
ReDro: Efficiently Learning Large-sized SPD
Visual Representation

Saimunur Rahman1,2[0000−0002−5250−5612], Lei Wang1[0000−0002−0961−0441],
Changming Sun2[0000−0001−5943−1989], and Luping Zhou3[0000−0003−1065−6604]

1 VILA, School of Computing and Information Technology, University of
Wollongong, NSW 2522, Australia

2 CSIRO Data61, PO Box 76, Epping, NSW 1710, Australia
3 School of Electrical and Information Engineering, University of Sydney, NSW 2006,

Australia
sr801@uowmail.edu.au; leiw@uow.edu.au; changming.sun@csiro.au;

luping.zhou@sydney.edu.au

Abstract. Symmetric positive definite (SPD) matrix has recently been
used as an effective visual representation. When learning this representa-
tion in deep networks, eigen-decomposition of covariance matrix is usu-
ally needed for a key step called matrix normalisation. This could result
in significant computational cost, especially when facing the increasing
number of channels in recent advanced deep networks.
This work proposes a novel scheme called Relation Dropout (ReDro).
It is inspired by the fact that eigen-decomposition of a block diagonal
matrix can be efficiently obtained by decomposing each of its diagonal
square matrices, which are of smaller sizes. Instead of using a full co-
variance matrix as in the literature, we generate a block diagonal one
by randomly grouping the channels and only considering the covariance
within the same group. We insert ReDro as an additional layer before the
step of matrix normalisation and make its random grouping transparent
to all subsequent layers. Additionally, we can view the ReDro scheme
as a dropout-like regularisation, which drops the channel relationship
across groups. As experimentally demonstrated, for the SPD methods
typically involving the matrix normalisation step, ReDro can effectively
help them reduce computational cost in learning large-sized SPD visual
representation and also help to improve image recognition performance.

Keywords: Block diagonal matrix, Covariance, Eigen-decomposition,
SPD representation, Fine-grained image recognition.

1 Introduction

Learning good visual representation remains a central issue in computer vision.
Representing images with local descriptors and pooling them to a global rep-
resentation has been effective. Among the pooling methods, covariance matrix
based pooling has gained substantial interest by exploiting the second-order
information of features. Since covariance matrix is symmetric positive definite



2 S. Rahman et al.

(SPD), the resulting representation is often called SPD visual representation. It
has shown promising performance in various tasks, including fine-grained image
classification [21], image segmentation [11], generic image classification [12, 19],
image set classification [33], activity and action recognition [39, 14] and few-shot
learning [36, 37], to name a few. With the advent of deep learning, several pieces
of pioneering work have integrated SPD representation into convolutional neural
networks (CNNs) and investigated a range of important issues such as matrix
function back-propagation [11], compact matrix estimation [7], matrix normal-
isation [20, 16, 15] and kernel-based extension [6]. These progresses bring forth
effective SPD visual representations and improve image recognition performance.

Despite the successes, the end-to-end learning of SPD representation in CNNs
poses a computational challenge. This is because i) the size of covariance ma-
trix increases quadratically with the channel number in a convolutional feature
map and ii) eigen-decomposition is often needed to normalise the covariance
matrix in back-propagation for each training sample. This results in significant
computation, especially considering that many channels are deployed in recent
advanced deep networks. Although a dimension reduction layer could always
be used to reduce the channel number beforehand, we are curious about if this
computational challenge can be mitigated from another orthogonal perspective.

This work is inspired by the following fact: the eigen-decomposition of a
block diagonal matrix can be obtained by simply assembling the eigenvectors
and eigenvalues of its diagonal square matrices [23]. Each diagonal matrix is
smaller in size and the eigen-decomposition needs less computation. Motivated
by this, we propose to replace a full covariance matrix with a block diagonal one.
To achieve this, all channels must be partitioned into mutually exclusive groups
and the covariance of the channels in different groups shall be omitted (i.e., set
as zero). A question that may arise is how to optimally partition the channels
to minimise the loss of covariance information or maximise the final recognition
performance. Although this optimum could be pursued by redesigning network
architecture or loss function (e.g., considering the idea in [38]), it will alter the
original SPD methods that use matrix normalisation and potentially increase
the complexity of network training.

To realise a block diagonal covariance matrix with the minimal alteration
of the original methods, negligible extra computation and no extra parameters
to learn, we resort to a random partitioning of channels. This can be trivially
implemented, with some housekeeping operation to make the randomness trans-
parent to all the network layers after the matrix normalisation step. To carry
out the end-to-end training via back-propagation, we derive the relevant matrix
gradients in the presence of this randomisation. The saving on computation and
the intensity of changing the random partitioning pattern are also discussed.

In addition, we conceptually link the proposed random omission of relation-
ship (i.e., covariance) of channels to the dropout scheme commonly used in deep
learning [27]. We call our scheme “Relation Dropout (ReDro)” for short. It is
found that besides serving the goal of mitigating the computational challenge,
the proposed scheme could bring forth an additional advantage of improving the



ReDro: Efficiently Learning Large-sized SPD Visual Representation 3

network training and image recognition performance, which is consistent with
the spirit of the extensively used dropout techniques.

The main contributions of this paper are summarised as follows.

– To mitigate the computational issue in learning large-sized SPD represen-
tation for the methods using matrix normalisation, this paper proposes a
scheme called ReDro to take advantage of the eigen-decomposition efficiency
of a block diagonal matrix. To the best of our survey, such a random partition
based scheme is new for the deep learning of SPD visual representation.

– Via the randomisation mechanism, the ReDro scheme maintains the minimal
change to the original network design and negligible computational overhead.
This work derives the forward and backward propagations in the presence
of the proposed scheme and discusses its properties.

– Conceptually viewing the ReDro scheme as a kind of dropout, we investigate
its regularisation effect and find that it could additionally help improving
network training efficiency and image recognition performance.

Extensive experiments are conducted on one scene dataset and three fine-
grained image datasets to verify the effectiveness of the proposed scheme.

2 Related Work

Learning SPD visual representation. SPD visual representation can be traced
back to covariance region descriptor in object detection, classification and track-
ing [29, 30, 25]. The advent of deep learning provides powerful image features and
further exhibits the potential of SPD visual representation. After early attempts
which compute covariance matrix on pre-extracted deep features [3], research
along this line quickly enters the end-to-end learning paradigm and thrives. Co-
variance matrix is embedded into CNNs as a special layer and jointly learned
with network weights to obtain the best possible SPD visual representation.

DeepO2P [11] and Bilinear CNN (BCNN) [21] are two pieces of pioneering
work that learn SPD visual representation in an end-to-end manner. The frame-
work of DeepO2P is largely followed and continuously improved by subsequent
works. It generally consists of three parts. The first part feeds an image into a
CNN backbone and processes it till the last layer of 3D convolutional feature
maps, with width w, height h and channel number d. Viewing this map as a set of
w×h local descriptors of d dimensions, the second part computes a (normalised,
which will be detailed shortly) d× d covariance matrix to characterise the chan-
nel correlation. The last part is routine, usually consisting of fully connected
layers and the softmax layer for prediction.

Matrix normalisation. The step of matrix normalisation in the second part above
plays a crucial role. It is widely seen in the recent work to learn SPD visual repre-
sentation due to three motivations: i) Covariance matrix resides on a Riemannian
manifold, whose geometric structure needs to be considered; ii) Normalisation



4 S. Rahman et al.

is required to battle the “burstiness” phenomenon—a visual pattern usually oc-
curs more times once it appears in an image; iii) Normalisation helps to achieve
robust covariance estimation against small sample.

After element-wise normalisation, the recent work turns to matrix-logarithm
or matrix-power normalisation because they usually produce better SPD rep-
resentation.4 Nevertheless, both of them involve the eigen-decomposition of co-
variance matrix, whose computational complexity can be up to O(d3). This
operation has to be applied for each training sample in every forward and back-
ward propagations. The step of matrix normalisation becomes a computational
bottleneck in the end-to-end learning of SPD visual representation.

The recent literature has made an effort to reduce the computation of ma-
trix normalisation. They consider a special case of matrix power normalisation,
that is, matrix square-root normalisation. In the work of [20], this is approxi-
mately calculated by applying Newton-Schulz iteration for root finding. It makes
forward propagation computationally more efficient since only matrix multipli-
cations are involved. The backward propagation still needs to solve a Lyapunov
equation, which has the complexity at the same level of eigen-decomposition.
After that, the work in [18] solves matrix square-rooting more efficiently. It pro-
poses a sandwiched Newton-Schulz iteration and implements it via a set of layers
with loop-embedded directed graph structure to obtain an approximate matrix
square-root. It can be used for both forward and backward propagations.

Although the work in [20, 18] achieves computational advantage and promis-
ing performance by using matrix square-root, their methods do not generalise to
matrix normalisation with other power value p or other normalisation function f .
In addition, the applicability of iterative Newton-Schulz equation to large-sized
covariance matrix is unclear since only smaller-sized covariance matrices (i.e., of
size 256 × 256) are used in that two works. These motivate us to mitigate the
computational issue of matrix normalisation from other perspectives.

Finally, there are also research works to address the complexity of learning
large-sized SPD representations by focusing on the parts other than matrix nor-
malisation. Compact, low-rank and group bilinear pooling methods [7, 13, 38]
address the high dimensionality of the feature representation after vectorising
covariance matrix, and group convolution is used in [32] for the similar purpose.
Linear transformation is designed in [1, 10, 24, 35, 32] to project large covariance
matrices to more discriminative, smaller ones. To efficiently capture higher-order
feature interactions, kernel pooling is developed [4]. Furthermore, the work in [2]
develops a new learning framework to directly process manifold-valued data in-
cluding covariance matrix. For our work, instead of competing with these works,
it complements them and could be jointly used to mitigate the computational
issue of eigen-decomposition of large SPD matrices when needed. In this work,

4 Let C be a SPD matrix and its eigen-decomposition is C = UDU>. The columns
of U are eigenvectors while the diagonal of the diagonal matrix D consists of eigen-
values. Matrix normalisation with a function f is defined as f(C) = Uf(D)U>,
where f(D) means f is applied to each diagonal entry of D. Matrix-logarithm and
matrix-power based normalisations correspond to f(x) = log(x) and f(x) = xp.



ReDro: Efficiently Learning Large-sized SPD Visual Representation 5

we focus on the frameworks in [20, 19, 18, 6] which typically employ matrix nor-
malisation as an important step in learning SPD representation.

Dropout schemes. Dropout [27] is a common regularisation technique that ran-
domly drops neuron units from fully connected layers to improve generalisation.
Several new schemes have extended this idea to convolutional layers. Spatial-
Dropout [28] randomly drops feature channels. DropBlock [8] drops a block of
pixels from convolutional feature maps. Weighted channel dropout [9] randomly
drops feature channels with lower activations. Conceptually, the proposed “Rela-
tion Dropout (ReDro)” can be viewed as another scheme. Unlike the above ones,
it randomly drops the covariance relationship of the channels across groups. It
yields block-diagonal variants of a covariance matrix, and could produce dropout-
like regularisation effect in training, as will be experimentally demonstrated.

3 The Proposed Relation Dropout (ReDro)

An overview of ReDro is in Figure 1. From the left end, an image is fed into a
CNN backbone, and the last convolutional feature map of d channels is routinely
obtained. ReDro firstly conducts a random permutation of these channels and
then evenly partitions them into k groups by following the channel number. Re-
stricted to group i (i = 1, 2, · · · , k), a smaller-sized covariance matrix Ci is com-
puted and its eigen-decomposition is conducted as Ci = UiDiU

>
i . The eigen-

vectors in U1,U2, · · · ,Uk are then arranged to form a larger, block-diagonal
matrix Ub. The similar procedure applies to the eigenvalues in D1,D2, · · · ,Dk

to form Db. Note that Ub and Db are just the eigen-decomposition of the d× d
block-diagonal covariance matrix Cb = diag(C1,C2, · · · ,Ck). At the last step
of ReDro, Ub and Db is permuted back to the original order of the channels
in the last convolutional feature map. This is important because it makes the
random permutation transparent to subsequent network layers. This completes
the proposed ReDro scheme.

In doing so, the eigen-decomposition of a covariance matrix, with part of
the entries dropped, can be more efficiently obtained by taking advantage of
the block-diagonal structure of Cb. Then matrix normalisation can be readily
conducted with any valid normalisation function.

3.1 Forward propagation in the presence of ReDro

Let Xd×(wh) be a data matrix consisting of the d-dimensional local descriptors
in the last convolutional feature map. Recall that d is the channel number while
w and h are the width and height of the feature map. A random partitioning of
the d channels can be represented by k index sets, G1, G2, · · · , Gk, which contain
the IDs of the channels in each group, respectively.

Let a roster of all the IDs in these k index sets be {r1, r2, · · · , rd}. It is
a permutation of the original channel IDs {1, 2, · · · , d}, and therefore induces



6 S. Rahman et al.

Ɣ�Ɣ�Ɣ

Ɣ�Ɣ�Ɣ

Ɣ�Ɣ�Ɣ

Ɣ�Ɣ�Ɣ

*URXS��

*URXS��

*URXS�N

*URXS�ZLVH
FRYDULDQFH
FRPSXWDWLRQ

&UHDWH�JURXSV
RI�SHUPXWHG�
FKDQQHOV

5DQGRP�
SHUPXWDWLRQ

Ɣ�Ɣ�Ɣ

&RQYROXWLRQDO�
IHDWXUH�FKDQQHOV

3HUPXWDWLRQ�PDWUL[

3HUPXWH�EDFN
8E�DQG�'EƔ�Ɣ�Ɣ

Ɣ�Ɣ�Ɣ

2EWDLQ�
HLJHQYDOXHV�DQG�
HLJHQYHFWRUV

(,*

(,*

(,*

&RPSXWH�
EORFN�GLDJRQDO�

HLJHQYDOXH�'E�DQG�
HLJHQYHFWRU�8E

3

0DWUL[�
QRUPDOLVDWLRQ

6RIWPD[

5HODWLRQVKLS�'URSRXW

&11

&RQYROXWLRQ�
OD\HUV

,Q
SX
W�L
P
DJ
H

Fig. 1. Proposed relation dropout (ReDro) scheme for mitigating the computational
issue of matrix normalisation in learning large-sized SPD visual representation.

a permutation matrix Pd×d.5 The ith row of P is e>ri = (0, · · · , 0, 1, 0, · · · , 0),
which is a standard basis vector with “1” at its rith entry and zeros elsewhere.
The effect of P can be intuitively interpreted. By left-multiplying P to X, the
rows of X will be permuted. A more intuitive interpretation, which will be used
later, is that it permutes the d axes of an original coordinate frame F to form
another new frame F ′. For a quantity (e.g., eigenvector) represented in F ′, we
can inverse the permutation by left-multiplying P−1 to it. It is known in matrix
analysis that for any permutation matrix P, it satisfies PP> = I. Therefore,
P−1 can be trivially obtained as P>. This result will be used shortly.

Now, for the channels within each group Gi (i = 1, · · · , k), we compute a
covariance matrix Ci. Collectively, they form a d× d block-diagonal matrix

Cb = diag(C1,C2, · · · ,Ck). (1)

Let the eigen-decomposition of Ci be Ci = UiDiU
>
i . It is well-known by matrix

analysis that the eigen-decomposition of Cb can be expressed as [23]

Cb = UbDbU
>
b , (2)

Ub = diag(U1,U2, · · · ,Uk) and Db = diag(D1,D2, · · · ,Dk). (3)

Note that the eigenvectors in Ub are obtained in the new coordinate frame F ′.
To retrieve their counterparts, Ûb, in the original frame F (i.e., corresponding
to the original order of the d channels), we apply the inverse permutation as

Ûb = P−1Ub = P>Ub. (4)

The eigenvalue matrix Db does not need to be permuted back because an eigen-
value represents the data variance along the corresponding eigenvector. It is not
affected by the permutation of the coordinate axes.

5 In matrix analysis, a permutation matrix P is a square binary matrix. It has one
and only one “1” entry in each row and each column, with all the remainder being
“0”. It is easy to verify that PP> = P>P = I, where I is an identity matrix.



ReDro: Efficiently Learning Large-sized SPD Visual Representation 7

In this way, we obtain the eigen-decomposition of Cb corresponding to the
original order of the channels (i.e, 1, 2, · · · , d) as

Ûb = P> · diag(U1,U2, · · · ,Uk); D̂b = diag(D1,D2, · · · ,Dk). (5)

With this result, matrix normalisation with any valid function f can now be
applied. Algorithm 1 summarises the steps of the proposed ReDro scheme.

Algorithm 1: Relation Dropout (ReDro)

Input : Convolutional feature map Xd×(wh); The number of groups k.
1. Randomly partition the d channels to groups G1, G2, · · · , Gk;
2. Create the permutation matrix P accordingly;
3. foreach group Gi do

1. Compute the covariance matrix Ci;

2. Calculate its eigen-decomposition Ci = UiDiU
>
i ;

end
4. Form the eigenvectors and eigenvalues of the block-diagonal matrix Cb:
Ub = diag(U1,U2, · · · ,Uk), Db = diag(D1,D2, · · · ,Dk);

5. By permuting back, the eigen-decomposition of Cb corresponding to the
original order of the d channels are Ûb = P>Ub and D̂b = Db.

3.2 Backward propagation in the presence of ReDro

To derive the gradients for back-propagation, the composition of functions from
the feature map X to the objective function J(X) is illustrated as follows.

X→ PX︸︷︷︸
Y

→ (YY>) ◦ S︸ ︷︷ ︸
Cb

→ (P>CbP)︸ ︷︷ ︸
A(Auxiliary)

→ f(A)︸ ︷︷ ︸
Z

→ · · · layers · · · → J(X)︸ ︷︷ ︸
Objective

(6)

P is the permutation matrix. Y is the feature map with its channels permutated.
S = diag(11,12, · · · ,1k) is a block-diagonal binary matrix, where 1i is a square
matrix of all “1”s and its size is the same as that of channel group Gi. Noting
that “◦” denotes element-wise multiplication, S represents the selection of Cb

out of the full covariance matrix YY>. The letter under each term is used to
assist derivation. A is an auxiliary variable and not computed in practice. f(A)
is the step of matrix normalisation. Its result Z is used by the subsequent fully
connected and softmax layers. Our goal is to work out ∂J

∂X . Once obtained, all
gradients before the convolutional feature map X can be routinely obtained.

In the literature, the seminal work in [11] and other work such as [6] demon-
strate the rules of differentiation for matrix-valued functions. By these rules, we
derive the following results (details are provided in the supplement).

∂J

∂A
= Ûb

(
G ◦

(
Û>b

∂J

∂Z
Ûb

))
Û>b ;

∂J

∂Cb
= P

∂J

∂A
P>;

∂J

∂Y
=

(
S ◦

(
∂J

∂Cb
+

(
∂J

∂Cb

)>))
Y;

∂J

∂X
= P>

∂J

∂Y
, (7)



8 S. Rahman et al.

where G is a d × d matrix defined based on D̂b.
6 As seen, given ∂J

∂Z , we can

work out ∂J
∂A , ∂J

∂Cb
, ∂J
∂Y and then ∂J

∂X . In the whole course, only Ûb, D̂b, P and S
are needed. The first two have been efficiently obtained via the proposed scheme
ReDro in Sec. 3.1, while the latter two are known once the random grouping is
done. Now, we have all the essential results for back-propagation. An end-to-end
learning with ReDro can be readily implemented.

3.3 Discussion

Computational savings. As aforementioned, a computational bottleneck in SPD
representation learning is the eigen-decomposition of a d × d full covariance
matrix. Generally, its complexity is at the order of O(d3).7 Without loss of
generality, assuming that d can exactly be divided by the number of groups k,
the size of each group will be d/k. The complexity incurred by ReDro, which
conducts eigen-decomposition of the k smaller-sized covariance matrices, will be
O(d3/k2). Therefore, in the theoretical sense, the proposed ReDro scheme can
save the computation up to k2 times.

The implementation of ReDro only needs a random permutation of the IDs of
the d channels. For the gradient computation in Eq.(7), it appears that compared
with the case of using a full covariance matrix, ReDro incurs extra computation
involving the multiplication of P or S in ∂J

∂Cb
, ∂J

∂Y and ∂J
∂X (Note that ∂J

∂A needs
to be computed for any eigen-decomposition based matrix normalisation, even
if ReDro is not used). Nevertheless, both P and S are binary matrices simply
induced by the random permutation. Their multiplication with other variables
can be trivially implemented, incurring little computational overhead.

Two key parameters. One key parameter is the number of groups, k. Since
the improvement on computational efficiency increases quadratically with k, a
larger k would be preferred. Meanwhile, it is easy to see that the percentage
of the entries dropped by ReDro is (1 − 1

k ) × 100%. A larger k will incur more
significant loss of information. As a result, a value of k balancing these two
aspects shall be used, which will be demonstrated in the experimental study.

When k is given, the other key parameter is the “intensity” of conducting
the random permutation. Doing it for every training sample leads to the most
intensive change of dropout pattern. As will be shown, this could make the
objective function fluctuate violently, affecting the convergence. To show the
impact of this intensity, we will experiment the random permutation at three
levels, namely, epoch-level (EL), batch-level (BL) and sample-level (SL) and hold
it for various intervals. For example, batch-level with interval of 2 (i.e., “BL-2”)
uses the same random permutation for two consecutive batches before refreshed.
Similarly, SL-1 conducts the random permutation for every training sample.

6 For the matrix G, its (i, j)th entry gij is defined as
f(λi)−f(λj)

λi−λj
if λi 6= λj and f ′(λi)

otherwise, where λi is the ith diagonal element of D̂b.
7 For a symmetric matrix, the complexity of eigen-decomposition could be improved

up to the order of O(d2.38) by more sophisticated algorithms though [5].



ReDro: Efficiently Learning Large-sized SPD Visual Representation 9

In addition, ReDro could bring less biased eigenvalue estimate. As known,
when eigen-decomposition is applied to a large, full covariance matrix, eigen-
value estimation will be considerably biased (i.e., larger/smaller eigenvalues are
estimated to be over-large/over-small) when samples are not sufficient. When
ReDro is used, eigenvalues are estimated from each block sub-matrix on the di-
agonal. Because they are smaller in size, eigenvalue estimate could become less
biased. This property can be regarded as a by-product of the ReDro scheme.

4 Experimental Result

We conduct extensive experiments on scene classification and fine-grained image
classification to investigate the proposed ReDro scheme. For scene classification,
MIT Indoor dataset [26] is used. For fine-grained image classification, the com-
monly used Birds [34], Airplanes [22] and Cars [17] datasets are tested. For all
datasets, the original training and testing protocols are followed, and we do not
utilise any bounding box or part annotations. Following the literature [20, 18],
we resize all images to 448 × 448 during training and testing. More details on
datasets and implementation of ReDro are provided in the supplement material.

This experiment consists of three main parts, with an additional ablation
study. Sec. 4.1 shows the computational advantage brought by ReDro. Sec. 4.2
investigates the efficiency of ReDro versus the intensity level at which it is ap-
plied. Sec. 4.3 validates the performance of ReDro via multiple typical SPD
representation learning methods that explicitly use matrix normalisation.

4.1 On the computational advantage of ReDro

This part compares the computational cost between the case without ReDro and
the case using ReDro. The former means a full covariance matrix is used.

Specifically, we compare with four typical SPD representation learning meth-
ods, namely, MPN-COV [19], DeepCOV [6], Improved BCNN (IBCNN) [20] and

Table 1. Comparison of computational time (in second) for covariance estimation and
matrix normalisation by using or not using the proposed ReDro scheme. The reported
time is the sum of forward and backward propagation (individual propagation time is
given in the supplement). The four methods to the left represent the case not using
ReDro. The case using ReDro is implemented upon DeepCOV [6] with various k. The
boldface shows that ReDro saves computational time

Matrix
Dimension

No ReDro used DeepCOV [6] using ReDro
MPN
-COV

[19]
Deep
-COV

[6]
IBCNN

[20]
iSQRT
-COV

[18]
with
k = 2

with
k = 4

with
k = 8

with
k = 16

128×128 0.004 0.004 0.006 0.001 0.007 0.009 0.011 0.015
256×256 0.013 0.013 0.014 0.006 0.011 0.011 0.013 0.020
512×512 0.031 0.031 0.032 0.030 0.030 0.022 0.023 0.030
1024×1024 0.097 0.097 0.121 0.097 0.090 0.076 0.056 0.062



10 S. Rahman et al.

iSQRT-COV [18]. The first two methods conduct matrix normalisation via eigen-
decomposition, while the last two realise normalisation more efficiently by matrix
square-rooting. These four methods represent the case without using ReDro. To
compare with them, we implement ReDro within the DeepCOV method with
ResNet-50 network as backbone. When doing this, we only modify its COV lay-
ers with the proposed ReDro scheme, leaving all the other settings unchanged.

Since the layers of covariance computation and matrix normalisation in these
methods are often tightly coupled, it is difficult to exclude the normalisation
step to exactly compare with ReDro for computational cost. To be fair, the total
time taken by both the steps of ReDro and matrix normalisation is used for
comparison. To test the computational cost over covariance matrix of various
sizes, we follow the literature to apply an additional 1× 1 convolutional layer to
reduce the number of channels when necessary. The comparison is conducted on
a computer with a Tesla P100 GPU, 12-core CPU and 12 GB RAM. ReDro is
implemented with MatConvNet library [31] on Matlab 2019a.

Table 1 shows the timing result. Firstly, along the size of covariance matrix,
we can observe that i) when the size is relatively smaller (i.e., 256×256), ReDro
is unnecessary. This is because the eigen-decomposition does not incur significant
computation. Rigidly using ReDro in this case complicates the procedure, adding
computational overhead; ii) however, when the matrix size increases to 512×512,
the advantage of ReDro emerges, and becomes more pronounced for 1024×1024.
In these cases, ReDro is computationally more efficient by 20% ∼ 50% than the
no-ReDro counterparts (see the results in bold). In addition, in terms of the
total training time, ReDro can significantly shorten the time from 52.4 hours
down to 24.3 hours on Birds dataset, with 1.3 percentage point improvement on
classification accuracy, as will be detailed in Figure 2.

Secondly, we test different group number k in ReDro. As seen, ReDro shows
higher computational efficiency when k = 4 or 8. For k = 2, we can expect from
the previous complexity analysis that its efficiency shall be lower. For k = 16,
the overhead for processing more matrices, although in smaller sizes, becomes
non-trivial. Since k = 4 gives rise to a high computational efficiency (and overall
good classification, as will be shown later), the following two experiments will
focus on this setting, with more discussion on k left to the ablation study.

4.2 On the efficiency of ReDro versus its intensity level

Based on the findings in the last experiment, we focus on testing with 512×512-
and 1024× 1024-sized matrices in this experiment.

This experiment investigates the impact of intensity level, at which ReDro is
applied, to classification improvement. Again, we implement ReDro with Deep-
COV [6]. Specifically, we train DeepCOV by applying ReDro with 15 intensity
levels, i.e., EL-{100, 50, 20, 10, 5, 2, 1}, BL-{20, 10, 5, 2, 1} and SL-{6, 3, 1}, whose
meaning is explained in Sec. 3.3. The obtained classification accuracy is com-
pared with those of the original DeepCOV reported in [6].

The left part of Table 2 shows the results when the covariance matrix size is
512×512. Firstly, along the intensity level, we can observe that, i) the efficiency



ReDro: Efficiently Learning Large-sized SPD Visual Representation 11

Table 2. Results using ReDro with k = 4 at different intensity levels on DeepCOV [6]
(left) and DeepCOV-ResNet (right). The results higher than the baseline are shown in
bold. The highest results for each dataset are marked by asterisks

DeepCOV [6] (512× 512) DeepCOV-ResNet (1024× 1024)
MIT Airplane Cars Birds MIT Airplane Cars Birds

No ReDro 79.2 88.7 91.7 85.4 83.4 83.9 85.0 86.0

R
eD

ro
w

it
h
k

=
4

EL-1 80.5* 89.1 92.2* 86.5 84.0* 85.4 88.9 86.2*
EL-2 80.5* 88.9 92.1 86.5 – – – –
EL-5 80.1 89.0 91.7 86.0 83.6 85.8* 89.8* 86.0
EL-10 80.3 88.6 88.9 85.5 – – – –
EL-20 79.9 88.6 91.3 85.0 81.5 85.3 87.9 85.9
EL-50 79.4 89.0 91.0 85.8 – – – –
EL-100 80.2 89.2* 90.8 86.1 – – – –
BL-1 76.8 88.8 87.5 86.6 84.0* 85.2 87.9 86.2*
BL-2 76.9 89.1 88.0 86.4 – – – –
BL-5 76.6 89.1 87.8 86.6 83.8 85.2 88.0 86.1
BL-10 76.8 89.0 88.0 86.5 – – – –
BL-20 78.6 88.7 87.5 86.5 84.0* 85.5 87.9 86.1
SL-1 77.7 88.9 90.0 86.6 83.8 85.1 84.8 86.0
SL-3 78.1 89.0 89.8 86.5 – – – –
SL-6 79.1 89.2* 91.1 86.7* 83.8 85.2 86.2 86.1

of ReDro indeed varies with the intensity level; ii) multiple intensity levels lead
to improved classification over the baseline “No ReDro.” In particular, EL-1 and
EL-2 work overall better than others across all datasets; iii) also, EL-1 works well
with MIT and Cars, and SL-6 works well with Airplane and Birds though. This
suggests that for some datasets, less intensive change of random permutation,
i.e., at epoch level (EL), is preferred. We observe that in this case, applying
more intensive change, i.e., at sample level (SL), could cause objective function
to fluctuate violently and affect convergence.

Secondly, along the datasets, we can observe that DeepCOV trained with Re-
Dro improves classification over its baseline on all datasets, with the magnitude
of 0.5 ∼ 1.3%. For example, on Birds with the intensity level of SL-6, ReDro
improves the accuracy from the baseline 85.4% to 86.7%.

Besides improving classification, ReDro at various intensity levels also short-
ens the total network training time. At each epoch of training DeepCOV, ReDro
saves about 40% of the GPU time. We find that it also helps network to converge
faster. Figure 2 shows that DeepCOV with ReDro achieves lower classification
error with a smaller number of epochs than the baseline “No ReDro” on Birds.
As seen, i) when ReDro is used, training the network, including the one achiev-
ing the highest accuracy, generally takes about half of the time of the baseline
(indicated by the vertical dotted line), regardless of the intensity level; ii) with
ReDro, to train a network to achieve comparable performance with the baseline,
it only takes about 36% (i.e, down from 52.4 hours to 19.0 hours) of the baseline
training time. The similar observation is seen from other datasets besides Birds.



12 S. Rahman et al.

Fig. 2. Comparison of the classification error, network training time, and the total
number of epochs obtained by using ReDro at various intensity levels. Each small
triangle in this figure represents a ReDro case. The arrow points to its intensity level
and the network training time taken to achieve its highest test accuracy, as reflected
by the x-axis. The result in red indicates the best performer. Birds dataset is used.

The right part of Table 2 shows the result when the covariance matrix size is
1024× 1024. Note that no existing networks have ever tried such a large matrix.
We use DeepCOV network with ResNet-50 as the backbone, and apply 1 × 1
convolution to reduce the number of feature channels from 2048 to 1024. We
call this network “DeepCOV-ResNet.” Due to the longer training period caused
by the larger covariance matrix, we sample eight out of the 15 intensity levels
in the table and test them. From the results, we can observe that, i) except for
a few intensity levels, DeepCOV-ResNet with ReDro outperforms the baseline
consistently across all datasets; ii) the improvement varies between 0.7 ∼ 4.8%
(This largest improvement is achieved by ReDro with EL-5 on Cars). The im-
provement could be attributed to two factors: a) The dropout-like regularisation
effect in ReDro helps the network learn better features, and b) ReDro estimates
smaller-sized covariance matrices, instead of a full d× d one, from the local de-
scriptors in the convolutional feature map. This helps to mitigate the bias issue
in the estimation of the eigenvalues of covariance matrix.

4.3 On the performance of ReDro with typical methods

The above experiments verify the efficiency of ReDro by integrating it into the
DeepCOV method. Now, we further integrate ReDro into other typical SPD rep-
resentation methods that use matrix normalisation as an important step, namely,
Improved BCNN [20], MPN-COV [19] and iSQRT-COV [18]. Since iSQRT-COV
uses matrix square-root normalisation without involving eigen-decomposition,
we investigate the regularisation effect of ReDro for it. This also applies to
BCNN [21] which does not have the matrix normalisation step. Since most of
these methods are originally proposed for fine-grained image classification, we
focus on the datasets of Airplane, Cars and Birds.

Table 3 shows the results. In total, six scenarios are implemented with these
methods, using differently sized covariance matrix. For each scenario, ReDro at



ReDro: Efficiently Learning Large-sized SPD Visual Representation 13

the same intensity level is used. We compare the baseline “No ReDro” to the
cases in which ReDro is integrated. As seen, i) except iSQRT-COV, networks
trained with ReDro generally outperform their baseline counterparts. ReDro-
based iSQRT-COV is comparable with the baseline; ii) overall, the improvement
is consistent across all datasets. The improvement higher than 1% can be com-
monly seen, with the maximum one being 4.8%; iii) For the results from ReDro
with k = 2 and 4, they are overall comparable or the latter is slightly better
(e.g., higher in 10 out of the total 18 results). Taking the computational saving
into account, k = 4 is a better option.

Additionally, we provide some explanation to the performance of iSQRT-
COV. All the methods except iSQRT-COV use a backbone model that is pre-
trained without incorporating the SPD representation layers. These layers are
only incorporated later and then fine-tuned with a fine-grained image dataset.
Differently, the pretrained backbone model in iSQRT-COV has incorporated the
SPD representation layers that are further fine-tuned with the fine-grained image
dataset. This helps iSQRT-COV achieve more promising performance. Mean-
while, as noted previously, iSQRT-COV [18] utilises a special matrix normalisa-
tion without involving eigen-decomposition. Our ReDro could provide iSQRT-
COV with extra potential in efficiently utilising the eigen-decomposition based
matrix normalisation to access more normalisation functions.

Table 3. Results using ReDro in typical SPD visual representation methods. The
results higher than the baseline (indicated with “No ReDro”) are shown in bold. The
IBCNN [20], BCNN [21] and iSQRT-COV [18] networks are trained (including the
baseline) with the settings in their original papers. As for MPN-COV [19], it is trained
with the same pretrained network as IBCNN, BCNN and DeepCOV for consistency.
Note that to ensure a fair of comparison, we report the classification result obtained by
softmax predictions and do not utilise the additional step of training a separate SVM
classifier. The highest results on each method are marked by asterisks.

Dataset
Training
mode

DeepCOV
-ResNet
(1024 × 1024)

DeepCOV
(512 × 512)

IBCNN
(512 × 512)

BCNN
(512 × 512)

MPN
-COV
(256 × 256)

iSQRT
-COV
(256 × 256)

Airp.
No ReDro 83.9 88.7 87.0 85.3 86.1 91.1
ReDro (k = 2) 85.3 89.3* 88.8* 86.6* 87.4 90.6
ReDro (k = 4) 85.8* 89.2 88.6 86.6* 88.2* 91.1

Cars
No ReDro 85.0 91.7 90.6 89.1 89.8 92.6
ReDro (k = 2) 88.2 90.8 92.6* 90.9* 91.4 92.3
ReDro (k = 4) 89.8* 92.2* 91.2 90.5 91.7* 92.6

Birds
No ReDro 86.0 85.4 85.4 84.1 82.9 88.5
ReDro (k = 2) 85.9 86.5 85.5* 84.6* 83.5* 88.0
ReDro (k = 4) 86.2* 86.7* 84.6 83.9 83.2 88.6*



14 S. Rahman et al.

Table 4. Impact of group number k in ReDro. The Birds dataset is used

Matrix Size No ReDro
Value of k for ReDro

2 3 4 8 16

1024× 1024 86.0 85.9 86.2* 86.2* 85.3 82.9
512× 512 85.6 85.8 85.8 85.9* 85.5 83.2
256× 256 85.4 85.6 85.7* 85.5 83.9 81.5

4.4 Ablation study on the group number k

To gain more understanding on the group number k in ReDro, the following
experiment is conducted. With DeepCOV-ResNet, ReDro using different values
of k is implemented. Table 4 shows the results. As seen, i) for all matrix sizes,
k = {3, 4} yields overall better performance than the baseline; ii) larger values of
k, i.e., 8 and 16, produce inferior results because they drop a significant amount
of information from the covariance matrix.

5 Conclusion

This paper proposes a novel scheme called Relation Dropout (ReDro) for reduc-
ing the computational cost in learning large-sized SPD visual representation by
deep neural networks. Focusing on the step of matrix normalisation, it utilises
the nice property of a block-diagonal matrix to facilitate the eigen-decomposition
often required in this process. A detailed description of the proposed scheme
including its forward and backward propagations is provided. Extensive experi-
ments are conducted on multiple benchmark datasets with various settings. The
result demonstrates the improvement brought by the proposed scheme on both
computational efficiency and classification accuracy, when working with the SPD
visual representation learning methods typically involving matrix normalisation.
This ReDro scheme can be readily inserted into a network to function, without
the need to alter the network architecture or the loss function.

In the future work, we will investigate the effectiveness of the ReDro scheme
for more methods designed for learning SPD visual representation and gain more
insight into its regularisation effect.

Acknowledgement. This work was supported by the CSIRO Data61 Schol-
arship; the University of Wollongong Australia IPTA scholarship; the Australian
Research Council (grant number DP200101289); and the Multi-modal Australian
ScienceS Imaging and Visualisation Environment (MASSIVE).

References

1. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Riemannian
batch normalization for SPD neural networks. In: Advances in Neural Information
Processing Systems. pp. 15489–15500 (2019)



ReDro: Efficiently Learning Large-sized SPD Visual Representation 15

2. Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C.: A deep neural network for
manifold-valued data with applications to neuroimaging. In: International Confer-
ence on Information Processing in Medical Imaging. pp. 112–124. Springer (2019)

3. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and
segmentation. In: Proceedings of the International Conference on Computer Vision
and Pattern Recognition. pp. 3828–3836. IEEE (2015)

4. Cui, Y., Zhou, F., Wang, J., Liu, X., Lin, Y., Belongie, S.: Kernel pooling for
convolutional neural networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2921–2930 (2017)

5. Demmel, J., Dumitriu, I., Holtz, O.: Fast linear algebra is stable. Numerische Math-
ematik 108(1), 59–91 (2007)

6. Engin, M., Wang, L., Zhou, L., Liu, X.: DeepKSPD: Learning kernel-matrix-based
spd representation for fine-grained image recognition. In: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV). pp. 612–627. Springer (2018)

7. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact Bilinear Pooling. In: Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition. pp. 317–
326. IEEE (2016)

8. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: A regularization method for convolu-
tional networks. In: Proceedings of the Advances in Neural Information Processing
Systems. pp. 10727–10737 (2018)

9. Hou, S., Wang, Z.: Weighted channel dropout for regularization of deep convo-
lutional neural network. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 8425–8432 (2019)

10. Huang, Z., Van Gool, L.: A riemannian network for SPD matrix learning. In:
Thirty-First AAAI Conference on Artificial Intelligence (2017)

11. Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep net-
works with structured layers. In: Proceedings of the International Conference on
Computer Vision. pp. 2965–2973. IEEE (2015)

12. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on
Riemannian manifolds with Gaussian RBF kernels. IEEE Transactions on Pattern
Analysis and Machine Intelligence 37(12), 2464–2477 (2015)

13. Kong, S., Fowlkes, C.: Low-rank bilinear pooling for fine-grained classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 365–374 (2017)

14. Koniusz, P., Wang, L., Cherian, A.: Tensor representations for action recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

15. Koniusz, P., Zhang, H.: Power normalizations in fine-grained image, few-shot im-
age and graph classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020)

16. Koniusz, P., Zhang, H., Porikli, F.: A deeper look at power normalizations. In: 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. pp. 5774–5783. IEEE Computer Society
(2018). https://doi.org/10.1109/CVPR.2018.00605

17. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-
grained categorization. In: Proceedings of the International Conference on Com-
puter Vision Workshops. pp. 554–561. IEEE (2013)

18. Li, P., Xie, J., Wang, Q., Gao, Z.: Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In: Proceedings of
the Conference on Computer Vision and Pattern Recognition. pp. 947–955. IEEE
(2018)



16 S. Rahman et al.

19. Li, P., Xie, J., Wang, Q., Zuo, W.: Is second-order information helpful for large-
scale visual recognition? In: Proceedings of the International Conference on Com-
puter Vision. pp. 2070–2078. IEEE (2017)

20. Lin, T.Y., Maji, S.: Improved Bilinear Pooling with CNNs. arXiv preprint
arXiv:1707.06772 (2017)

21. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained
visual recognition. In: Proceedings of the International Conference on Computer
Vision. pp. 1449–1457. IEEE (2015)

22. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

23. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Proceedings of the Advances in Neural Information Processing Systems.
pp. 849–856 (2002)

24. Nguyen, X.S., Brun, L., Lézoray, O., Bougleux, S.: A neural network based on SPD
manifold learning for skeleton-based hand gesture recognition. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 12036–
12045 (2019)

25. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on
lie algebra. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. vol. 1, pp. 728–735. IEEE (2006)

26. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proceedings of the Con-
ference on Computer Vision and Pattern Recognition. pp. 413–420. IEEE (2009)

27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research 15(1), 1929–1958 (2014)

28. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object local-
ization using convolutional networks. In: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition. pp. 648–656. IEEE (2015)

29. Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detec-
tion and classification. In: Proceedings of the European Conference on Computer
Vision. pp. 589–600. Springer (2006)

30. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on riemannian
manifolds. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. pp. 1–8. IEEE (2007)

31. Vedaldi, A., Lenc, K.: MatConvNet: Convolutional Neural Networks for Matlab.
In: Proceedings of the 23rd ACM International Conference on Multimedia. pp.
689–692 (2015)

32. Wang, Q., Xie, J., Zuo, W., Zhang, L., Li, P.: Deep CNNs Meet Global Covariance
Pooling: Better Representation and Generalization. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020)

33. Wang, R., Guo, H., Davis, L.S., Dai, Q.: Covariance discriminative learning: A
natural and efficient approach to image set classification. In: Proceedings of the
Conference on Computer Vision and Pattern Recognition. pp. 2496–2503. IEEE
(2012)

34. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona,
P.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of
Technology (2010)

35. Yu, K., Salzmann, M.: Second-order convolutional neural networks. arXiv preprint
arXiv:1703.06817 (2017)



ReDro: Efficiently Learning Large-sized SPD Visual Representation 17

36. Zhang, H., Zhang, J., Koniusz, P.: Few-shot learning via saliency-guided hallu-
cination of samples. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition. pp. 2770–2779. IEEE (2019)

37. Zhang, H., Zhang, L., Qui, X., Li, H., Torr, P.H.S., Koniusz, P.: Few-shot action
recognition with permutation-invariant attention. In: Proceedings of the European
Conference on Computer Vision (ECCV) (2020)

38. Zheng, H., Fu, J., Zha, Z.J., Luo, J.: Learning deep bilinear transformation for
fine-grained image representation. In: Proceedings of the Advances in Neural In-
formation Processing Systems. pp. 4279–4288 (2019)

39. Zhu, X., Xu, C., Hui, L., Lu, C., Tao, D.: Approximated Bilinear Modules for
Temporal Modeling. In: Proceedings of the International Conference on Computer
Vision. pp. 3494–3503. IEEE (2019)


