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Abstract. Recent learning-based approaches, in which models are trained
by single-view images have shown promising results for monocular 3D
face reconstruction, but they suffer from the ill-posed face pose and
depth ambiguity issue. In contrast to previous works that only enforce
2D feature constraints, we propose a self-supervised training architec-
ture by leveraging the multi-view geometry consistency, which provides
reliable constraints on face pose and depth estimation. We first propose
an occlusion-aware view synthesis method to apply multi-view geometry
consistency to self-supervised learning. Then we design three novel loss
functions for multi-view consistency, including the pixel consistency loss,
the depth consistency loss, and the facial landmark-based epipolar loss.
Our method is accurate and robust, especially under large variations of
expressions, poses, and illumination conditions. Comprehensive exper-
iments on the face alignment and 3D face reconstruction benchmarks
have demonstrated superiority over state-of-the-art methods. Our code
and model are released in https://github.com/jiaxiangshang/MGCNet.
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1 Introduction

3D face reconstruction is extensively studied in the computer vision community.
Traditional optimization-based methods [2,4,10,27,41–43] formulate the 3D Mor-
phable Model (3DMM) [7] parameters into a cost minimization problem, which
is usually solved by expensive iterative nonlinear optimization. The supervised
CNN-based methods [16–18, 24, 31, 32, 39, 49, 53, 59] require abundant 3D face
scans and corresponding RGB images, which are limited in amount and expensive
to acquire. Methods that focus on face detail reconstruction [12,21,49,53,54,62]
need even high-quality 3D faces scans. To address the insufficiency of scanned
3D face datasets, some unsupervised or self-supervised methods are proposed
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[15, 22, 40, 50–52, 54, 55, 61, 66], which employ the 2D facial landmark loss be-
tween inferred 2D landmarks projected from 3DMM and the ground truth 2D
landmarks from images, as well as the render loss between the rendered images
from 3DMM and original images. One critical drawback of existing unsupervised
methods is that both landmark loss and render loss are measured in projected 2D
image space and do not penalize incorrect face pose and depth value of 3DMM,
resulting in the ambiguity issue of the 3DMM in the face pose and depth esti-
mation.

To address this issue, we resort to the multi-view geometry consistency.
Multi-view images not only contain 2D landmarks and pixel features but also
they form the multi-view geometry constraints. Such training data is publicly
available and efficient to acquire (e.g.,videos). Fortunately, a series of multi-view
3D reconstruction techniques named view synthesis [13,14,19] help to formulate
self-supervised learning architecture based on multi-view geometry. View syn-
thesis is a classic task that estimates proxy 3D geometry and establishes pixel
correspondences among multi-view input images. Then they generate N−1 syn-
thetic target view images by compositing image patches from the other N − 1
input view images. View synthesis is commonly used in Monocular Depth Esti-
mation (MDE) task [11,34,63,65]. However, MDE only predicts depth map and
relative poses between views without inferring camera intrinsics. The geometry
of MDE is incomplete as MDE loses the relationship from 3D to 2D, and they
can not reconstruct a full model in scene. MDE also suffers from erroneous pe-
nalization due to self-occlusion.

Inspired by multi-view geometry consistency, we propose a self-supervised
Multi-view Geometry Consistency based 3D Face Reconstruction framework
(MGCNet). The workflow of MGCNet is shown in Figure 1. It is always consid-
ered to be the target of multi-view data. To simplify the following formulation,
we denote all N − 1 views adjacent to the target view as the source views.
To build up the multi-view consistency in the training process via view synthe-
sis, we first design a covisible map that stores the mask of covisible pixels for
each target-source view pair to solve self-occlusion, as the large and extreme face
pose cases is common in the real world, and the self-occlusion always happens in
such profile face pose cases. Secondly, we feed the 3DMM coefficients and face
poses to the differentiable rendering module [22], producing the rendered im-
age, depth map, and covisible map for each view. Thirdly, pixel consistency loss
and depth consistency loss are formulated by input images and rendered depth
maps in covisible regions, which ensures the consistency of 3DMM parameters
in the multi-view training process. Finally, we introduce the facial epipolar loss,
which formulates the epipolar error of 2D facial landmarks via the relative pose
of two views, as facial landmarks is robust to illumination changes, scale am-
biguity, and calibration errors. With these multi-view supervised losses, we are
able to achieve accurate 3D face reconstruction and face alignment result on
multiple datasets [3, 36,60,64,67]. We conduct ablation experiments to validate
the effectiveness of covisible map and multi-view supervised losses.

To summarize, this paper makes the following main contributions:
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- We propose an end-to-end self-supervised architecture MGCNet for face
alignment and monocular 3D face reconstruction tasks. To our best knowl-
edge, we are the first to leverage multi-view geometry consistency to mitigate
the ambiguity from monocular face pose estimation and depth reconstruction
in the training process.

- We build a differentiable covisible map for general view synthesis, which can
mitigate the self-occlusion crux of view synthesis. Based on view synthesis,
three differentiable multi-view geometry consistency loss functions are pro-
posed as pixel consistency loss, depth consistency loss, and facial epipolar
loss.

- Our MGCNet result on the face alignment benchmark [67] shows that we
achieve more than a 12% improvement over other state-of-the-art methods,
especially in large and extreme face pose cases. Comparison on the chal-
lenging 3D Face Reconstruction datasets [3, 36, 60, 64] shows that MGCNet
outperforms the other methods with the largest margin of 17%.

2 Related work

2.1 Single-view Method

Recent CNN methods [12,17,18,21,24,28,32,53,54,56,59,62,67] train the CNN
network supervised by 3D face scan ground truth and achieve impressive results.
[17, 24, 39] generate synthetic rendered face images with real 3D scans. [18, 28,
32,53,56,59] propose their deep neural networks trained using fitted 3D shapes
by traditional methods as substitute labels. Lack of realistic training data is still
a great hindrance.

Recently, some self-supervised or weak-supervised methods are proposed [22,
40,45,51,52,54,55,61,66] to solve the lack of high-quality 3D face scans with ro-
bust testing result. Tewari et al. [52] propose an differentiable rendering process
to build unsupervised face autoencoder based on pixel loss. Genova et al. [22]
train a regression network mainly focus on identity loss that compares the fea-
tures of the predicted face and the input photograph. Nevertheless, face pose
and depth ambiguity originated from only monocular images still a limitation.

2.2 Multi-view or Video Based Method

There are established toolchains of 3D reconstruction [20,46,47,57], aimming at
recovering 3D geometry from multi-view images. One related operation is view
synthesis [13, 19, 48], and the goal is to synthesize the appearance of the scene
from novel camera viewpoints.

Several unsupervised approaches [15, 45, 50, 58] are proposed recently to ad-
dress the 3D face reconstruction from multiple images or videos. Deng et al. [15]
perform multi-image face reconstruction from different images by shape aggrega-
tion. Sanyal et al. [45] take multiple images of the same and different person, then
enforce shape consistency between the same subjects and shape inconsistency
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Fig. 1. The training flow of our MGCNet architecture, which is annotated in Section
3.1. The 2D feature loss part is our baseline in Section 3.3. Our novel multi-view
geometry consistency loss functions are highlighted as ∗ in Section 3.

between the different subjects. Wu et al. [58] design an impressive multi-view
framework (MVFNet), which is view-consistent by design, and photometric con-
sistency is used to generate consistent texture across views. However, MVFNet
is not able to generate results via a single input since it relies on multi-view
aggregation during inference. Our MGCNet explicitly exploit multi-view con-
sistency (both geometric and photometric) to constrain the network to produce
view-consistent face geometry from a single input, which provides better super-
vision than 2D information only. Therefore, MGCNet improves the performance
of face alignment and 3D face reconstruction as Section 4.

3 Method

3.1 Overview

The inference process of MGCNet takes a single image as input, while in the
training process the input is N -view images (e.g. It−1, It, It+1 for N = 3 ) of
the same face and the corresponding ground-truth 2D landmarks qgtt−1, q

gt
t , q

gt
t+1.

Then, the MGCNet estimates the 3DMM coefficients and face poses, whose nota-

tions are introduced in Section 3.2 in detail. Ĩ(s)t , D̃(s)
t represent the synthesized

target images and the depth maps from the source views.

3.2 Model

Face model 3D Morphable Model (3DMM) proposed by [7] is the face prior
model of the MGCNet. Specifically, the 3DMM encodes both face shape and
texture as

S = S(α, β) = Smean +Aidα+Bexpβ

T = T (γ) = Tmean + Tidγ,
(1)
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where Smean and Tmean denote the mean shape and the mean albedo respec-
tively. Aid, Bexp and Tid are the PCA bases of identity, expression and texture.
α, β ∈ R80 and γ ∈ R64 are corresponding coefficient vectors to be estimated
follow [15,51,52]. We use Smean, Tmean, Aid and Tid provided by the Basel Face
Model (BFM) [7,35], and Bexp from FaceWarehouse [9]. We exclude the ear and
neck region as [15], and our final face model contains ∼ 36K vertices.

Camera model The pinhole camera model is employed to define the 3D-2D
projection. We assume the camera is calibrated. The face pose P is represented
by an euler angle rotation R ∈ SO(3) and translation t ∈ R3. The relative poses
P relt→s ∈ SE(3) from the target view to N − 1 source views are defined as

P relt→s =

[
R−1t Rs R

−1
t (ts − tt)

0 1

]
.

Illumination model To acquire realistic rendered face images, we model the
scene illumination by Spherical Harmonics (SH) [37, 38] as SH(Nre, T |θ) = T ∗∑B2

b=1 θbHb, where Nre is the normal of the face mesh, θ ∈ R27 is the coefficient.
The Hb : R3 → R are SH basis functions and the B2 = 9 (B = 3 bands)
parameterizes the colored illumination in red, green and blue channels.

Finally, we concatenate all the parameters together into a (α, β, γ,R, t, θ)
257-dimensional vector. All 257 parameters encode the 3DMM coefficients and
the face pose, which are abbreviated as coefficient and pose in Figure 1.

3.3 2D Feature Loss

Inspired by recent related works, we leverage preliminary 2D feature loss func-
tions in our framework.

Render loss The render loss aims to minimize the difference between the input
face image and the rendered image as Lrender = 1

M

∑M
i=1 w

i
skin||Ii− Iire||, where

Ire is the rendered image, I is the input image, and M is the number of all 2D
pixels in the projected 3D face region. wiskin is the skin confidence of ith pixel
as in [15]. Render loss mainly contributes to the albedo of 3DMM.

Landmark loss To improve the accuracy of face alignment, we employ the
2D landmark loss which defines the distance between predicted landmarks and
ground truth landmarks as Llm =

∑N
i=1 c

i
lm(qigt−qi)2, where N is the number of

landmarks, and q the projection of the 3D landmarks picked from our face model.
It is noted that the landmarks have different levels of importance, denoted as
the confidence clm for each landmark. We set the confidence to 10 only for the
nose and inner mouth landmarks, and to 1 else wise.

Identity loss The fidelity of the reconstructed face is an important criterion.
We use the identity loss as in [22], which is the cosine distance between deep
features of the input images and rendered images as Lid = η1◦η2

|η1||η2| , where ◦means

the element-wise multiplication. η1 and η2 are deep features of input images and
rendered images.

Regularization loss To prevent the face shape and texture parameters from di-

verging, regularization loss of 3DMM is used as Lreg = wid
∑Nα
i=1 α

2+wexp
∑Nβ
i=1 β

2+
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wtex
∑Nγ
i=1 γ

2 where wid, wexp, wshape are trade-off parameters for 3DMM coef-
ficients regularization (1.0, 0.8, 3e−3 by default). Nα, Nβ , Nγ are the length of
3DMM parameters α, β, γ.
Final 2D feature loss The combined 2D feature loss function L2D is defined as
L2D = wrenderLrender+wlmLlm+widLid+wregLreg, where the trade-off param-
eters for 2D feature losses are set empirically wrender = 1.9, wlm = 1e−3, wid =
0.2, wreg = 1e−4. We regard the baseline approach in the later experiement as
the model trained by only 2D feature losses. In the followings, we present key
ingredients of our contributions.

3.4 Occlusion-Aware View Synthesis

The key of our idea is to enforce multi-view geometry consistency, so as to
achieve the self-supervised training. This could be done via view synthesis, which
establishes dense pixel correspondences across multi-view input images. However,
the view synthesis for face reconstruction is very easily affected by self-occlusion,
as large and extreme face pose cases are common in read world applications. As
shown in Figure 2, assuming a pixel pt is visible in the left cheek as shown in
Figure 2(a), the correspondence pixel ps could not be found in Figure 2(b) due
to nose occlusion. Self-occlusion leads to redundant pixel consistency loss and
depth consistency loss. Furthermore the related gradient of self-occlusion pixels
will be highly affected by the salient redundant error as red part in Figure 3
(Pixel Consistency Loss subfigure), which makes the training more difficult. For
more practical and useful navigation in real scenarios, self-occlusion is worth to
solve.

(a) (b)
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V3

(Ux, Uy)
Triangle x

109.8

40.5

Triangle
x_2

Triangle
x_1
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Triangle
x_0

(c) (d) (e)

Fig. 2. (a) and (b) are the target view and source view pair; (c) is the covisible points
and triangles; (d) is the covisible map; and (e) is the synthetic target view

We introduce the covisible maps Cs to account for the self-occlusion. Co-
visible map is a binary mask indicating the pixels which are visible in both
source and target views. During the rendering process of the MGCNet, rasteri-
zation builds the correspondence between vertices of a triangle and image pixels
(V1,2,3 ∼ Ux, Uy), as shown in Figure 2(c). The common vertices visible in two
views (i.e., vertices that contribute to pixel rendering) are called covisible points.
Then we define all triangles adjacent to covisible points as covisible triangles.
Finally, we project covisible triangles of the 3D face from the target view to
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image space, as shown in Figure 2(d), where the white region is covisible region.
The improvement brings from covisible maps is elaborated in Figure 3, pixels are
not covisible in the left of the nose in target view (red in Figure 3), which result
in redundant error. The quantitative improvements are discussed in Section 4.5.

To generate the synthetic target RGB images from source RGB images, we
first formulate the pixel correspondences between view pairs (Is, It). Given a pair
correspondence pixel coordinate pt, ps in It, Is, the pixel value ps is computed
by bilinear-sampling [29], and the pixel coordinate ps is defined as

ps ∼ Ks[Prel
t→s]Dt(pt)K

−1
t pt, (2)

where ∼ represents the equality in the homogeneous coordinates, Ks and Kt

are the intrinsics for the input image pairs, Dt is the rendered depth map of the
target view, and Dt(pt) is the depth for this particular pixel pt in Dt.

Fig. 3. The view synthesis results with and without covisible map. Without covisiable
map, the pixel consistency loss is highly affected by self-occlusion.

3.5 Pixel Consistency Loss

We generate the synthesized target images by view synthesis, then we minimize
the pixel error between the target view and the synthesized target views from
the source views as

Lpixel =
1

|Cs|

|Cs|∑
i=1

Ci
s ∗
∣∣∣Ĩst (i)− It(i)

∣∣∣ , (3)

where Ĩst represents the synthesized target views from the source views. It(i)
is the i − th pixel value . Concretely, the first term Ĩst is the bilinear-sampling
operation, which computes the corresponding pixel coordinates using the relative
pose P relt→s and target depth map Dre

t . Cs is covisible map and |Cs| denotes the
total number of covisible pixels.

3.6 Dense Depth Consistency Loss

Compared to RGB images, depth maps are less adversely affected by the gradient
locality issue [5]. Thus, we propose a dense depth consistency loss function which
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contributes to solving depth ambiguity more explicitly, enforcing the multi-view
consistency upon depth maps. Similarly, we synthesize the target depth maps D̃s

t

from the source views via bilinear interpolation, and compute the consistency
against the target depth map Dt.

One critical issue is that the face region is cropped in the face detection data-
preprocessing stage, making the depth value up to scale. To tackle this issue, we
compute a ratio of two depth maps Sdepth and rectify the scale of depth maps.
Therefore, we define the dense depth consistency loss as

Sdepth =

∑|Cs|
i=1 Dt(i)Cs(i)∑|Cs|
i=1 D̃s

t (i)Cs(i)

Ldepth =
1

|Cs|

|Cs|∑
i=1

∣∣∣Sdepth · D̃s
t (i)−Dt(i)

∣∣∣ , (4)

where Cs(i),Dt(i) are the i − th covisible and depth value. Sdepth is the depth
scale ratio. Our experiment shows that the multi-view geometry supervisory
signals significantly improve the accuracy of the 3D face shape.

Ppoint Ppoint

Ppoint

Ppoint

Ppoint

Ppoint

Ppoint

Ppoint

Ppoint

(a) Baseline

Ppoint Ppoint

Ppoint Ppoint

Ppoint Ppoint

Ppoint

Ppoint

Ppoint

(b) Multi-view

Fig. 4. Eipipolar error from target to source views, (a) is the epipolar visualization
from baseline network trained by 2D feature loss; and (b) is epipolar visualization of
the MGCNet. The red, green and blue point means left ear bound, lower jaw and nose
tip landmarks. The epipolar error of baseline is significantly larger than MGCNet.

3.7 Facial epipolar Loss

We use facial landmarks to build the epipolar consistency, as our epipolar loss
is based on sparse ground-truth 2D facial landmarks, which is less likely to be
affected by radiometric or illumination changes compared to pixel consistency
or depth consistency losses, The epipolar loss in the symmetric epipolar dis-
tance [25] form between source and target 2D landmark qt↔s = {p ↔ p′} is
defined as

Lepi(q|R, t) =
∑

∀(p,p′)∈q

p′TEp√
(Ep)2(1) + (Ep)2(2)

(5)

where E being the essential matrix computed by E = [t]×R, [·]× is the matrix
representation of the cross product with t. We simply omit the subindices for
conciseness (q for qt↔s, R for Rt→s, t for tt→s).
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3.8 Combined Loss

The final loss function L for our MGCNet is the combination of 2D feature
loss and multi-view geometry loss. Training the network by only 2D feature
losses leads to face pose and depth ambiguity, which is reflected in geometry
inconsistency as the large epipolar error shown in Figure 4(a). Our MGCNet
trained with pixel consistency loss, dense depth consistency, and facial epipolar
loss shows remarkable improvement in Figure 4(b), which outstands our novel
multi-view geometry consistency based self-supervised training pipeline. Finally,
the combined loss function is defined as

L =w2D ∗ L2D + wmul ∗ [wpixel ∗ Lpixel + wdepth ∗ Ldepth + wepi ∗ Lepi], (6)

where w2D = 1.0 and wmul = 1.0 balance the weights between the 2D feature
loss for each view and the multi-view geometry consistency loss. The trade-off
parameters to take into account are wpixel = 0.15, wdepth = 1e−4, wepi = 1e−3.

4 Experiment

We evaluate the performance of our MGCNet on the face alignment and 3D
face reconstruction tasks which compared with the most recent state-of-the-art
methods [6, 8, 15, 18, 22, 45, 50–52, 56, 66, 67] on diverse test datasets including
AFLW20003D [67], MICC Florence [3], Binghamton University 3D Facial Ex-
pression (BU-3DFE) [60,64], and FRGC v2.0 [36].

4.1 Implementation Details

Data 300W-LP [67] has multi-view face images with fitted 3DMM model, the
model is widely used as ground truth in [18, 28, 56, 59], such multi-view images
provide better supervision than only 2D features. Multi-PIE [23] are introduced
to provide multi-view face images that help solve face pose and depth ambiguity.
As multi-view face datasets are always captured indoor, and thus cannot provide
diversified illumination and background for training, CelebA [33] and LS3D [8]
are used as part of training data, which only contribute to 2D feature losses.
Detail data process can be found in the suppl. material.

Network We use the ResNet50 [26] network as the backbone of our MGCNet, we
only convert the last fully-connected layer to 257 neurons to match the dimension
of 3DMM coefficients. The pre-trained model from ImageNet [44] is used as an
initialization. We only use N = 3 views in practice, as N = 5 views lead to a large
pose gap between the first view and the last view. We implement our approach
by Tensorflow [1]. The training process is based on Adam optimizer [30] with
a batch size of 5. The learning rate is set to 1e−4, and there are 400K total
iterations for the whole training process.
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Fig. 5. A few results on a full range of lighting, pose, including large expressions. Each
image pair is input image (left) and reconstruction result overlay (right). Further detail
result (shape, albedo, and lighting) can be found in the suppl. material.

4.2 Qualitative Result

Result in different situations Our MGCNet allows for high-quality recon-
struction of facial geometry, reflectance and incident illumination as Figure 5,
under full range of lighting, pose, and expressions situations.
Geometry We evaluate the qualitative results of our MGCNet on AFLW20003D
[67]. First, we compare our MGCNet with 3DDFA [67], RingNet [45], PRN [18],
and Deng et al. [15] on front view samples, as Row 1 and Row 2 in Figure 6.
Our predicted 3DMM coefficients produce more accurate results than the most
methods, and we get comparable results with Deng et al. [15].

For these large and extreme pose cases as Row 3-6 in Figure 6, our MGCNet
has better face alignment and face geometry than other methods. We have more
vivid emotion in Row 4 of Figure 6, and the mouths of our result in Row 3,5 have
obviously better shape than 3DDFA [67], RingNet [45], PRN [18], and Deng et
al. [15]. Besides, the face alignment results from Row 3 to Row 6 support that we
achieve better face pose estimation, especially in large and extreme pose cases.
Texture, illumination shadings We also visualize our result under geometry,
texture, illumination shadings, and notice that our approach performs better
than Tewari18 et al. [51] and Tewari19 et al. [50], where the overlay result is
very similar to the input image as Figure 7(a). Further result and analysis about
the result can be found in the suppl. material.

MGCNet does not focus on the appearance of 3DMM as [12,21,49–51,53,54,
62], which is only constrained by render loss. However, our multi-view geometry
supervision can help render loss maximize the potential during training by ac-
curate face alignment and depth value estimation. This makes MGCNet able to
handle 3DMM texture and illumination robustly.

4.3 2D Face Alignment

The quantitative comparison of 6Dof pose is not conducted due to different
camera intrinsic assumptions of different methods. Therefore, to validate that
our MGCNet can mitigate the ambiguity of monocular face pose estimation,
we evaluate our method on AFLW2000-3D, and compare our result with Zhu
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Fig. 6. Comparisons with 3DDFA [67], RingNet [45], PRN [18], and Deng et al. [15]
on ALFW20003D.

Table 1. (a)Performance comparison on AFLW2000-3D (68 landmarks). The normal-
ized mean error (NME) for 2D landmarks with different yaw angles is reported. The
first best result is highlighted in bold. (b) Average and standard deviation root mean
squared error (RMSE) with mm in three environments of MICC Florence.

(a)

Method 0 to 30 30 to 60 60 to 90 Mean

3DDFA [67] 3.78 4.54 7.93 5.42
3D-FAN [8] 3.61 4.34 6.87 4.94
3DSTN [6] 3.15 4.33 5.98 4.49
CMD [66] - - - 3.98
PRN [18] 2.75 3.55 5.11 3.62

Ours+BL 2.75 3.28 4.31 3.45
Ours+MGCNet 2.72 3.12 3.76 3.20

(b)

Method Cooperative Indoor Outdoor

Zhu et al. [67] 2.69 ± 0.64 2.23 ± 0.49 2.22 ± 0.56
Sanyal et al. [45] 2.33 ± 0.43 2.19 ± 0.43 2.07 ± 0.45
Feng et al. [18] 2.30 ± 0.54 2.02 ± 0.50 2.10 ± 0.60
Tran et al. [56] 2.00 ± 0.55 2.05 ± 0.51 1.95 ± 0.51

Genova et al. [22] 1.87 ± 0.61 1.86 ± 0.60 1.87 ± 0.57
Deng et al. [15] 1.83 ± 0.59 1.78 ± 0.53 1.78 ± 0.59

Ours 1.73 ± 0.48 1.78 ± 0.47 1.75 ± 0.47
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et al. [67] (3DDFA), Bulat and Tzimiropoulos [8] (3D-FAN), Bhagavatula et
al. [6] (3DSTN), Zhou et al. [66] (CMD), and Feng et al. [18] (PRN). Normalized
mean error (NME) is used as the evaluation metric, and the bounding box size
of ground truth landmarks is deemed as the normalization factor. As shown in
Table 1(a) Column 5, our result outperforms the best method with a large margin
of 12% improvement. Qualitative results can be found in the suppl. material.

Learning face pose from 2D features of monocular images leads to face pose
ambiguity, the results of large and extreme face pose test samples suffer from
this heavily. As the supervision of large and extreme face pose case is even less,
which is not enough for training monocular face pose regressor. Our MGCNet
provides further robust and dense supervision by multi-view geometry for face
alignment in both frontal and profile face pose situations. The comparison in
Table 1(a) corroborates our point that the compared methods [6, 8, 18, 66, 67]
obviously degrades when the yaw angles increase from (30, 60) to (60, 90) in
Column 4 of Table 1(a). We also conduct an ablation study that our MGCNet
outperforms the baseline, especially on large and extreme pose case.

4.4 3D Face Reconstruction

MICC Florence with Video MICC Florence provides videos of each subject in
cooperative, indoor and outdoor scenarios. For a fair comparison with Genova
et al. [22], Trans et al. [56] and Deng et al. [15], we calculate error with the
average shape for each video in different scenarios. Following [22], we crop the
ground truth mesh to 95mm around the nose tip and run iterative closest point
(ICP) algorithm for rigid alignment. The results of [56] only contain part of
the forehead region. For a fair comparison, we process the ground-truth meshes
similarly. We use the point-to-plane root mean squared error(RMSE) as the
evaluation metric. We compare with the methods of Zhu et al. [67] (3DDFA),
Sanyal et al. [45] (RingNet), Feng et al. [18] (PRN), Genova et al. [22], Trans
et al. [56] and Deng et al. [15]. Table 1(b) shows that our method outperforms
state-of-the-art methods [15,18,22,45,56,67] on all three scenarios.
MICC Florence with Rendered Images Several current methods [15, 18,
28, 59] also generate rendered images as test input. Following [15, 18, 28, 59],
we render face images of each subject with 20 poses: a pitch of -15, 20 and 25
degrees, yaw angles of -80, -60, 0, 60 and 80 degrees, and 5 random poses. We use
the point-to-plane RMSE as the evaluation metric, and we process the ground
truth mesh as above. Figure 7(b) shows that our method achieves a significant
improvement of 17% higher than the state-of-the-art methods.

The plot also shows that our MGCNet performs obvious improvement on
the extreme pose setting x− axis[−80, 80] in Figure 7(b). As we mitigate both
pose and depth ambiguity by multi-view geometry consistency in the training
process. Extreme pose sample benefits from this more significantly, since the
extreme pose input images have even less 2D features. Profile face case contains
more pronounced depth info (eg. bridge of the nose), where large error happen.
FRGC v2.0 Dataset FRGC v2.0 is a large-scale benchmark includes 4007
scans. We random pick 1335 scans as test samples, then we crop the ground truth
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mesh to 95mm around the nose tip. We first use 3D landmark as correspondence
to align the predict and ground truth result, then ICP algorithm is used as
fine alignment. Finally, point-to-point mean average error (MAE) is used as the
evaluation metric. We compare with the methods of Galteri et al. [21] (D3R),
3DDFA [67], RingNet [45], PRN [18], and Deng et al. [15]. Table 2(a) shows that
our method outperforms these state-of-the-art methods. Our MGCNet performs
higher fidelity and accurate result on both frontal and profile face pose view.
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Fig. 7. (a)Comparison to Tewari18 et al. [51] and Tewari19 et al. [50]. Our MGC-
Net trained by multi-view consistency loss outperforms Tewari’s results in face pose,
illumination and geometry. Further result can be found in the suppl. material. (b)
Comparison with 3DDFA [67], RingNet [45], PRN [18], and Deng et al. [15] on MICC
Florence rendered images.

Table 2. (a) Comparison with D3R [21], 3DDFA [67], RingNet [45], PRN [18], and
Deng et al. [15] with MAE of mm on FRGC v2.0 dataset. (b) Mean and standard
deviation point-to-point RMSE with mm on the BU-3DFE dataset [60, 64] compared
with Tewari17 et al. [52], Tewari18 et al. [51], Tewari19 et al. [50], Deng et al. [15].

(a)

Method [21] [18] [45] [67] [15] Ours

MAE 3.63 2.33 2.22 2.21 2.18 1.93
Time - 9.8ms 2.7ms 75.7ms 20ms 20ms

(b)

Method [52] [51] Fine [51] Coarse [50] [15] Ours

Mean 3.22 1.83 1.81 1.79 1.63 1.55
Std 0.77 0.39 0.47 0.45 0.33 0.31

BU-3DFE Dataset We evaluate our method on the BU-3DFE dataset follow-
ing [50]. Following [50], a pre-computed dense correspondence map is used to
calculate a similarity transformation from predict mesh to the original ground-
truth 3D mesh, and help to calculate the point-to-point RMSE. From Table
2(b), the reconstruction error of our method is lower than the current state-of-
art methods [15,50–52]. Our MGCNet achieves better performance by using the
multi-view geometry consistency loss functions in the training phase. Qualitative
results can be found in the suppl. material.
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Table 3. Evaluation of different training loss configurations. The ablation study per-
formance of MGCNet is evaluated on MICC Florence 3D Face dataset [3] by RMSE.

Loss Configuration MICC Florence video

2D feature Pixel Consistency Depth Consistency Epipolar Covisible map Cooperative Indoor Outdoor

X - - - - 1.83 1.82 1.81
X X - - X 1.80 1.80 1.80
X - X - X 1.77 1.79 1.80
X - - X - 1.79 1.81 1.77
X X X - X 1.76 1.81 1.81
X X X X - 1.80 1.81 1.82
X X X X X 1.73 1.78 1.75

4.5 Ablation study

To validate the efficiency of our multi-view geometry consistency loss functions.
We conduct ablation studies for each component on the MICC Florence dataset
[3], as shown in Table 3. The ablation study mainly focuses on the proposed
multi-view geometry consistency loss functions. Firstly, we deem the baseline
method as the model trained with only 2D feature losses, as in Row 1. Secondly,
we add our pixel consistency loss, dense depth consistency loss, and epipolar
loss to the baseline in Row 2, Row 3 and Row 4. It shows that these losses
help produce lower reconstruction errors than the baseline, even when they are
used separately. Thirdly, comparing from Row 5 to Row 7, we combine multiple
multi-view geometry loss functions and achieve state-of-the-art results, which
demonstrates the effectiveness of the proposed self-supervised learning pipeline.
Finally, comparing from Row 6 to Row 7, we prove that our novel covisible
map to solve self-occlusion in view synthesis algorithm can help training a more
accurate model. The qualitative ablation study is in the suppl. material.

5 Conclusion

We have presented a self-supervised pipeline MGCNet for monocular 3D Face
reconstruction and demonstrated the advantages of exploiting multi-view ge-
ometry consistency to provide more reliable constraint on face pose and depth
estimation. We emphasize on the occlusion-aware view synthesis and multi-view
losses to make the result more robust and reliable. Our MGCNet profoundly re-
veals the capability of multi-view geometry consistency self-supervised learning
in capturing both high-level cues and feature correspondences with geometry
reasoning. The results compared to other methods indicate that our MGCNet
can achieve the outstanding result without costly labeled data. Our further in-
vestigations will focus on multi-view or video-based 3D face reconstruction.
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