follows:

– We present a novel approach for facial attribute editing designed to only edit
the parts of a face pertinent to the target attributes based on the proposed
concept of Complementary Attention FEature (CAFE).

– We introduce a complementary feature matching loss designed to aid in
training the generator for synthesizing images with given attributes rendered
accurately and in appropriate facial regions.

– We demonstrate effectiveness of CAFE in both local as well as global at-
tribute transformation with both qualitative and quantitative results.

2 Related Work

Generative Adversarial Networks. Since Goodfellow et al. [8] proposed
Generative Adversarial Network (GAN), GAN-based generative models have
attracted significant attention because of their realistic output. However, the
original formulation of GAN suffers from training instability and mode collapse.
Numerous studies have been made to address these problems in various ways
such as formulating alternative objective function [2, 9, 24] or developing modi-
fied architecture [12, 13, 29]. Several conditional methods [11, 25] have extended
GAN to image-to-image translation. CycleGAN [40] proposed the use of cycle
consistency loss to overcome the lack of paired training data. Advancing from sin-
gle domain transfer methods, StarGAN [6] can handle image translation among
multiple domains. These developments enabled GANs to deliver some remark-
able results in various tasks such as style transfer [3], super-resolution [16, 18],
and many other real-world applications [1, 26, 28].

Face Attribute Editing. The goal of face attribute editing is to transform the
input facial image according to a given set of target attributes. Several meth-
ods have been proposed with Deep Feature Interpolation (DFI) scheme [4, 5, 35].
By shifting deep features of an input image with a certain direction of target
attributes, a decoder takes interpolated features and outputs an edited image.
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Although they produce some impressive results, limitation of these methods
is that they require a pre-trained encoder such as VGG network [32] besides
they have a weakness in multi-attribute editing. Recently, GAN based frame-
works have become the dominant form of face attribute manipulation. A slew
of studies for single attribute editing [14, 19, 22, 31, 37, 40] have been conducted.
However these methods cannot handle manipulation of multiple attributes with
a unified model. Several efforts [17, 27] have been extended to an arbitrary at-
tribute editing but they achieved limited quality of image. Several methods [6,
10, 38] have shown remarkable results in altering multiple attributes by taking
the target attribute vector as an input of their generator or adopting additional
network. STGAN [21] and RelGAN [36] further improved face editing ability by
using difference between a target and a source vector to constrain in addressing
selected attributes. However these methods still suffer from change of irrelevant
regions. SaGAN [37] exploits spatial attention to solve the problem, but it is
only effective for editing local attributes like adding mustache.

Interpreting CNN. Several researches [7, 30, 33, 34, 39] have visualized the de-
cision making of CNN by highlighting important region. Gradient-based visual
explanation methods [30, 33, 39] have been widely used because they are appli-
cable to pre-trained models. Nonetheless, these methods are inappropriate for
providing spatial information to our discriminator because they require back
propagation to obtain attention maps and are not trainable jointly with a dis-
criminator. In addition to gradient-based methods, several response based meth-
ods [7, 39] have been proposed for visual explanation. They obtain attention map
using only response of feed forward propagation. ABN [7] combines visual expla-
nation and attention mechanism by introducing an attention branch. Therefore,
we adopt ABN to guide attention features in our model. However, there is a
problem when applying ABN in our discriminator because it can visualize only
attributes present in the input image. We combine ABN and arbitrary face at-
tribute editing by introducing the concept of complementary attention feature
to address the difficulty of localizing facial regions when the input image doesn’t
contain the target attribute.

3 CAFE-GAN

This section presents our proposed CAFE-GAN, a framework to address arbi-
trary image editing. Fig. 2 shows an overview of our model which consists of a
generator G and a discriminator D. We first describe our discriminator that rec-
ognizes attribute-relevant regions by introducing the concept of complementary
attention feature (CAFE), and then describe how the generator learns to reflect
the spatial information by describing complementary feature matching. Finally,
we present our training implementation in detail.
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Fig. 2: Overview of our model. On the left side is the generator G which edits
source image according to given target attribute vector. G consists of Genc and
Gdec. Then the discriminator D takes both source and edited image as input. D
consists of feature extractor, Datt, Dadv and Dcls.

3.1 Discriminator

The discriminator D takes both real images and fake images modified by G as
input. D consists of three main parts, i.e., Datt, Dadv, and Dcls as illustrated
in right side of Fig. 2. Unlike other arbitrary attribute editing methods [6, 10,
21], a spatial attention mechanism is applied to mid-level features f in our
discriminator. Datt plays a major role in applying attention mechanism with
a novel concept of adopting complementary feature maps. Datt consists of an
attention branch (AB) and a complementary attention branch (CAB) and they
generate k attention maps, which are the number of attributes, respectively.
M = {M1, ...,Mk}, a collection of attention maps from AB, contains important
regions of attributes that exist in an input image while M c = {M c

1 , ...,M
c
k} from

CAB contains casual region of attributes that do not exist. These attention maps
are applied to mid-level features by the attention mechanism as

f ′i = f ·Mi, (1)

f ′′i = f ·M c
i , (2)

where Mi and M c
i are the i-th attention map from AB and CAB respectively

and (·) denotes element-wise multiplication.
The following paragraph describes Datt in detail as illustrated in Fig. 3. As

explained above, we adopt Attention Branch (AB) to identify attribute-relevant
regions following ABN [7]. AB takes mid-level features of an input image and
generate h × w× k attention features (AF), denoted by A, with a 1 × 1× k
convolution layer. Here, k denotes the number of channels in A which is the same
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Fig. 3: Details on structure of attention branch (AB) and complementary atten-
tion branch (CAB) in Datt.

as the number of attributes. h and w denote the height and width of the feature
map respectively. AB outputs k attention maps M1, ...Mk with 1 × 1 × k
convolution layers and a sigmoid layer. It also outputs activation of each attribute
class by global average pooling (GAP) [20]. The h × w× k attention feature
map A is converted to 1 × 1× k feature map by GAP to produce probability
score of each class with a sigmoid layer. The probability score is compared to
label vs with a cross-entropy loss to train D to minimize classification errors
when a real image (source image) is given as an input. Therefore, attention loss
of AB is defined as

LDAB
= −Ex

k∑
i=1

[
v(i)s logD

(i)
AB(x) + (1− v(i)s ) log(1−D(i)

AB(x))
]
, (3)

where x is real image, v
(i)
s denotes the i-th value of source attribute vector

and D
(i)
AB(x) denotes the i-th probability score that is output of AB. There-

fore, the values of each channel in A are directly related to activation of the
corresponding attribute. AB can extract A which represents spatial information
about attributes contained in the input image. However A does not include the
information about attributes that are not present in the image because Ai, the
i-th channel of feature map A, does not have response if i-th attribute is not in
the input image.

This aspect does not influence the classification models like ABN because it
only needs to activate a channel that corresponds to the correct attribute shown
in an input image. However, for handling any arbitrary attribute, the generative
model needs to be able to expect related spatial region even when an input image
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does not possess the attribute. Hence, there is a limit to apply existing visual
explanation methods into the discriminator of attribute editing model directly.

To address this problem, we developed the concept of complementary atten-
tion and implemented the idea in our algorithm by integrating Complementary
Attention Branch (CAB).The concept of CAB is intuitive that it extracts com-
plementary attention feature (CAFE), denoted by Ac, which represents causative
region of attribute that are not present in image. For example, CAB detects the
lower part of face about attribute Beard if the beard is not in an input image. To
achieve this inverse class activation, we exploit complementary attribute vector
v̄s to compare with probability score from Ac and v̄s is formulated by

v̄s = 1− vs, (4)

hence the attention loss of CAB is formulated as

LDCAB
= −Ex

k∑
i=1

[
(1− v(i)s ) logD

(i)
CAB(x) + v(i)s log(1−D(i)

CAB(x))
]
, (5)

where, D
(i)
CAB(x) denotes the i-th probability score that is output of CAB. CAB

is designed to generate a set of attention maps M c for attention mechanism
from Ac. Therefore Ac should contain spatial information to help Dcls classify
attributes. In other words, Ac represents causative regions of non-existing at-
tribute. With AB and CAB, our model extracts attention feature map about all
attributes because A and Ac are complementary. In other words, for any i-th
attribute, if Ai does not have response values, Ac

i has them and vice versa.
Two groups of attention maps M and M c, outputs of AB and CAB respec-

tively, have different activation corresponding to attributes. In other words, M is
about existing attributes of the input image while M c is about absent attributes
of that. After attention mechanism, the transformed features are forwarded to
two multi-attribute classifiers in Dcls and the classifier 1 and classifer 2 classify
correct label of image with f ′ and f ′′ respectively. Each classifier outputs the
probability of each attribute with cross-entropy loss. For discriminator, it learns
to classify real image x with two different attention mechanism, i.e.,

LDcls
= −Ex

∑
n=1,2

k∑
i=1

[
v(i)s logD

(i)
clsn

(x) + (1− v(i)s ) log(1−D(i)
clsn

(x))
]
, (6)

where Dcls1 and Dcls2 stand for two classifiers using collections of attention maps
M = {M1, ...,Mk} and M c = {M c

1 , ...,M
c
k}, respectively. Therefore, the reason

CAFE can represent the spatial information of non-existent attributes is that
CAB has to generate the attention maps that can help to improve performance
of the classifiers while reacting to non-existent attributes by GAP.

In D, there is another branch Dadv distinguishes real image x and fake image
y in order to guarantee visually realistic output with adversarial learning. In
particular, we employ adversarial loss in WGAN-GP [9], hence the adversarial
loss of D is given as

LDadv
= Ex(Dadv(x))− Ey(Dadv(y))− λgpEx̂

[
(‖∇x̂Dadv(x̂)‖2 − 1)2

]
, (7)
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Fig. 4: Details on the proposed complementary feature matching with an exam-
ple. G learns to match AF and CAFE of edited image corresponding to attribute
to be changed, i.e., To old and To bald, to CAFE and AF of source image, re-
spectively. On the contrary, G learns to match AF and CAFE of edited image
to AF and CAFE of source image for the attribute not to be changed.

where x̂ is weighted sum of real and fake sample with randomly selected weight
α ∈ [0, 1].

3.2 Generator

The generator G takes both the source image x and the target attribution label vt
as input, and then conducts a transformation of x to y, denoted by y = G(x, vt).
The goal of G is to generate an image y with attributes according to vt while
maintaining the identity of x. G consists of two components: an encoder Genc

and a decoder Gdec. From the given source image x, Genc encodes the image into
a latent representation z. Then, the decoder generates a fake image y with the
latent feature z and the target attribute vector vt. Following [21], we compute a
difference attribute vector vd between the source and the target attribute vectors
and use it as an input to our decoder.

vd = vt − vs, (8)

Thus, the process can be expressed as

z = Genc(x), (9)

y = Gdec(z, vd). (10)

In addition, we adopt the skip connection methodology used in STGAN [21]
between Genc and Gdec to minimize loss of fine-scale information due to down
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sampling. After that, D takes both the source image x and the edited image y
as input. G aims to generate an image that can be classified by Dcls1 and Dcls2

as target attribute, hence the classification loss of G is defined as

LGcls
= −Ey

∑
n=1,2

k∑
i=1

[
v
(i)
t logD

(i)
clsn

(y) + (1− v(i)t ) log(1−D(i)
clsn

(y))
]
, (11)

where v
(i)
t denotes the i-th value of target attribute vector.

Although Datt in our discriminator can obtain the spatial information about
all attributes, it is necessary to ensure that G has ability to change the relevant
regions of given target attributes. Attention feature maps of the source image and
the edited image should be different on those corresponding to attributes that are
changed while the rest of attention feature maps should be the same. Therefore
we propose a novel complementary matching method as illustrated in Fig. 4. For
the attributes that are not to be changed, the attention feature maps of edited
image should be same with that of source image. In other words, G learns to
match AF of edited image to AF of source image when the attributes remain
the same (black arrows in Fig. 4), and G also learns from matching CAFE of
the source image. When the given target attributes are different from the source
image, G learns to match AF of edited image to CAFE of source image (red
arrows in Fig. 4), same with CAFE of edited image to AF of source image. Let
{A(x), Ac(x)} and {A(y), Ac(y)} denote set of AF and CAFE from two different
samples, real image x and fake image y, respectively. Complementary matching
is conducted for changed attributes and thus the complementary matching loss
is defined as

LCM = E(x,y)

k∑
i=1

1

Ni
[‖A(x)

i − Pi‖1 + ‖Ac(x)
i −Qi‖1],

where {Pi, Qi} =

{
{A(y)

i , A
c(y)
i } if |v(i)d | = 0,

{Ac(y)
i , A

(y)
i } if |v(i)d | = 1,

(12)

where k is the number of attributes and N(i) denotes the number of elements in

feature map. A
(x)/(y)
i and A

c(x)/(y)
i denote i-th channel of A(x)/(y) and Ac(x)/(y)

respectively and v
(i)
d denotes i-th value of difference attribute vector vd.

For adversarial training of GAN, we also adopt the adversarial loss to gen-
erator used in WGAN-GP [9], i.e.,

LGadv
= Ex,vd

[Dadv(G(x, vd))], (13)

Although the generator can edit face attribute with LGcls
and generate real-

istic image with LGadv
, it should preserve identity of image. Therefore, G should

reconstruct the source image when difference attribute vector is zero. We adopt
the pixel-level reconstruction loss, i.e.,

Lrec = Ex[‖x−G(x,0)‖1], (14)
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where we use `1 loss for sharpness of reconstructed image and 0 denotes zero
vector.

3.3 Model Objective

Finally, the full objective to train discriminator D is formulated as

LD = −LDadv
+ λattLDatt

+ λDcls
LDcls

, (15)

and that for the generator G is formulated as

LG = LGadv
+ λCMLCM + λGcls

LGcls
+ λrecLrec, (16)

where λatt, λDcls
, λCM , λGcls

and λrec are hyper-parameters which control the
relative importance of the terms.

4 Experiments

In this section, we first explain our experimental setup and then present qualita-
tive and quantitative comparisons of our model with the state-of-the-art models.
Finally, we demonstrate effectiveness of CAFE with visualization results and
ablation study. The experiments not included in this paper can be found in
supplementary material.

4.1 Experimental Setup

We use CelebFaces Attributes (CelebA) dataset [23] which consists of 202,599
facial images of celebrities. Each image is annotated with 40 binary attribute
labels and cropped to 178× 218. We crop each image to 170× 170 and resize to
128×128. For comparison, we choose the same attributes used in the state-of-the-
art models [6, 10, 21]. In our experiment, coefficients of the objective functions in
Eq. (15) and (16) are set to λatt = λDcls

= λCM = 1, λGcls
= 10, and λrec = 100.

We adopt ADAM [15] solver with β1 = 0.5 and β2 = 0.999, and the learning
rate is set initially to 0.0002 and set to decay to 0.0001 after 100 epochs.

4.2 Qualitative Result

First, we conduct qualitative analysis by comparing our approach with three
state-of-the-art methods in arbitrary face editing, i.e., AttGAN [10], StarGAN [6]
and STGAN [21]. The results are shown in Fig. 5. Each column represents differ-
ent attribute manipulation and each row represents qualitative results from the
methods compared. The source image is placed in the leftmost of each row and
we analyze results about single attribute as well as multiple attributes. First,
AttGAN [10] and StarGAN [6] perform reasonably on attributes such as Add
bangs. However they tend to edit irrelevant regions for attributes such as Blond
hair or Pale skin and they also result in blurry images for attributes such as To
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Fig. 5: Qualitative comparison with arbitrary facial attribute editing models.
The row from top to down are result of AttGAN [10], StarGAN [6], STGAN [21]
and our model. Please zoom in to see more details.

bald. STGAN [21] improves manipulating ability by modifying structure of the
generator, but this model also presents unnatural images for some attributes like
To Bald and Add Bangs. In addition, unwanted changes are inevitable for some
attributes such as Blond hair. As shown in Fig. 5, our model can successfully
convert local attributes like Eyeglasses as well as global attributes like To female
and To old. Last three columns represent results of multi-attribute editing. Hair
color in the last column denotes Black ↔ Brown hair. It can be seen that our
model delivers more natural and well-edited images than the other approaches.

We also compare our model with SaGAN [37] which adopt spatial attention
concept. As shown in Fig. 6, SaGAN could not edit well in global attributes like
To male and To old. Even when the target attribute is on a localized region
like Eyeglasses, it performed poorly. However, our model calculates the spatial
information in feature-level, not in pixel-level. As a result, our model shows well-
edited and natural results in both local and global attributes. In addition, note
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CAFE-GAN

(Ours)

SaGAN

Original To maleOpen mouthEyeglasses To old Original To maleClose mouthEyeglasses To old

Fig. 6: Qualitative comparison with SaGAN [37] which adopt spatial attention
in the generator. Please zoom in to see more details.

Table 1: Comparisons on the attribute classification accuracy. Numbers indicate
the classification accuracy on each attribute.

Bald Bangs Blond h. Musta. Gender Pale s. Aged Open m. Avg.

AttGAN [10] 23.67 91.08 41.51 21.78 82.85 86.28 65.69 96.91 63.72
STGAN [21] 59.76 95.48 79.98 42.10 92.70 97.81 85.86 98.65 81.54
CAFE-GAN 79.03 98.59 88.14 40.13 95.22 98.20 88.61 97.15 85.64

that SaGAN is a single-attribute editing model, wherein it requires one model
to be trained per attribute.

4.3 Quantitative Result

We present quantitative results by comparison with two of the three models
compared earlier [10, 21]. In the absence of the ground-truth, the success of arbi-
trary attribute editing can be determined by a well trained multi-label classifier,
i.e., well edited image would be classified to target domain by a well-trained at-
tribute classifier. For fair comparison, we adopted the classifier that was used to
evaluate attribute generation score for STGAN [21] and AttGAN [10].To evalu-
ate quantitative result, we use official code which contains network architecture
and weights of parameter in well-trained model. We exclude StarGAN [6] in this
section because the official code of StarGAN provides only few attributes. There
are 2,000 edited images evaluated for each attribute and their source images
come from the test set in CelebA dataset. We measure the classification score of
each attribute of edited images and they are listed in Table 1. In Table 1, “Blond
h.” and “Open m.” denote Blond hair and Open mouth respectively. While our
model shows competitive scores on the average for many attributes, it also deliv-
ered overwhelming results compared to the other models for specific attributes
such as Bald. For attributes such as Mustache and Open mouth, STGAN results
in slightly better performance over our model.



CAFE-GAN 13

AF

CAFE CAFE

Bangs

0
Input

AF

Mustache

0

Young

1

Male

1

Mustache

0

Male

0

Bangs

1

Young

1
Input

Fig. 7: Visualization results of the attention features (AF) and the complemen-
tary attention features (CAFE).

4.4 Analysis of CAFE

This section presents analysis of the proposed method. First we show the result
of visualization of our attention features and then we conduct ablation study to
demonstrate effectiveness of CAFE.

Visualization of CAFE. Fig. 7 shows visualization results of AF and CAFE
to examine whether they activate related region correctly. Because the man
in left in Fig. 7 has no bangs, AF rarely activates but CAFE activates and
highlights the related region correctly. The result on the right shows AF correctly
activating the region relevant to bangs while CAFE doesn’t. Since CAFE only
finds complement features absent in the specified attributes, not activating the
region specified in the attribute is the correct response. The remainder of the
figure demonstrates that CAFE lights up the regions complementary to the given
attributes accurately. For global attributes like Young and Male, both AF and
CAFE respond correctly. Although AF and CAFE does not detect attribute-
relevant regions at pixel level since they are considered at feature-level, they
highlight the corresponding regions accurately per given attribute. As such, our
model performs better on editing both global and local attributes compared with
other methods.

Ablation Study. To demonstrate effectiveness of the proposed method, we
evaluate performance of our model by excluding key components one by one.
We compare our model with two different versions, i.e., (i) CAFE-GAN w.o.
CM : excluding complementary matching loss (LCM ) in training process and (ii)
CAFE-GAN w.o. CAB : removing complementary attention branch (CAB) in
our discriminator. As shown in Fig. 8, the generator has a difficulty to determine
where to change without complementary matching loss though the discriminator
can extract AF and CAFE. Some results from the model without CM show
unwanted and over-emphasized changes. Excluding CAB leads to artifacts and
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Fig. 8: Qualitative results of CAFE-GAN variants.

Table 2: Attribute classification accuracy of ablation study.

Bald Bangs Blond h. Musta. Gender Pale s. Aged Open m. Avg.

Ours 79.03 98.59 88.14 40.13 95.22 98.20 88.61 97.15 85.64
w.o. CM 61.68 97.46 87.01 39.78 85.93 92.38 86.39 97.56 81.02
w.o. CAB 32.43 91.45 70.41 36.13 81.93 92.22 65.95 94.72 70.66

unwanted changes in generated images because the discriminator has limited
spatial information about the attributes that are contained in the input image
We also measure classification accuracy of each attribute by the pre-trained
classifier which was used in Section 4.3 and the results are listed in Table 2. In
the absence of CM or CAB, the classification accuracy decreases in all attributes
except Open mouth, and the model without CAB shows the lowest accuracy.

5 Conclusion

We introduced the CAFE-GAN based on the complementary attention features
and attention mechanism for facial attribute editing. The CAFE controls facial
editing to occur only on parts of the facial image pertinent to specified target
attributes by exploiting the discriminator’s ability to locate spatial regions ger-
mane to specified attributes. Performance of CAFE-GAN was compared with the
state-of-the-art methods via qualitative and quantitative study. The proposed
approach in most of the target attributes demonstrated improved performances
over the state-of-the-art methods, and in some attributes achieved significantly
enhanced results.
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