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This contains the supplementary material for the paper Prior-based Domain
Adaptive Object Detection for Hazy and Rainy Conditions. Due to the space
limitations in the submitted paper, in this supplementary material we provide
additional details like network configuration, details of the newly introduced
Rainy-Cityscapes dataset, additional analysis and discussion about results.

1 Additional Results

1.1 Results with ResNet-152

Table 1 shows the additional results on the Cityscapes→Foggy-Cityscapes exper-
iments, when ResNet-152 network architecture is used as backbone of detection
network. From the results we can see that ResNet-152 performs better compared
to the corresponding VGG16 baselines. For FRCNN+P45+R45 baseline with
ResNet-152, residual feature recovery blocks and prior estimation networks are
applied on fourth and fifth conv block of the network. The results in Table 1 show
that the proposed approach generalizes well for different network architectures.

Table 1. Performance comparison for the Cityscapes → Foggy-Cityscapes experiment.
Red and Blue color fonts show best and second best performance.

Method prsn rider car truc bus train bike bcycle mAP

DAFaster 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SCDA 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
SWDA 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
DM 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
MTOR 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
NL 35.1 42.1 49.2 30.1 45.3 26.9 26.8 36.0 36.5

Ours (VGG16)
FRCNN 25.8 33.7 35.2 13.0 28.2 9.1 18.7 31.4 24.4
FRCNN+P45+R45 36.4 47.3 51.7 22.8 47.6 34.1 36.0 38.7 39.3

Ours (ResNet-152)
FRCNN 32.4 42.2 36.0 19.8 26.4 4.7 22.7 32.6 27.1
FRCNN+P45+R45 34.9 46.4 51.4 29.2 46.3 43.2 31.7 37.0 40.0

? equal contribution
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Fig. 1. Performance sensitivity of proposed approach with varying λ parameter.

Table 2. Results of the ablation experiments from Cityscapes → Foggy-Cityscapes.
Here, ∗ indicates additional experiments that are not included in the paper.

Method mAP

FRCNN 24.4

FRCNN+D5 30.0
FRCNN+D5+R5 32.9
FRCNN+D∗

45 33.2

FRCNN+P5+R5 36.5
FRCNN+P∗

45 37.4
FRCNN+P45+R45 39.3

Table 3. Network configuration details for Prior Estimation Networks.

Prior Estimation Network

Gradient Reversal Layer

Conv, 1 × 1, 64, stride 1, BN, ReLU

Conv, 3 × 3, 64, stride 1, BN, ReLU

Conv, 3 × 3, 64, stride 1, BN, ReLU

Conv, 3 × 3, 3, stride 1, Tanh

Table 4. Network configuration details for Residual Feature Recovery Blocks.

Residual Feature Recovery Block - Conv4 Residual Feature Recovery Block - Conv5
Maxpool, 2 × 2, stride 2 Maxpool, 2 × 2, stride 2

Conv, 3 × 3, 256, stride 1, padding 1, ReLU Conv, 3 × 3, 512, stride 1, padding 1, ReLU
Conv, 3 × 3, 512, stride 1, padding 1, ReLU Conv, 3 × 3, 512, stride 1, padding 1, ReLU

Conv, 3 × 3, 512, stride 1, padding 1 Conv, 3 × 3, 512, stride 1, padding 1

1.2 Ablation Analysis

The Table 2 provides additional ablation experiments with different network
configuration. The analysis is done with VGG-16 network architecture as backbone
for detection network.

1.3 Parameter Sensitivity

In Fig.1, we provide sensitivity of the proposed approach with respect to λ
parameter. The parameter λ controls the effect of regularization applied on
residual feature norm coming from residual feature recovery blocks. The parameter
sensitivity experiment was performed for adaptation from Cityscapes → Foggy-
Cityscapes with VGG16 network architecture as backbone of detection network.



Prior-based Domain Adaptive Object Detection under Haze & Rain 3

Fig. 2. Sample images from the Rainy-Cityscapes dataset.

2 Network configurations

The network configuration details of different modules such as Residual Feature
Recovery Blocks (RFRB) and Prior Estimation Network (PEN) are shown in
Table 3 and 4.

(a) (b)
Fig. 3. Visualization of features using t-SNE plots of different models for Foggy-
Cityscapes. (a) Model trained using only the domain adaptive loss. (b) Model trained
using the prior adversarial loss. With the domain adaptive loss, the features are not
perfectly aligned. Introducing the prior adversarial loss results in better alignment.

3 Rainy-Cityscapes

Fig. 2 shows few sample image examples from Rainy-Cityscapes dataset intro-
duced in the paper.
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4 Qualitative Results

4.1 t-SNE Feature Visualization

Fig. 3 shows the distribution of the source and target features for Cityscapes →
Foggy-Cityscapes experiment. Fig. 3(a) shows the distribution of features from
the model which is trained using only domain adversarial loss. Fig. 3(b) shows
the distribution of features from the model which is trained using the proposed
prior adversarial loss.

4.2 Cityscapes → Foggy-Cityscapes

Fig. 4 shows comparison of detection results from the proposed method with
DA-Faster RCNN [2] on the Cityscapes → Foggy-Cityscapes adaptation.

4.3 Cityscapes → Rainy-Cityscapes

Fig. 5 shows comparison of detection results from the proposed method with
DA-Faster RCNN [2] on the Cityscapes → Rainy-Cityscapes adaptation.

4.4 Cityscapes → RTTS

Fig. 6 shows comparison of detection results from the proposed method with
DA-Faster RCNN [2] on the Cityscapes → RTTS adaptation.

5 Preliminary Study : Domain Adaptive Detection in Snow

Similar to rain, a snow image can be considered as superposition of clean image
and snow-residues. If we denote snowy image as Isnow, clean image as Iclean and
snow-residues as Isnow−res, then snow image can be mathematically written as,

Isnow = Iclean + Isnow−res,

Here, Isnow−res can be used as a prior and can be extracted from the snowy
image with the help of GMM, similar to the case of rain. We use this model to
perform a preliminary experiment on snowy conditions in Sec. 5.

Following the above mention model, we present a preliminary study of do-
main adaptive detection in snowy conditions. For the experiment, we consider
adaptation scenario WIDER-Face → UFDD-Snow, which adapts the detection
network from labeled clean image dataset, WIDER-Face [8], to unlabeled snow
affected image dataset, UFDD-Snow [4]. We compare with the state of art method
SWDA [6]. For proposed approach we use the GMM prior as snow weather prior
to extract snow residues as explained in the Sec. 6. For both methods we use
VGG16 [7] as the backbone of the detection network. As we can see from the
Table 5 that proposed method is able to improve ∼10% over the Faster-RCNN
baseline and ∼3% the method SWDA.
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(a) (b)

Fig. 4. Detection results on Foggy-Cityscapes. (a) DA-Faster RCNN [2] (b) Proposed
method. The bounding boxes are colored based on the detector confidence using the
color map as shown. As we can see from the figures, the proposed method is able to
produce high confidence predictions and is able to detect more objects in the image.

6 Extending to Other Weather Conditions

Many other weather conditions have been researched in the literature and have a
mathematical model based on the physics of image formation [3], [9], [9]. Our
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(a) (b)

Fig. 5. Detection results on Rainy-Cityscapes. (a) DA-Faster RCNN [2] (b) Proposed
method. The bounding boxes are colored based on the detector confidence using the
color map as shown. As we can see from the figures, the proposed method is able to
produce high confidence predictions and is able to detect more objects in the image.

method can be easily extensible to other conditions by utilizing these mathemat-
ical models. Here we provide some examples of the prior that can be used based
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(a) (b)

Fig. 6. Detection results on RTTS Dataset. (a) DA-Faster RCNN [2] (b) Proposed
method. The bounding boxes are colored based on the detector confidence using the
color map as shown. As we can see from the figures, the proposed method is able to
produce high confidence predictions and is able to detect more objects in the image.

on their corresponding mathematical models:
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Table 5. Results of the adaptation experiments from WIDER-Face → UFDD-Snow.

Method mAP

FRCNN [5] 52.1
SWDA [6] 58.7

Proposed 61.9

1. Low-light/Sunshine: Any image can be modeled with the help of Luminance
(L) - Reflectance (R) model [1]. This model follows an additive formula in the
logarithm and can be written as,

log(I) = log(L) + log(R),

Here, I is the Image, L is luminance map and R is the reflectance map. Con-
sidering this model, for low-light/sunshine conditions, luminance map can be
used as a prior information and homoporphic filtering [1] can be used to extract
luminance map from the image.

2. Water puddle: The water puddle model has been extensively discussed
in [3]. In the mathematical formulation provided by [3], we can use reflection
attention as a prior. The details regarding how to extract the reflectance attention
from the image is provided in [3].

3. Adherent water drops: A detailed discussion adherent water drops mathe-
matical model based on physics of water-droplets is provided in [9]. In the model
formulation, the term Ir (Eq. 7 [9]) can be used as prior.

For the paper we focused mainly on rainy and hazy conditions. However, in
future we plan to study the above mentioned weather conditions with the help of
priors extracted from the corresponding mathematical model as discussed above.
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