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Abstract. Knowledge Distillation (KD) has been one of the most popu-
lar methods to learn a compact model. However, it still suffers from high
demand in time and computational resources caused by sequential train-
ing pipeline. Furthermore, the soft targets from deeper models do not
often serve as good cues for the shallower models due to the gap of com-
patibility. In this work, we consider these two problems at the same time.
Specifically, we propose that better soft targets with higher compatibil-
ity can be generated by using a label generator to fuse the feature maps
from deeper stages in a top-down manner, and we can employ the meta-
learning technique to optimize this label generator. Utilizing the soft
targets learned from the intermediate feature maps of the model, we can
achieve better self-boosting of the network in comparison with the state-
of-the-art. The experiments are conducted on two standard classification
benchmarks, namely CIFAR-100 and ILSVRC2012. We test various net-
work architectures to show the generalizability of our MetaDistiller. The
experiments results on two datasets strongly demonstrate the effective-
ness of our method.

Keywords: Knowledge Distillation, Meta Learning

1 Introduction

Although deep neural networks have achieved astonishing performance in many
important computer vision tasks, they usually require large number of model pa-
rameters (weights) which lead to extremely high time and space complexity in
training and deployment. As a result, there exists a trade-off between accuracy
and efficiency. To have a small and efficient model with similar performance as
a deep one, many techniques have been proposed, including pruning [8,15,18],
quantization [8,17], low-rank decomposition [27,3] and any others. Knowledge
Distillation (KD) [10] is one of the most popular methods among them to train
a compact network with high performance. Specifically, it first trains a teacher
model, then uses the output of this teacher model as an additional soft target
to transfer the knowledge learned by the teacher to the student model. This
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Fig. 1: The key idea of our approach. Traditional knowledge distillation methods
often follow the time-consuming teacher-student pipeline as left. To overcome this
problem, self-distillation (middle) abandons the large teacher model and uses the final
output as soft teacher target for all intermediate outputs, which may be hampered
by the capacity gap between deep layers and shallow layers [4]. Our MetaDistiller
(right) proposes to generate more compatible soft target for each intermediate output
respectively in a top-down manner.Best viewed in color.

distillation process may go on for even more than one generation. Many vari-
ants [1,7,19,28,31] have been proposed subsequently to improve the guidance
from teacher to student.

However, all these conventional distillation methods perform in a sequential
way which is difficult to parallelize. This indicates that the distillation process
may take a lot of time, especially for the learning of teacher model, while our
goal is the compact student model. Hence, some works have explored to sidestep
this sequential procedure. [26] proposes to use the output of previous iteration
as the soft target for the current iteration, but this may lead to amplified errors,
and it’s rather hard to choose which previous iteration to use. Besides, either the
generated soft targets of the whole dataset or the model at a certain iteration
has to be kept in memory since they will serve as teachers. [30] proposes a
self distillation method in the complete sense by extending [14], which adds
classifiers to the intermediate hidden layers to directly supervise the learning
of shallower layers. [30] further adopts the output of the final layer as teacher
to transfer the knowledge from deep layers to the shallow ones. However, this
design still suffers from the problem pointed out by [4] as conventional distillation
methods. [4] finds that larger models do not often make better teachers due to
the mismatched capacity between large models and smaller ones, which makes
small students unable to mimic the large teachers. We can observe such problem
in self-distillation given the capacity gap between the deepest model and the
shallower ones.

To overcome these problems in self-distillation, we propose a new method
called MetaDistiller where a label generator is employed to learn the soft targets
for each shallower output layers instead of using the output of the last layer.
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We expect the learned soft targets are more matched with the capacity of the
corresponding shallower output layers in the model and our model can thus be
better self-boosted by using these learned soft targets. Our method also does
not need a teacher model and therefore avoids the time-consuming sequential
training. The soft targets for shallower output layers are obtained based on the
feature maps from deeper layers, which is referred to as Top-Down Distilla-
tion. This is inspired by the observation that the feature maps in deep layers
often encode higher-level and more task-specific information compared to the
ones in shallower layers, and the soft targets should transfer these knowledge
to the shallower layers for better training of the model. We argue this shares
the same principle with the retrospection of human beings given that we can be
aware of what we have missed in the previous stage as the learning proceeds.
The top-down distillation aims at correcting this defect. Moreover, unlike [19],
we learn the soft targets for the output probability distribution from interme-
diate layers rather than for the feature maps since the categorical information
is shared across different stages while the contextual information needed for the
reconstruction is not. To generate the soft targets that are more compatible with
the intermediate outputs, the label generator is optimized by bi-level optimiza-
tion which is commonly used in meta-learning, given we share the same moti-
vation of ‘learning to learn’. Though additional computational burden is added
during training in comparison with self-distillation due to the existence of meta
learning, it is relatively marginal when compared to traditional teacher-student
distillation methods. Besides, neither time nor space complexity increases dur-
ing inference time since label generator is then abandoned. Hence, such trade-off
for the improvement in compatibility of soft targets is quite cost-effective.Fig. 1
illustrates our motivation intuitively.

To show the effectiveness of our approach, we conduct experiments for var-
ious network architectures on two standard classification benchmarks, namely
CIFAR-100 [13] and ILSVRC2012 [20]. The empirical study shows that we can
consistently attain better results by employing our MetaDistiller compared to
both self-distillation and traditional teacher-student distillation methods. We
also find that the generated soft targets are more complementary to the one-hot
ground-truth label compared to the final output. This is because the generated
soft targets can better capture the information among negative classes, which is
not covered by one-hot ground-truth, and thus can serve as a better regulariza-
tion term to help the model generalize well to unseen data.

2 Related Work

Knowledge Distillation Knowledge distillation is widely adopted to train a
shallow network to achieve comparable or higher performance than a deep net-
work. Hinton et al. [10] first proposes the idea of knowledge distillation where
a well-optimized large model is employed as teacher to provide additional in-
formation not contained in the one-hot label to the compact student network.
Fitnets [19] improves upon [10] by using the feature maps in the intermediate
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layers of teacher net as hints. [28] trains the student model to mimic the attention
maps from the teacher model instead. [31] blurs the difference between teacher
and student by exchanging their roles iteratively, which is similar to co-training.
However, all these traditional distillation methods perform the time-consuming
sequential training. Although [7,1] share the same architecture between teacher
and student, they still require sequential training since each student is trained
from scratch to match the teacher’s soft labels.

To sidestep this resource-consuming pipeline, some works [26,30] explore to
distill the network itself. [26] uses the outputs from previous iteration as soft
targets, but this risks amplifying the error in the learning process, and decision
on which iteration to adopt as teacher is rather hard. Strictly speaking, it is not
self-boosting in a complete sense as we still need to keep the model of certain iter-
ation as teacher. [30] improves upon [14] by further employing the final output as
teacher to supervise the output from intermediate layers. Their self-distillation
method totally abandons the need of keeping a big teacher model or the soft tar-
gets of the whole dataset produced by it to perform the distillation. Nevertheless,
this simple formulation suffers from the problem as illustrated in [4] that shal-
lower student is difficult to directly mimic the output from deep teacher model
due to the gap between capacity. Our method overcomes this problem while still
performs the distillation without resource-consuming teacher-student pipeline by
generating more compatible soft targets through a meta-learned label generator
to transfer the knowledge in a top-down manner.

Meta Learning The core idea of meta learning is ‘learning to learn’, which
means taking the optimization process of learning algorithm into the considera-
tion of optimizing the learning algorithm itself. Bengio et al. [2] first applies meta
learning to optimize hyper-parameters by differentiating through the preserved
computational graph of training phase to obtain the gradients with regard to the
hyper-parameters. Finn et al. [6] uses meta learning to learn better initializa-
tion for few-shot learning. [23] utilizes meta learning to augment training data
for low-shot learning. [11] incorporates meta learning into traditional knowledge
distillation. They automatically decide what knowledge in the teacher as well as
its amount will be transferred to which part of the student based on meta gradi-
ents instead of hand-crafted rules. Sharing the similar motivation with the works
mentioned above, in this paper, we adopt meta learning to learn the soft targets
for self knowledge distillation, which can be subsequently used as supervision
signals to boost the learning of the model.

3 Approach

In this section, we will introduce the proposed method, MetaDistiller. We first
briefly review the formulation of knowledge distillation in Section 3.1, and then
extend it to self-boosting in Section 3.2. In Section 3.3, we propose to perform
the top-down distillation by incorporating feature maps from different stages
progressively to generate soft targets. In Section 3.4, we then discuss how to
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Fig. 2: The pipeline of our approach. The grey part and the yellow part correspond
to main model and label generator respectively. We fuse the feature map produced in
the feed forward process of main model through a top-down manner by adopting the
operation defined in Equation (5) iteratively to generate soft teacher targets (green).
The intermediate outputs (blue) of the main model are supervised by the ground-truth
label and generated soft teacher targets simultaneously. The label generator is trained
by using meta learning. Best viewed in color.

apply meta learning to learn the soft target generator. Finally, we will present the
whole training and inference pipeline of the proposed algorithm in Section 3.5.

3.1 Background: Knowledge Distillation

Knowledge Distillation (KD), proposed by Hinton et al. [10], aims at transferring
knowledge from a deep teacher network, denoting as T, to a shallow student
network, denoting as S. In order to transfer knowledge from teacher to student,
the loss for training student network is modified by adding KL divergence be-
tween the teacher’s and the student’s output probability distributions. Formally,
given labeled dataset D of N samples D = {(x1, y1) , . . . , (xN , yN )}, we can write
the loss function of student network as following,

LS (D; θS) =
1

N

N∑
i=1

αLCE (yi,S (xi; θS)) + (1− α) τ2KL (T (xi; θT ) ||S (xi; θS)) ,

(1)
where α is the hyper-parameter to control the relative importance of the two
terms, τ is the temperature hyper-parameter, θT and θS are the parameters of
teacher T and student S respectively. LCE refers to the cross entropy loss and
KL refers to the KL divergence which measures how one probability distribution
is different from another.
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By minimizing this modified loss function, the student network will try to
match the one-hot ground-truth distribution (the first term) while lowering its
discrepancy with output probability distribution from teacher T (xi; θT ) to trans-
fer the knowledge of negative classes learned by teacher network. The probability
distribution over classes can be obtained by employing softmax function, where
the probability of sample si belonging to class j can be expressed as,

P (yi = j|xi) =
ez

j
i /τ∑C

c=1 e
zci /τ

(2)

where C is number of classes, zi is the output logits of sample xi, τ is the same
temperature hyper-parameter as (1). The role of τ is to control the smoothness
of the output probability distribution. The higher the temperature, the higher
the entropy of distribution, i.e. the smoother distribution.

3.2 Network Self-Boosting

One of the major problems of the above teacher-student pipeline is the long
training time caused by the two-stage sequential training procedure. To over-
come such difficulty, a method called self-distillation [30] has been proposed by
adopting deep-supervised net [14] to achieve self-boosting without first training a
large teacher network. In the following, we will introduce a general self-boosting
framework where [30] is a special case under our framework, and then we will
show our general framework leads to improved algorithms in the next two sub-
sections.

In the self-boosting framework introduced in [14], the deep network is divided
into K stages and there is an exit branch at the end of each early stage. In
addition to the loss at the final output, the one-hot ground-truth label is also
used to supervise these early stages. Besides using the one-hot hard label as
supervision signal to the intermediate outputs, we propose to add soft teacher
targets to supervise these intermediate outputs. Specifically, (1) can be modified
as following:

LS(D; θS , Tk) =
1

N

N∑
i=1

(
LCE (yi,SK (xi; θS)) +

K−1∑
k=1

Lk(Sk (xi; θS) , yi;Tk)

)
(3)

where Sk indicates the output of the k-th stage in the student network, and
SK is the final output of the model. Tk is called the soft teacher target for
stage k to perform knowledge distillation, which is a function depends on stage
k+ 1, . . . ,K of the network. Unlike (1), there is no distillation term for the final
output SK since we do not have a teacher model to provide such supervision
signal now. Lk refers to the loss function of outputs at earlier stages. For the
first K − 1 stages, the supervision signal of stage k can be formally written as

Lk(Sk(xi; θS), yi;Tk) = αLCE (yi,Sk (xi; θS)) + (1− α) τ2KL (Tk||Sk (xi; θS))
(4)
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where outputs from the intermediate layers are supervised by hard labels and
soft teacher targets simultaneously.

In self-distillation [30], they directly utilize the output from the last layer
SK (xi; θS) as Tk. However, we will argue that this is not the best way to assign
Tk and will propose an automatic way to generate Tk that can significantly
improve the performance.

3.3 Top-Down Distillation

As mentioned in the previous subsection, self-distillation [30] sets the soft teacher
target Tk as the final layer softmax output for all the intermediate stages, and
we argue this is not the best way for self-supervision. First, there exists “gap of
capacity” problem, which means the capacity of earlier stages may not be enough
to learn the final softmax output of a deep network. Furthermore, compared to
the output probability distribution, feature maps in the deeper layers undoubt-
edly contain more information beyond the categorical information, which shall
be useful for getting better soft teacher targets for earlier stages.

Based on these ideas, we propose to distill the knowledge from the feature
maps of deep layers to better supervise the learning of shallower layers through
a top-down feature fusion process. This fusion process can be recursively defined
as,

F̂k = conv3×3(UpSampling×2(F̂k+1) + conv1×1(Fk)) (5)

where Fk indicates the original output feature map of the k-th stage in the main
model and F̂k indicates the feature map produced by our label generator based
on feature maps of stage k+ 1, . . . ,K. For the final stage K, we slightly modify
(5) by only keeping the 1× 1 convolution operation since we do not have F̂K+1.
Upsampling can be simply achieved by using bilinear interpolation to match the
spatial size of the the feature map from two neighboring stages as each stage
scales the input feature map by 0.5. 1×1 convolution is responsible for matching
the channel size to perform element-wise addition for fusion. We finally use a
3× 3 convolution layer to refine this result to obtain the generated feature map
F̂k for the k-th stage. Note that the parameters for these convolution kernels
are learnable which makes our approach able to automatically generate the best
soft target feature for each particular task. We will discuss how to learn these
parameters in the next subsection.

The process described above can be considered as the retrospection of human
beings if we take the feed forward of neural network as the learning process of
humans. Through rethinking what we have missed in previous learning stages, we
could correct this for better learning if we could access the past states. And the
top-down distillation aims at transferring such retrospection back to early stages
for better learning. Compared to categorical probability distribution, feature
maps contain more information, thus can serve a better indicator for different
learning stages to achieve a better retrospection.

Though we can directly supervise the discrepancy between Fk and F̂k by
using loss function like L2 distance, we argue this is not a good choice based
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on the fact that feature also encodes contextual information other than cate-
gorical information. Unlike categorical information which should be invariant
across different stages, the downsampling operation often causes a loss in the
contextual information. As a result, the evolution of feature maps is not fully
invertible. Hence, instead of adding supervision signal on the feature map, we
prefer to only supervise categorical information as the deep layers can help on
this. We therefore learn a normalized probability distribution from F̂k as our Tk
by using an additional bottleneck module, which is also employed to produce the
intermediate outputs, and use Tk as soft teacher label to perform the knowledge
distillation. The whole pipeline is illustrated in Fig. 2

3.4 Meta-Learned Soft Teacher Label Generator

The soft teacher target generator defined in (5) is actually a fusion network
that can subsequently help us to learn a better model, and therefore learning
the parameters of this generator network shares the same “learning-to-learn”
intuition with meta learning. In the following, we show how to learn the label
generator based on the commonly used bi-level optimization framework in meta
learning.

Formally, denoting the parameters of the main network as θs and the param-
eters of label generator as θg, learning the label generator can be written as a
bi-level problem,

min
θg
Lval(Xval, Yval; θ

∗
s)

s.t. θ∗s = arg min
θs

LS(Dtrain; θs.Tk(θg)), (6)

where Lval is the standard cross entropy loss and Ltrain(Xtrain, Ytrain; θs, θg) is
the same loss function as (3) only with Tk changing to Tk(θg) as the soft teacher
targets in our framework is generated through a label generator parameterized
by θg.

To conduct updates on θg, we need to compute ∇θgLval(Xval, Yval; θ
∗
s). How-

ever this is nontrivial since θ∗s is an implicit function of θg. This could be po-
tentially done by the implicit function theory but the exact solution will lead to
huge computational overhead. Therefore, following a standard approach used in
meta learning (e.g., [6]), we only approximate the θ∗s by the current one with an
additional gradient update step. This approximation can be written as

θ+s := θs − ζ∇θsLS(Dtrain; θs.Tk(θg)), (7)

where ζ is the learning rate for this inner optimization step.
According to the above procedure, gradient with respect to θg can be ex-

pressed formally as

∇g := ∇gLtest(Xtest, Ytest; θ
+
s )

s.t. θ+s = optθg (θs − ζ∇θsLtrain(Xtrain, Ytrain; θs, θg)), (8)

where optθg (·) indicates the term inside the parentheses is differentiable with
regard to θg for optimization.
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Algorithm 1 Training process for solving optimization problem in ((6)):

Input: labeled dataset D = {(xi, yi)}, main model S(θs), label generator G(θg)
Output: Model S∗(θs)
1: initialize: main model S(θs), label generator G(θg)
2: while not converged do
3: // train S
4: Sample a random mini-batch {(xi, yi)} from D
5: Forward pass on S to obtain K outputs {S1(xi; θs), · · · ,SK(xi; θs)}
6: Forward pass on G to generate {T1, · · · , TK−1}
7: Optimize S following (3) using generated soft targets {T1, · · · , TK−1}
8: // train G for every M epochs
9: if epoch num % M ==0 then

10: Randomly split D in half to get two disjoint dataset Dtrain and Dtest

11: //inner update, retaining the computational graph
12: sample a random mini-batch Xtrain with labels Ytrain from Dtrain

13: compute θ+s by using a single step gradient update following (7)
14: //meta gradient step
15: sample a random mini-batch Xtest with labels Ytest from Dtest

16: Calculate Ltest(θ
+
s ) using cross entropy loss

17: Obtain ∇g following (8)
18: //update label generator
19: Update θg based on ∇g using gradient descent
20: end if
21: end while

3.5 Training and Inference

The whole training pipeline of our method is described in Algorithm. 1. More
specifically, we alternatively update θs (model parameters) and θg (generator’s
parameters) by SGD, where the gradient with respect to generator is computed
by (8). The generator is used to perform top-down distillation to generate the
soft teacher targets to facilitate the self-boosting of the main model. The reason
why we split the whole training dataset into two disjoint sets of equal size is
that we expect the model supervised by generated soft targets can generalize
well to unseen data, which can be taken as an indicator of higher compatibility.
We set M = 5, i.e. we update the label generator every 5 epochs. This can
reduce the training time while still keep the performance from degradation. For
instance, on ResNet18 [9], the training time increases by 1.1h compared to simply
training the model without any types of distillation while it takes 7.9h to first
train a ResNet101 [9] as teacher model if we perform the conventional two-stage
knowledge distillation. Moreover, the performance of the well-trained ResNet101
is almost the same as our self-boosted ResNet18. This shows that our proposed
method can preserve the speed of self-distillation while improving its final test
accuracy.

During the inference phase, we can abandon the label generator and the lay-
ers utilized to produce the intermediate results, so there will be no additional
computational cost required for deployment compared to the model trained by
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Table 1: Our method consistently outperforms the the self-distillation on
CIFAR-100. We present the results on CIFAR-100 by testing our MetaDistiller on 8
different networks. We report the result in [30] in the parentheses.

Model baseline
Final Output Ensemble Output

SD MD SD MD

ResNet18[9] 77.31(77.09) 78.25(78.64) 79.05 79.32(79.67) 80.05
ResNet50[9] 77.78(77.68) 79.71(80.56) 80.85 80.38(81.04) 81.41
ResNet101[9] 78.92(77.98) 80.92(81.23) 81.39 81.55(82.03) 81.98
ResNeXT29-2[24] 77.78 79.43 80.38 80.14 80.89
WideResNet16-1[29] 67.58 69.42 70.30 70.17 70.81
VGG19(BN)[22] 71.61(64.47) 74.27(67.73) 75.12 75.01(68.54) 75.93
MobileNetv2[21] 71.81 74.46 75.37 75.33 75.96
Shufflenetv2[16] 68.12 69.89 70.66 70.71 71.29

simply using the cross entropy loss. Furthermore, if the computational resources
allow, we can further perform ensemble by using the intermediate output. We
report the results of both the final output and the ensemble output in experi-
ments, and ensemble often improves the accuracy of final output by around 1%.
and ensemble often improves the accuracy of final output by around 1%.

4 Experimental Results

4.1 Setups

We evaluate our method on two widely used image classification datasets, namely
CIFAR-100 [13] and ILSVRC2012 [5]. To verify the generalizability of our method,
we test with multiple different network architectures. As for hyper-parameters,
we set balance weight α to 0.5 and temperature τ simply to 1 for all the datasets
constantly. For optimization, we use SGD and Adam [12] optimizer for main
model S and label generator G respectively with initial learning rates both as
0.1. We train the network for 200 epochs in total, and multiply the learning rate
by 0.1 at epoch 80 and 140. The learning rate of inner step gradient update ζ is
kept the same with the learning rate of main model S. All the experiments are
conducted with PyTorch.

4.2 CIFAR-100

We first conduct experiments on CIFAR-100 [13] for all 8 architectures mentioned
in Sec 4.2. For all three different types of ResNets [9] and MobileNetv2 [21],
we divide the network into four stages, and the output feature maps for each
of the first three stages are taken as input to a bottleneck module, following
self-distillation [30], to produce the intermediate output for that stage. For
ResNeXt [24], WideResNet [29] and Shufflenetv2 [16], the network is divided
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Table 2: Our method consitently outperforms the self-distillation on Ima-
geNet. We present the results on ImageNet by testing our MetaDistiller on 3 different
networks.

Model baseline
Final Output Ensemble Output

SD MD SD MD

VGG19(BN)[22] 70.35 72.45 73.40 73.03 73.98
ResNet18[9] 68.12 69.84 70.52 68.93 69.82
ResNet50[9] 73.56 75.24 76.11 74.73 75.59

into three stages and use the output feature maps from first two stages to pro-
duce intermediate output in the similar way. For VGG19 [22], we directly perform
the average pooling and use a fully connected layer to produce the intermediate
output for the feature maps before the second, third and fourth max-pooling
operation. We implement the experiments on all other network architectures for
self-distillation and use it as our baseline results. We also report the numbers in
their original paper regarding three ResNet-type model and VGG. In Table. 1,
we denote self-distillation as SD and denote our MetaDistiller as MD.

The detailed experimental results are listed in Table. 1. Besides the accuracy
of final output, we also report the performance of the ensemble of all outputs.
We can observe that our MetaDistiller consistently outperforms the baseline and
self-distillation, indicating the generated soft teacher targets can better facilitate
the training compared to the final output, and this generalize to different network
architectures. The average improvement for three-stage model is slightly smaller
due to less supervision is injected into the training of early stage.

4.3 ILSVRC2012

To verify the effectiveness of our method on the large-scale dataset, we also con-
duct experiments on ImageNet. We evaluate our method with three widely used
networks including VGG19[22], ResNet18[9] and ResNet50[9]. The results are
presented in Table 2. We observe that our method consistently outperforms the
self-distillation baseline – our method improves the baseline by 0.95%, 0.68% and
0.87% on VGG19, ResNet18 and ResNet50, respectively. These results clearly
demonstrate the effectiveness of our method. More notably, our method can sig-
nificantly improve the original models without introducing extra computational
cost. The enhaced VGG19, ResNet18 and ResNet50 outperform the original
models by 3.05%, 2.40% and 2.03%, respectively. Since our method does not
requires modifications on the original models during inference, MetaDistiller is
very useful in boosting various prevalent CNN models for real-world applications.
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Table 3: Our method outperforms the traditional distillation methods We
present the results on CIFAR-100 by testing our MetaDistiller with 5 two-stage distil-
lation methods.

Teacher Student Baseline KD [10] FitNet [19] AT [28] DML [31] MD

ResNet152[9] ResNet18[9] 77.31 77.98 78.41 78.81 77.72 79.05
ResNet152[9] ResNet50[9] 77.78 79.39 80.20 79.47 78.45 80.85

4.4 Comparison With Traditional Distillation

We further compare our method with some widely-used traditional knowledge
distillation methods, including KD [10], FitNet [19], AT [28] and DML [31]. All
these methods follow the teacher-student pipeline. Concretely, they first train
a ResNet of 152 layers (ResNet152) and then use the output from this large
network as teacher to train a rather smaller network like ResNet18 and ResNet50.
The experiments are conducted on CIFAR-100 dataset. We present the results
in Table 3

Our method can consistently improve the directly trained model by even
larger margin compared to these five traditional distillation methods even though
we do not have a large network to serve as a teacher. We outperform the runner-
up by 0.44% and 0.78% on ResNet18 and ResNet50 respectively. This shows
that our approach improves not only the training speed but also the accuracy in
comparison with traditional distillation methods. We assume this is due to the
output from large teacher network cannot adapt well to the small model. This
also proves the necessity to solve the capacity discrepancy problem in knowledge
distillation.

4.5 Ablation Study

There are major objectives for ablation study are two-folds. One is to show the
improvement brought by our generated soft teacher targets is much more com-
pared to self-distillation [30] upon the deeply-supervised network (DSN), which
only uses the hard label to supervise the intermediate outputs; and the other is
to show our generated soft target and hard label are complementary, i.e. they
both contribute to the training. We denote DSN, self-distillation and our ap-
proach as ‘Hard Only’, ‘Hard+Simple Soft’ and ‘Hard+Better Soft’ respectively.
We present all the results in Table. 4. We conduct the experiments for three
ResNet-type networks on CIFAR-100.

From Table 4, we can observe that both hard label and soft targets contribute
to the improvement of accuracy. Yet, the simple soft teacher target usually only
improves upon DSN by around 0.4%, which is relatively smaller compared to us-
ing our generated soft target labels. On the other hand, our method can improve
the DSN by large margin, always more than 1%. This also indicates that our
generated label is complementary to hard label given they can both contribute



Meta-Learned Top-Down Self Distillation 13

Table 4: Our method improves upon backbone by much larger margin com-
pared to self-distillation. We test on CIFAR-100 for ResNet of three different depth

Model Method Final Output Ensemble Output

ResNet18 [9]
DSN(Hard Only) 78.01 79.18

SD(Hard+Simple Soft) 78.25 79.32
MD(Hard+Better Soft) 79.05 80.05

ResNet50 [9]
DSN(Hard Only) 79.33 80.04

SD(Hard+Simple Soft) 79.71 80.38
MD(Hard+Better Soft) 80.85 81.41

ResNet101 [9]
DSN(Hard Only) 80.54 81.29

SD(Hard+Simple Soft) 80.92 81.55
MD(Hard+Better Soft) 81.39 81.98

to boost the training, implying our generated soft teacher targets contain some
helpful knowledge beyond the scope of ground-truth one-hot label. Notably, our
generated soft targets bring more improvement than one-hot ground-truth label
as well, which can be assumed that these hidden information is more helpful to
the training of early stages compared to injecting more categorical information.
These observations strongly demonstrate the effectiveness of the generated soft
target, illustrating the benefits of using it to replace the final output as teacher
label.

4.6 Visualization and Discussion

Why the generated soft teacher targets attain better results than using the final
output? What ‘dark knowledge’ does the generated soft teacher target contain
but final output does not? To answer this question, we visualize the normalized
generated soft targets for each intermediate stage as well as the final output
categorical distribution both from ResNet18 in Fig. 3. We can find that the
generated soft targets are smoother while the final output often approaches the
one-hot ground-truth label. Due to this fact, the final output cannot provide
enough information for training that are not covered by the hard label. Moreover,
we can see that the generated targets for shallower layers are even softer than
that for deep layers. We argue this is because the feature maps in shallow layers
often encode more generic information while the deep layers contain more specific
information. Therefore, using the output from deepest layer often lead to the
compatibility problem [4]. These observations imply that knowledge distillation
is more like a kind of regularization, which avoids the model overfitting to the
one-hot label on training data so that it can generalize well to unseen data.

The above phenomena are also observed by previous works [10,4,25] and
they solve this by fine-tuning the temperature [10], early stopping the teacher
training [4] and adding a regularization to the teacher to encourage it to be
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stage 1 stage 2 stage 3 output

Fig. 3: Visualization. We exhibit the output from a well-optimized ResNet18 and the
generated soft targets of three intermediate stages produced by its corresponding label
generator. We can see that the final output is quite similar to the one-hot distribution
and the soft targets differs from each other and the ones of shallower stages is softer.

less strict [25]. Our method achieves the same to make the teacher label more
tolerant yet through a fully automatic way. We do not need to carefully fine-
tune the hyper-parameter like temperature given our generated teacher label can
learn to adapt itself to be more compatible.

5 Conclusion

We proposed a new knowledge distillation method, namely MetaDistiller, to
sidestep the time-consuming sequential training and improves the capability of
the model at the same time. To achieve this, we generate more compatible soft
teacher targets for the intermediate output layers by using a label generator to
fuse the feature maps from deep layers of the main model in a top-down way.
The experimental results on CIFAR and ImageNet prove the effectiveness of our
method and the generalizability to different network architectures.
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