
EPNet: Enhancing Point Features with Image
Semantics for 3D Object Detection

Tengteng Huang1?, Zhe Liu1?, Xiwu Chen1, and Xiang Bai1??

Huazhong University of Science and Technology
{huangtengtng, zheliu1994, xiwuchen, xbai}@hust.edu.cn

Abstract. In this paper, we aim at addressing two critical issues in the
3D detection task, including the exploitation of multiple sensors (namely
LiDAR point cloud and camera image), as well as the inconsistency
between the localization and classification confidence. To this end, we
propose a novel fusion module to enhance the point features with se-
mantic image features in a point-wise manner without any image an-
notations. Besides, a consistency enforcing loss is employed to explic-
itly encourage the consistency of both the localization and classification
confidence. We design an end-to-end learnable framework named EP-
Net to integrate these two components. Extensive experiments on the
KITTI and SUN-RGBD datasets demonstrate the superiority of EPNet
over the state-of-the-art methods. Codes and models are available at:
https://github.com/happinesslz/EPNet.
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1 Introduction

The last decade has witnessed significant progress in the 3D object detection task
via different types of sensors, such as monocular images [1, 36], stereo cameras [2],
and LiDAR point clouds [43, 22, 39]. Camera images usually contain plenty of
semantic features (e.g., color, texture) while suffering from the lack of depth
information. LiDAR points provide depth and geometric structure information,
which are quite helpful for understanding 3D scenes. However, LiDAR points are
usually sparse, unordered, and unevenly distributed. Fig. 1(a) illustrates a typi-
cal example of leveraging the camera image to improve the 3D detection task. It
is challenging to distinguish between the closely packed white and yellow chairs
by only the LiDAR point cloud due to their similar geometric structure, result-
ing in chaotically distributed bounding boxes. In this case, utilizing the color
information is crucial to locate them precisely. This motivates us to design an
effective module to fuse different sensors for a more accurate 3D object detector.

However, fusing the representations of LiDAR and camera image is a non-
trivial task for two reasons. On the one hand, they possess highly different data
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Fig. 1. Illustration of (a) the benefit and (b) potential interference information of the
camera image. (c) demonstrates the inconsistency of the classification confidence and
localization confidence. Green box denotes the ground truth. Blue and yellow boxes
are predicted bounding boxes.

characteristics. On the other hand, the camera image is sensitive to illumina-
tion, occlusion, etc. (see Fig. 1(b)), and thus may introduce interfering infor-
mation that is harmful to the 3D object detection task. Previous works usually
fuse these two sensors with the aid of image annotations (namely 2D bounding
boxes). According to different ways of utilizing the sensors, we summarize pre-
vious works into two main categories, including 1) cascading approaches using
different sensors in different stages [27, 37, 42], and 2) fusion methods that jointly
reason over multi-sensor inputs [17, 18]. Although effective, these methods have
several limitations. Cascading approaches cannot leverage the complementar-
ity among different sensors, and their performance is bounded by each stage.
Fusion methods [17, 18] need to generate BEV data through perspective pro-
jection and voxelization, leading to information loss inevitably. Besides, they
can only approximately establish a relatively coarse correspondence between the
voxel features and semantic image features. We propose a LiDAR-guided Im-
age Fusion (LI-Fusion) module to address both the two issues mentioned above.
LI-Fusion module establishes the correspondence between raw point cloud data
and the camera image in a point-wise manner, and adaptively estimate the im-
portance of the image semantic features. In this way, useful image features are
utilized to enhance the point features while interfering image features are sup-
pressed. Comparing with previous method, our solution possesses four main ad-
vantages, including 1) achieving fine-grained point-wise correspondence between
LiDAR and camera image data through a simpler pipeline without complicated
procedure for BEV data generation; 2) keeping the original geometric structure
without information loss; 3) addressing the issue of the interference information
that may be brought by the camera image; 4) free of image annotations, namely
2D bounding box annotations, as opposed to previous works [27, 18].
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Besides multi-sensor fusion, we observe the issue of the inconsistency be-
tween the classification confidence and localization confidence, which represent
whether an object exists in a bounding box and how much overlap it shares
with the ground truth. As shown in Fig. 1(c), the bounding box with higher
classification confidence possesses lower localization confidence instead. This in-
consistency will lead to degraded detection performance since the Non-Maximum
Suppression (NMS) procedure automatically filters out boxes with large overlaps
but low classification confidence. However, this problem is rarely discussed in the
3D detection task. Jiang et al. [9] attempt to alleviate this problem by improv-
ing the NMS procedure. They introduce a new branch to predict the localization
confidence and replace the threshold for the NMS process as a multiplication of
both the classification and localization confidences. Though effective to some
extent, there is no explicit constraint to force the consistency of these two confi-
dences. Different from [9], we present a consistency enforcing loss (CE loss) to
guarantee the consistency of these two confidences explicitly. With its aid, boxes
with high classification confidence are encouraged to possess large overlaps with
the ground truth, and vice versa. This approach owns two advantages. First,
our solution is easy to implement without any modifications to the architec-
ture of the detection network. Second, our solution is entirely free of learnable
parameters and extra inference time overhead.

Our key contributions are as follows:

1. Our LI-Fusion module operates on LiDAR point and camera image directly
and effectively enhances the point features with corresponding semantic im-
age features in a point-wise manner without image annotations.

2. We propose a CE loss to encourage the consistency between the classification
and localization confidence, leading to more accurate detection results.

3. We integrate the LI-Fusion module and CE loss into a new framework named
EPNet, which achieves state-of-the-art results on two common 3D object
detection benchmark datasets, i.e., the KITTI dataset [6] and SUN-RGBD
dataset [33].

2 Related Work

3D object detection based on camera images. Recent 3D object detection
methods pay much attention to camera images, such as monocular [23, 29, 12,
15, 20] and stereo images [16, 35]. Chen et al. [1] obtain 2D bounding boxes with
a CNN-based object detector and infer their corresponding 3D bounding boxes
with semantic, context, and shape information. Mousavian et al. [25] estimate
localization and orientation from 2D bounding boxes of objects by exploiting
the constraint of projective geometry. However, methods based on the camera
image have difficulty in generating accurate 3D bounding boxes due to the lack
of depth information.
3D object detection based on LiDAR. Many LiDAR-based methods [39,
24, 40] are proposed in recent years. VoxelNet [43] divides a point cloud into
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voxels and employs stacked voxel feature encoding layers to extract voxel fea-
tures. SECOND [38] introduces a sparse convolution operation to improve the
computational efficiency of [43]. PointPillars [14] converts the point cloud to a
pseudo-image and gets rid of time-consuming 3D convolution operations. PointR-
CNN [31] is a pioneering two-stage detector, which consists of a region proposal
network (RPN) and a refinement network. The RPN network predicts the fore-
ground points and outputs coarse bounding boxes which are then refined by the
refinement network. However, LiDAR data is usually extremely sparse, posing a
challenge for accurate localization.
3D object detection based on multiple sensors. Recently, much progress
has been made in exploiting multiple sensors, such as camera image and LiDAR.
Qi et al. [27] propose a cascading approach F-PointNet, which first produces 2D
proposals from camera images and then generates corresponding 3D boxes based
on LiDAR point clouds. However, cascading methods need extra 2D annotations,
and their performance is bounded by the 2D detector. Many methods attempt
to reason over camera images and BEV jointly. MV3D [3] and AVOD [11] refine
the detection box by fusing BEV and camera feature maps for each ROI region.
ConFuse [18] proposes a novel continuous fusion layer that achieves the voxel-
wise alignment between BEV and image feature maps. Different from previous
works, our LI-Fusion module operates on LiDAR data directly and establishes a
finer point-wise correspondence between the LiDAR and camera image features.

3 Method

Exploiting the complementary information of multiple sensors is important for
accurate 3D object detection. Besides, it is also valuable to resolve the per-
formance bottleneck caused by the inconsistency between the localization and
classification confidence.

In this paper, we propose a new framework named EPNet to improve the
3D detection performance from these two aspects. EPNet consists of a two-
stream RPN for proposal generation and a refinement network for bounding
box refining, which can be trained end-to-end. The two-stream RPN effectively
combines the LiDAR point feature and semantic image feature via the proposed
LI-Fusion module. Besides, we provide a consistency enforcing loss (CE loss) to
improve the consistency between the classification and localization confidence.
In the following, we present the details of our two-steam RPN and refinement
network in subsection 3.1 and subsection 3.2, respectively. Then we elaborate
our CE loss and the overall loss function in subsection 3.4.

3.1 Two-stream RPN

Our two-stream RPN is composed of a geometric stream and an image stream.
As shown in Fig. 2, the geometric stream and the image stream produce the
point features and semantic image features, respectively. We employ multiple
LI-Fusion modules to enhance the point features with corresponding semantic
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Fig. 2. Illustration of the architecture of the two-stream RPN which is composed of
a geometric stream and an image stream. We employ several LI-Fusion modules to
enhance the LiDAR point features with corresponding semantic image features in mul-
tiple scales. N represents the number of LiDAR points. H and W denote the height
and width of the input camera image, respectively.

image features in different scales, leading to more discriminative feature repre-
sentations.

Image Stream. The image stream takes camera images as input and extracts
the semantic image information with a set of convolution operations. We adopt
an especially simple architecture composed of four light-weighted convolutional
blocks. Each convolutional block consists of two 3×3 convolution layers followed
by a batch normalization layer [8] and a ReLU activation function. We set the
second convolution layer in each block with stride 2 to enlarge the receptive
field and save GPU memory. Fi (i=1,2,3,4) denotes the outputs of these four
convolutional blocks. As illustrated in Fig. 2, Fi provides sufficient semantic
image information to enrich the LiDAR point features in different scales. We
further employ four parallel transposed convolution layers with different strides
to recover the image resolution, leading to feature maps with the same size as the
original image. We combine them in a concatenation manner and obtain a more
representative feature map FU containing rich semantic image information with
different receptive fields. As is shown later, the feature map FU is also employed
to enhance the LiDAR point features to generate more accurate proposals.

Geometric Stream. The geometric stream takes LiDAR point cloud as input
and generates the 3D proposals. The geometric stream comprises four paired
Set Abstraction (SA) [28] and Feature Propogation (FP) [28] layers for feature
extraction. For the convenience of description, the outputs of SA and FP lay-
ers are denoted as Si and Pi (i=1,2,3,4), respectively. As shown in Fig. 2, we
combine the point features Si with the semantic image features Fi with the aid
of our LI-Fusion module. Besides, The point feature P4 is further enriched by
the multi-scale image feature FU to obtain a compact and discriminative feature
representation, which is then fed to the detection heads for foreground point
segmentation and 3D proposal generation.
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Fig. 3. Illustration of the LI-Fusion module, which consists of a grid generator, an
image sampler, and a LI-Fusion layer.

LI-Fusion Module. The LiDAR-guided image fusion module consists of a grid
generator, an image sampler, and a LI-Fusion layer. As illustrated in Fig. 3, the
LI-Fusion module involves two parts, i.e., point-wise correspondence generation
and LiDAR-guided fusion. Concretely, we project the LiDAR points onto the
camera image and denote the mapping matrix as M . The grid generator takes a
LiDAR point cloud and a mapping matrix M as inputs, and outputs the point-
wise correspondence between the LiDAR points and the camera image under
different resolutions. In more detail, for a particular point p(x, y, z) in the point
cloud, we can get its corresponding position p′(x′, y′) in the camera image, which
can be written as:

p′ = M × p, (1)

where M is of size 3 × 4. Note that we convert p′ and p into 3-dimensional
and 4-dimensional vector in homogeneous coordinates in the projection process
formula (1).

After establishing the correspondence, we propose to use an image sampler
to get the semantic feature representation for each point. Specifically, our image
sampler takes the sampling position p′ and the image feature map F as inputs to
produce a point-wise image feature representation V for each sampling position.
Considering that the sampling position may fall between adjacent pixels, we use
bilinear interpolation to get the image feature at the continuous coordinates,
which can be formularized as follows:

V (p) = K(F (N (p′))), (2)

where V (p) is the corresponding image feature for point p, K denotes the bi-
linear interpolation function, and F (N (p′)) represents the image features of the
neighboring pixels for the sampling position p′.

Fusing the LiDAR feature and the point-wise image feature is non-trivial
since the camera image is challenged by many factors, including illumination,
occlusion, etc. In these cases, the point-wise image feature will introduce inter-
fering information. To address this issue, we adopt a LiDAR-guided fusion layer,
which utilizes the LiDAR feature to adaptively estimate the importance of the
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image feature in a point-wise manner. As illustrated in Fig. 3, we first feed the
LiDAR feature FP and the point-wise feature FI into a fully connected layer
and map them into the same channel. Then we add them together to form a
compact feature representation, which is then compressed into a weight map w
with a single channel through another fully connected layer. We use a sigmoid
activation function to normalize the weight map w into the range of [0, 1].

w = σ(W tanh(UFP + VFI)) (3)

where W, U , V denote the learnable weight matrices in our LI-Fusion layer. σ
represents the sigmoid activation function.

After obtaining the weight map w, we combine the LiDAR feature FP and the
semantic image feature FI in a concatenation manner, which can be formularized
as follows:

FLI = FP || wFI (4)

3.2 Refinement Network

We employ the NMS procedure to keep the high-quality proposals and feed them
into the refinement network. For each input proposal, we generate its feature
descriptor by randomly selecting 512 points in the corresponding bounding box
on top of the last SA layer of our two-stream RPN. For those proposals with
less than 512 points, we simply pad the descriptor with zeros. The refinement
network consists of three SA layers to extract a compact global descriptor, and
two subnetworks with two cascaded 1×1 convolution layers for the classification
and regression, respectively.

3.3 Consistency Enforcing Loss

Common 3D object detectors usually generate much more bounding boxes than
the number of the real objects in the scene. It poses a great challenge of how
to select the high-quality bounding boxes. NMS attempts to filter unsatisfying
bounding boxes according to their classification confidence. In this case, it is
assumed that the classification confidence can serve as an agent for the real IoU
between the bounding and the ground truth, i.e., the localization confidence.
However, the classification confidence and the localization confidence is often
inconsistent, leading to sub-optimal performance.

This motivates us to introduce a consistency enforcing loss to ensure the
consistency between the localization and classification confidence so that boxes
with high localization confidence possess high classification confidence, and vice
versa. The consistency enforcing loss can be written as follows:

Lce = −log(c× Area(D ∩G)

Area(D ∪G)
) (5)

where D and G represents the predicted bounding box and the ground truth.
c denotes the classification confidence for D. Towards optimizing this loss func-
tion, the classification confidence and localization confidence (i.e., the IoU) are
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encouraged to be as high as possible jointly. Hence, boxes with large overlaps
will possess high classification possibilities and be kept in the NMS procedure.
Relation to IoU loss. Our CE loss is similar to the IoU loss [41] in the for-
mula, but completely different in the motivation and the function. The IoU
loss attempts to generate more precise regression through optimizing the IoU
metric, while CE loss aims at ensuring the consistency between the localization
and classification confidence to assist the NMS procedure to keep more accurate
bounding boxes. Although with a simple formula, quantitative results and anal-
yses in Sec. 4.3 demonstrates the effectiveness of our CE loss in ensuring the
consistency and improving the 3D detection performance.

3.4 Overall Loss Function

We utilize a multi-task loss function for jointly optimizing the two-stream RPN
and the refinement network. The total loss can be formulated as:

Ltotal = Lrpn + Lrcnn, (6)

where Lrpn and Lrcnn denote the training objective for the two-stream RPN and
the refinement network, both of which adopt a similar optimizing goal, including
a classification loss, a regression loss and a CE loss. We adopt the focal loss [19]
as our classification loss to balance the positive and negative samples with the
setting of α = 0.25 and γ = 2.0. For a bounding box, the network needs to
regress its center point (x, y, z), size (l, h, w), and orientation θ.

Since the range of the Y-axis (the vertical axis) is relatively small, we directly
calculate its offset to the ground truth with a smooth L1 loss [7]. Similarly, the
size of the bounding box (h,w, l) is also optimized with a smooth L1 loss. As
for the X-axis, the Z-axis and the orientation θ, we adopt a bin-based regression
loss [31, 27]. For each foreground point, we split its neighboring area into several
bins. The bin-based loss first predicts which bin bu the center point falls in, and
then regress the residual offset ru within the bin. We formulate the loss functions
as follows:

Lrpn = Lcls + Lreg + λLcf (7)

Lcls = −α(1− ct)γ log ct (8)

Lreg =
∑

u∈x,z,θ

E(bu, b̂u) +
∑

u∈x,y,z,h,w,l,θ

S(ru, r̂u) (9)

where E and S denote the cross entropy loss and the smooth L1 loss, respectively.
ct is the probability of the point in consideration belong to the ground truth
category. b̂u and r̂u denote the ground truth of the bins and the residual offsets.

4 Experiments

We evaluate our method on two common 3D object detection datasets, including
the KITTI dataset [6] and the SUN-RGBD dataset [33]. KITTI is an outdoor
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dataset, while SUN-RGBD focuses on the indoor scenes. In the following, we
first present a brief introduction to these datasets in subsection 4.1. Then we
provide the implementation details in subsection 4.2. Comprehensive analyses of
the LI-Fusion module and the CE loss are elaborated in subsection 4.3. Finally,
we exhibit the comparisons with state-of-the-art methods on the KITTI dataset
and the SUN-RGBD dataset in subsection 4.4 and subsection 4.5, respectively.

4.1 Datasets and Evaluation Metric

KITTI Dataset is a standard benchmark dataset for autonomous driving,
which consists of 7,481 training frames and 7,518 testing frames. Following the
same dataset split protocol as [27, 31], the 7,481 frames are further split into
3,712 frames for training and 3,769 frames for validation. In our experiments,
we provide the results on both the validation and the testing set for all the
three difficulty levels, i.e., Easy, Moderate, and Hard. Objects are classified into
different difficulty levels according to the size, occlusion, and truncation.
SUN-RGBD Dataset is an indoor benchmark dataset for 3D object detec-
tion. The dataset is composed of 10,335 images with 700 annotated object cat-
egories, including 5,285 images for training and 5,050 images for testing. We
report results on the testing set for ten main object categories following previ-
ous works [37, 27] since objects of these categories are relatively large.
Metrics. We adopt the Average Precision (AP) as the metric following the
official evaluation protocol of the KITTI dataset and the SUN-RGBD dataset.
Recently, the KITTI dataset applies a new evaluation protocol [32] which uses
40 recall positions instead of the 11 recall positions as before. Thus it is a fairer
evaluation protocol. We compare our methods with state-of-the-art methods
under this new evaluation protocol.

4.2 Implementation Details

Network Settings. The two-stream RPN takes both the LiDAR point cloud
and the camera image as inputs. For each 3D scene, the range of LiDAR point
cloud is [-40, 40], [-1, 3], [0, 70.4] meters along the X (right), Y (down), Z (for-
ward) axis in camera coordinate, respectively. And the orientation of θ is in the
range of [-π, π]. We subsample 16,384 points from the raw LiDAR point cloud
as the input for the geometric stream, which is same with PointRCNN [31]. And
the image stream takes images with a resolution of 1280 × 384 as input. We
employ four set abstraction layers to subsample the input LiDAR point cloud
with the size of 4096, 1024, 256, and 64, respectively. Four feature propagation
layers are used to recover the size of the point cloud for the foreground seg-
mentation and 3D proposal generation. Similarly, we use four convolution block
with stride 2 to downsample the input image. Besides, we employ four parallel
transposed convolution with stride 2, 4, 8, 16 to recover the resolution from fea-
ture maps in different scales. In the NMS process, we select the top 8000 boxes
generated by the two-stream RPN according to their classification confidence.
After that, we filter redundant boxes with the NMS threshold of 0.8 and obtain
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64 positive candidate boxes which will be refined by the refinement network. For
both datasets, we utilize similar architecture design for the two-stream RPN as
discussed above.

The Training Scheme. Our two-stream RPN and refinement network are end-
to-end trainable. In the training phase, the regression loss Lreg and the CE loss
are only applied to positive proposals, i.e., proposals generated by foreground
points for the RPN stage, and proposals sharing IoU larger than 0.55 with the
ground truth for RCNN stage.

Parameter Optimization. The Adaptive Moment Estimation (Adam) [10] is
adopted to optimize our network. The initial learning rate, weight decay, and
momentum factor are set to 0.002, 0.001, and 0.9, respectively. We train the
model for around 50 epochs on four Titan XP GPUs with a batch size of 12 in
an end-to-end manner. The balancing weights λ in the loss function are set to 5.

Data Augmentation. Three common data augmentation strategies are adopted
to prevent over-fitting, including rotation, flipping, and scale transformations.
First, we randomly rotate the point cloud along the vertical axis within the
range of [−π/18, π/18]. Then, the point cloud is randomly flipped along the
forward axis. Besides, each ground truth box is randomly scaled following the
uniform distribution of [0.95, 1.05]. Many LiDAR-based methods sample ground
truth boxes from the whole dataset and place them into the raw 3D frames to
simulate real scenes with crowded objects following [43, 38]. Although effective,
this data augmentation needs the prior information of road plane which is usu-
ally difficult to acquire for kinds of real scenes. Hence, we do not utilize this
augmentation mechanism in our framework for the applicability and generality.

4.3 Ablation Study

We conduct extensive experiments on the KITTI validation dataset to evaluate
the effectiveness of our LI-Fusion module and CE loss.

Analysis of the fusion architecture. We remove all the LI-Fusion modules to
verify the effectiveness of our LI-Fusion module. As is shown in Table 1, adding
LI-Fusion module yields an improvement of 1.73% in terms of 3D mAP, demon-
strating its effectiveness in combining the point features and semantic image
features. We further present comparisons with two alternative fusion solutions
in Table 2. One alternative is simple concatenation (SC). We modify the input
of the geometric stream as the combination of the raw camera image and LiDAR
point cloud instead of their feature representations. Concretely, we append the
RGB channels of camera images to the spatial coordinate channels of LiDAR
point cloud in a concatenation fashion. It should be noted that no image stream
is employed for SC. The other alternative is the single scale (SS) fusion, which
shares a similar architecture as our two-stream RPN. The difference is that we
remove all the LI-Fusion modules in the set abstraction layers and only keep the
LI-Fusion module in the last feature propagation layer (see Fig. 2). As shown in
Table 2, SC yields a decreasement of 3D mAP 0.28% over the baseline, indicat-
ing that simple combination in the input level cannot provide sufficient guidance
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Fig. 4. Visualization of the learned semantic image feature. The image stream mainly
focuses on the foreground objects (cars). The red arrow marks the region under bad
illumination, which show a distinct feature representation to its neighboring region.

information. Besides, our method outperforms SS by 3D mAP 1.31%. It suggests
the effectiveness of applying the LI-Fusion modules in multiple scales.

Table 1. Ablation experiments on the
KITTI val dataset.
LI-Fusion CE Easy Moderate Hard 3D mAP Gain

× × 86.34 77.52 75.96 79.94 -
X × 89.44 78.84 76.73 81.67 ↑ 1.73
× X 90.87 81.15 79.59 83.87 ↑ 3.93
X X 92.28 82.59 80.14 85.00 ↑ 5.06

Table 2. Analysis of different fusion
mechanism on the KITTI val dataset.
SC SS Ours Easy Moderate Hard 3D mAP Gain

× × × 86.34 77.52 75.96 79.94 -
X × × 85.97 77.37 75.65 79.66 ↓ 0.28
× X × 87.46 78.27 75.35 80.36 ↑ 0.42
× × X 89.44 78.84 76.73 81.67 ↑ 1.73

Visualization of learned semantic image features. It should be noted that
we do not add explicit supervision information (e.g., annotations of 2D detec-
tion boxes) to the image stream of our two-stream RPN. The image stream is
optimized together with the geometric stream with the supervision information
of 3D boxes from the end of the two-stream RPN. Considering the distinct data
characteristics of the camera image and LiDAR point cloud, we visualize the
semantic image features to figure out what the image stream learns, as pre-
sented in Fig. 4. Although no explicit supervision is applied, surprisingly, the
image stream learns well to differentiate the foreground objects from the back-
ground and extracts rich semantic features from camera images, demonstrating
that the LI-Fusion module accurately establishes the correspondence between
LiDAR point cloud and camera image, thus can provide the complementary
semantic image information to the point features. It is also worth noting that
the image stream mainly focuses on the representative region of the foreground
objects and that the region under poor illumination demonstrates very distinct
features to neighboring region, as marked by the red arrow. It indicates that it is
necessary to adaptively estimate the importance of the semantic image feature
since the variance of the illumination condition may introduce harmful interfer-
ence information. Hence, we further provide the analysis of the weight map w
for the semantic image feature in the following.

Analysis of the weight map in the LI-Fusion layer. In a real scene, the
camera image is usually disturbed by the illumination, suffering from underex-
posure and overexposure. To verify the effectiveness of the weight map w in
alleviating the interference information brought by the unsatisfying camera im-
age, we simulate the real environment by changing the illumination of the camera
image. For each image in the KITTI dataset, we simulate the illumination vari-
ance through the transformation y = a∗x+ b, where x and y denote the original
and transformed RGB value for a pixel. a and b represent the coefficient and the
offset, respectively. We randomly lighten up (resp. darken) the camera images
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(a) (b)

Fig. 5. Illustration of the ratio of kept positive candidate boxes varying with differ-
ent classification confidence threshold. The CE loss leads to significantly larger ratios
than those of the IoU loss, suggesting its effectiveness in improving the consistency of
localization and classification confidence.

in the KITTI dataset by setting a to 3 (resp. 0.3) and b to 5. The quantitative
results are presented in Table 3. For comparison, we remove the image stream
and use our model based on only the LiDAR as the baseline, which yields a 3D
mAP of 83.87%. We also provide the results of simply concatenating the RGB
and LiDAR coordinates in the input level (denoted by SC), which leads to an ob-
vious performance decreasement of 1.08% and demonstrates that images under
poor quality is harmful for the 3D detection task. Besides, our method without
estimating the weight map w also results in a decreasement of 0.69%. However,
with the guidance of the weight map w, our method yields an improvement of
0.65% compared to the baseline. It means that introducing the weight map can
adaptively select the beneficial features and ignore those harmful features.

Table 3. Comparison between the results
our LI-Fusion module with and without es-
timating the weight map w.

Method Easy Moderate Hard 3D mAP Gain

only LiDAR 90.87 81.15 79.59 83.87 -
SC 90.73 79.93 77.70 82.79 ↓ 1.08
Ours (without w) 91.52 80.08 77.95 83.18 ↓ 0.69
Ours 91.65 81.77 80.13 84.52 ↑ 0.65

Table 4. The results of our
approach on three benchmarks
of the the KITTI validation
set (Cars).

Benchmark Easy Moderate Hard mAP

3D Detection 92.28 82.59 80.14 85.00
Bird’s Eye View 95.51 88.76 88.36 90.88
Orientation 98.48 91.74 91.16 93.79

Analysis of the CE loss. As shown in Table 1, adding the CE loss yields a
significant improvement of 3.93% over the baseline. We further present a quan-
titative comparison with the IoU loss to verify the superiority of our CE loss
in improving the 3D detection performance. As shown in Fig. 5(a), the CE loss
leads to an improvement of 3D mAP of 1.28% over the IoU loss, which indicates
the benefits of ensuring the consistency of the classification and localization
confidence in the 3D detection task.

To figure out how the consistency between these two confidences is improved,
we give a thorough analysis of the CE loss. For the convenience of description, we
denote predicted boxes possessing overlaps larger than a predefined IoU thresh-
old τ as positive candidate boxes. Moreover, we adopt another threshold of υ to
filter positive candidate boxes with smaller classification confidence. Hence, the
consistency can be evaluated by the ratio of R of how many positive candidate
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Table 5. Comparisons with state-of-the-art methods on the testing set of the KITTI
dataset (Cars). L and I represent the LiDAR point cloud and the camera image.

Method Modality
3D Detection Bird’s Eye View Orientation

Easy Moderate Hard 3D mAP Easy Moderate Hard BEV mAP Easy Moderate Hard Ori mAP

SECOND [38] L 83.34 72.55 65.82 73.90 89.39 83.77 78.59 83.92 90.93 82.55 73.62 82.37
PointPillars [14] L 82.58 74.31 68.99 75.29 90.07 86.56 82.81 86.48 93.84 90.70 87.47 90.67
TANet [21] L 84.39 75.94 68.82 76.38 91.58 86.54 81.19 86.44 93.52 90.11 84.61 89.41
PointRCNN [31] L 86.96 75.64 70.70 77.77 92.13 87.39 82.72 87.41 95.90 91.77 86.92 91.53
Fast Point R-CNN [4] L 85.29 77.40 70.24 77.64 90.87 87.84 80.52 86.41 - - - -

F-PointNet [27] L+I 82.19 69.79 60.59 70.86 91.17 84.67 74.77 83.54 - - - -
MV3D [3] L+I 74.97 63.63 54.00 64.20 86.62 78.93 69.80 78.45 - - - -
AVOD [11] L+I 76.39 66.47 60.23 67.70 89.75 84.95 78.32 84.34 94.98 89.22 82.14 88.78
AVOD-FPN [11] L+I 83.07 71.76 65.73 73.52 90.99 84.82 79.62 85.14 94.65 88.61 83.71 88.99
ContFuse [18] L+I 83.68 68.78 61.67 71.38 94.07 85.35 75.88 85.10 - - - -
PC-CNN [5] L+I 85.57 73.79 65.65 75.00 91.19 87.40 79.35 85.98 - - - -
MMF [17] L+I 88.40 77.43 70.22 78.68 93.67 88.21 81.99 87.96 - - - -

Ours L+I 89.81 79.28 74.59 81.23 94.22 88.47 83.69 88.79 96.13 94.22 89.68 93.34

boxes are kept, which can be written as follows:

R =
N (b|b ∈ B and cb > υ)

N (B)
, (10)

where B represents the set of positive candidate boxes. cb denotes the classifi-
cation confidence of the box b. N (·) calculates the number of boxes. It should
be noted that all the boxes in B possess an overlap larger than τ with the cor-
responding ground truth box.

We provide evaluation results on two different settings, i.e., the model trained
with IoU loss and that trained with CE loss. For each frame in the KITTI vali-
dation dataset, the model generates 64 boxes without NMS procedure employed.
Then we get the positive candidate boxes by calculating the overlaps with the
ground truth boxes. We set τ to 0.7 following the evaluation protocol of 3D
detection metric. υ is varied from 0.1 to 0.9 to evaluate the consistency under
different classification confidence thresholds. As is shown in Fig. 5(b), the model
trained with CE loss demonstrates better consistency than that trained with
IoU loss in all the different settings of classification confidence threshold υ.

4.4 Experiments on KITTI Dataset

Table 5 presents quantitative results on the KITTI test set. The proposed
method outperforms multi-sensor based methods F-PointNet [27], MV3D [3],
AVOD-FPN [11], PC-CNN [5], ContFuse [18], and MMF [17] by 10.37%, 17.03%,
7.71%, 6.23%, 9.85% and 2.55% in terms of 3D mAP. It should be noted that
MMF [17] exploits multiple auxiliary tasks (e.g., 2D detection, ground estima-
tion, and depth completion) to boost the 3D detection performance, which re-
quires many extra annotations. These experiments consistently reveal the superi-
ority of our method over the cascading approach [27], as well as fusion approaches
based on RoIs [3, 11, 5] and voxels [18, 17].

We also provide the quantitative results on the KITTI validation split in the
Table 4 for the convenience of comparison with future work. Besides, we present
the qualitative results on the KITTI validation dataset in the supplementary
materials.
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Table 6. Quantitative comparisons with the state-of-the-art methods on the SUN-
RGBD test set. P and I represent the point cloud and the camera image.

Method Modality bathtub bed bookshelf chair desk dresser nightstand sofa table toilet 3D mAP

DSS [34] P + I 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1
2d-driven [13] P + I 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1
COG [30] P + I 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6
PointFusion [37] P + I 37.3 68.6 37.7 55.1 17.2 24.0 32.3 53.8 31.0 83.8 44.1
F-PointNet [27] P + I 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0
VoteNet [26] P 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

Ours P + I 75.4 85.2 35.4 75.0 26.1 31.3 62.0 67.2 52.1 88.2 59.8

4.5 Experiments on SUN-RGBD Dataset

We further conduct experiments on the SUN-RGBD dataset to verify the effec-
tiveness of our approach in the indoor scenes. Table 6 demonstrates the results
compared with the state-of-the-art methods. Our EPNet achieves superior detec-
tion performance, outperforming PointFusion [37] by 15.7%, COG [30] by 12.2%,
F-PointNet [27] by 5.8% and VoteNet [26] by 2.1% in terms of 3D mAP. The com-
parisons with multi-sensor based methods PointFusion [37] and F-PointNet [27]
are especially valuable. Both of them first generate 2D bounding boxes from
camera images using 2D detectors and then outputs the 3D boxes in a cascading
manner. Specifically, F-PointNet utilizes only the LiDAR data to predict the
3D boxes. PointFusion combines global image features and points features in
a concatenation fashion. Different from them, our method explicitly establishes
the correspondence between point features and camera image features, thus pro-
viding finer and more discriminative representations. Besides, we provide the
qualitative results on the SUN-RGBD dataset in the supplementary materials.

5 Conclusion

We have presented a new 3D object detector named EPNet, which consists of
a two-stream RPN and a refinement network. The two-stream RPN reasons
about different sensors (i.e., LiDAR point cloud and camera image) jointly and
enhances the point features with semantic image features effectively by using
the proposed LI-Fusion module. Besides, we address the issue of inconsistency
between the classification and localization confidence by the proposed CE loss,
which explicitly guarantees the consistency between the localization and classifi-
cation confidence. Extensive experiments have validated the effectiveness of the
LI-Fusion module and the CE loss. In the future, we are going to explore how to
enhance the image feature representation with depth information of the LiDAR
point cloud instead, and its application in 2D detection tasks.
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