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Abstract. This paper proposes a novel method for 3D shape repre-
sentation learning, namely Hyperbolic Embedded Attentive Representa-
tion (HEAR). Different from existing multi-view based methods, HEAR
develops a unified framework to address both multi-view redundancy
and single-view incompleteness. Specifically, HEAR firstly employs a hy-
brid attention (HA) module, which consists of a view-agnostic attention
(VAA) block and a view-specific attention (VSA) block. These two blocks
jointly explore distinct but complementary spatial saliency of local fea-
tures for each single-view image. Subsequently, a multi-granular view
pooling (MVP) module is introduced to aggregate the multi-view fea-
tures with different granularities in a coarse-to-fine manner. The resulting
feature set implicitly has hierarchical relations, which are therefore pro-
jected into a Hyperbolic space by adopting the Hyperbolic embedding.
A hierarchical representation is learned by Hyperbolic multi-class logis-
tic regression based on the Hyperbolic geometry. Experimental results
clearly show that HEAR outperforms the state-of-the-art approaches on
three 3D shape recognition tasks including generic 3D shape retrieval,
3D shape classification and sketch-based 3D shape retrieval.

Keywords: 3D shape recognition; View-agnostic/specific attentions; Multi-
granularity view aggregation; Hyperbolic neural networks

1 Introduction

Recently, 3D shape analysis [46, 45, 47, 70, 72, 8, 71, 24, 18, 33] has emerged as
a hot research topic in computer vision, due to the increasing demand from real
applications in virtual reality, autonomous driving, 3D printing and gaming.
Learning 3D shape representations for downstream tasks, e.g., 3D shape clas-
sification/retrieval, is a fundamental problem for 3D shape analysis. However,
this problem is very challenging, considering the varying modalities, complicated
geometries and variability of 3D shapes.

A variety of methods have been proposed to learn 3D shape representations,
which can generally be divided into the following two categories: 1) 3D model-
based methods, learning representations directly from the raw format of 3D

? indicates the corresponding author.
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Fig. 1. Illustration of the spatial attention hierarchy as well as the multi-granular
view-pooling hierarchy.

shapes, such as point cloud [45, 47, 32], voxel [42, 46, 3] and mesh [14]; 2) multi-
view based approaches [6, 51, 1, 56, 2, 13, 25, 21, 72, 24, 71], which first represent
a 3D object by a set of rendered 2D images to extract individual features, and
then aggregate the features to a global descriptor. Benefiting from the success
of CNN in 2D image representation learning, the multi-view based approaches
have surpassed their model-based counterparts in most cases. However, it re-
mains difficult to effectively aggregate multi-view data because of their follow-
ing characteristics: (a) Single-view incompleteness. As shown in Fig. 1, a 2D
image rendered from a single view only captures partial appearance and geom-
etry structures of a 3D object, due to the self-occlusion and information loss by
2D projection during the rendering procedure; (b) Multi-view redundancy. Mul-
tiple images rendered from a sequence of over-completely sampled views contain
a large amount of redundant information, since images from neighboring views
often capture similar geometric structures of the 3D object and many 3D shapes
are geometrically symmetric. This kind of redundancy suppresses the effects of
discriminative local regions, which will deteriorate the final performance.

Most of the existing works focus on addressing problem (a) by developing
various view-wise pooling strategies [55, 65], exploring view importance [73] or
modeling multi-view data by sequence [10, 22, 24], while they improperly ne-
glect problem (b). In our work, we take into account both problems (a) and (b)
and propose a unified framework, namely Hyperbolic Embedded Attentive
Representation (HEAR), as illustrated in Fig. 2.

On the one hand, HEAR develops a hybrid attention (HA) module to exten-
sively explore the spatial attentions of local features for each single-view image.
Specifically, HA consists of two blocks, i.e., the View Agnostic Attention (VAA)
block and the View Specific Attention (VSA) block. Basically, VAA attempts
to learn high-level spatial attentions by adopting a trainable spatial attention
network shared across different views. In contrast, the parameter-free VSA aims
to explore low-level view-specific spatial attentions by calculating the maximal
accumulated top-M correlations with local features from other views. As shown
in Fig. 1, VAA and VSA capture complementary spatial attentions that corre-
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spond to discriminative local parts of a 3D shape. Accordingly, HEAR imposes
large weights on salient local features, whilst suppressing less salient ones. In this
way, HEAR alleviates the negative effect caused by the multi-view redundancy.

On the other hand, HEAR employs a multi-granular view-pooling (MVP)
module to aggregate multi-view features. Concretely, as shown in Fig. 1, MVP
evenly partitions the 12 views into 1,2,4 non-overlapped segments, in each of
which the views are ensembled by average/max pooling. In this manner, MVP
can preserve more visual details by using this coarse-to-fine view aggregation
strategy, and thus can mitigate the single-view incompleteness, as mentioned in
problem (a). Based on HA and MVP, a 3D shape can be represented by a set of
features, which encode distinct spatial attentions and view-pooling granularities.
As observed in Fig. 1, these features implicitly have hierarchical relations w.r.t.
the spatial attention and multi-granular view-pooling. We therefore employ a
Hyperbolic embedding, to endow the feature space with a Hyperbolic geometry,
which has recently been successfully applied to represent hierarchical structured
data [20, 49, 19, 4, 30]. Accordingly, the Hyperbolic multi-class logistic regression
(MLR) is applied to accomplish classification/retrieval in the Hyperbolic space.

Our main contributions are summarized as follows:

– We simultaneously address the problems of single-view incompleteness and
multi-view redundancy for 3D shape representation learning by a unified
framework, namely Hyperbolic Embedded Attentive Representation (HEAR).

– We propose a hybrid attention module to explore view-agnostic and view-
specific attentions, which capture distinct but complementary spatial saliency.

– We present a multi-granular view-pooling mechanism to aggregate multi-
view features in a hierarchical manner, which are subsequently encoded into
a hierarchical representation space by employing the Hyperbolic embedding.

2 Related Work

Model-based methods Several recent works learn representations from raw
3D shape data, which can be divided into the following categories. 1) Voxel-
based models such as 3DShapeNet [67], VoxelNet [42], Subvolume Net[46] and
VRN [3]. They directly apply the 3D convolution neural networks to learn the
representation based on voxelized shapes. However, these approaches are usually
computationally costly, and severely affected by the low resolution caused by the
data sparsity. 2) Point cloud-based methods. Point cloud is a set of unordered
3D points, which has attracted increasing interests due to its wide applications.
Qi et al. propose the seminal work, i.e., PointNet [45] by building deep neural
networks on the point sets. Afterwards, a large amount of approaches, such as
PointNet++ [47], Kd-Networks[32], SO-Net[39], KPConv[62], IntepCNN [41],
DPAM [40]), have been proposed to improve PointNet [45] by modeling fine-
grained local patterns. 3) Mesh-based methods. A majority of CAD models are
stored as meshes, which consist of 3D vertices, edges and faces. [14] presents
the MeshNet to solve the complexity and irregularity problems of meshes, and
achieves comparable performance with methods using other types of data.
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Fig. 2. Framework of Hyperbolic Embedded Attentive Representation (HEAR). HEAR
firstly adopts base CNN networks to extract local feature maps, based on which a
hybrid attention (HA) module is employed to explore distinct attentions, i.e., the View-
Agnostic Attention (VAA) and View-Specific Attention (VSA). The local features re-
weighted by each attention are transformed to global features through global pooling
(GP). A Multi-granular View Pooling (MVP) is subsequently adopted to aggregate the
multi-view global features in a hierarchical manner. The resulting feature set is further
endowed with a Hyperbolic geometry through Hyperbolic embedding, and used for
classification or retrieval by the Hyperbolic multi-class logistic regression (MLR).

Multi-view based methods The multi-view based method represents a 3D
object by a set of 2D images, rendered from a sequence of views. This kind of
approaches leverage the well-studied 2D convolutional neural networks, and thus
performs better than the model-based ones. In [55], Su et al. develops a multi-
view convolutional neural network (MVCNN) which extracts features from each
single-view image followed by a view-pooling strategy to aggregate the multi-
view data into the 3D descriptor. Based on MVCNN, various methods have been
proposed by developing different view-wise pooling strategies [65], exploring the
view importance [73] and modeling the multi-view data by sequence [10, 22, 24]
or graphs [12]. Among these methods, VDN [35] is closely related to our work,
which also explores locality attentions. However, VDN mainly focuses on single-
view images, and fails to capture cross-view attention patterns. In contrast, our
method explores the inter-view correlations by the VSA block. RelationNet [73]
also learns the cross-view relations of local features. Nevertheless, our work em-
ploys hybrid attentions, as well as considering the multi-granular view-pooling.

3 Proposed Method

3.1 Framework

As shown in Fig. 2, the proposed method mainly consists of three modules:
the hybrid attention (HA) module, the multi-granular view pooling (MVP) mod-
ule and the Hyperbolic neural networks with Hyperbolic embedding (HE).
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Specifically, suppose that T =
{
Oi; yi

}N
i=1

is a training set of 3D shapes,

where Oi is the i-th 3D shape and yi ∈ {1, · · · , C} refers to the class label. We
firstly represent the 3D shape Oi as a group of gray-scale images by rendering
with the Phong reflection model [43] from Nv views, which are evenly placed in
a plane around the 3D shape. The resulting multi-view representation is denoted
by Ii = {Iv,i}Nv

v=1, where Iv,i is a 2D rendered image of Oi from the v-th view.
In this paper, we use Nv = 12 views.

Subsequently, we adopt a base convolutional network (e.g., VGG-A [53],
VGG-19 [53] and ResNet-50 [23]) Fθ(·), parameterized by θ, to extract an initial
feature map Lv,iini = [lv,ij,k]1≤j≤H,1≤k≤W ∈ RH×W×d for each image Iv,i, where
H, W and d denote the height, width and number of channels of the feature
map, respectively. lv,ij,k refers to the d-dimensional local feature at the (j, k)-th
location. Thereafter, a view-agnostic attention (VAA) block VAAφ(·) together
with a view-specific attention (VSA) block VSA(·) are proposed to learn two
different kinds of attention weights for each local feature, which we denote by
Av,i

vaa = [αv,ivaa,j,k] ∈ RH×W and Av,i
vsa = [αv,ivsa,j,k] ∈ RH×W , respectively. Here,

φ refers to learnable parameters of VAAφ(·). Accordingly, we can obtain three

local feature maps for a single image Iv,i: the initial feature map Lv,iini without

attentions, the VAA induced feature map Lv,ivaa =
[
αv,ivaa,j,k · l

v,i
j,k

]
j,k
∈ RH×W×d,

as well as the VSA induced feature map Lv,ivsa =
[
αv,ivsa,j,k · l

v,i
j,k

]
j,k
∈ RH×W×d.

By passing through a global pooling module GP (·), the local feature maps are
successively aggregated into three global features fv,iini ∈ RD, fv,ivaa ∈ RD and
fv,ivsa ∈ RD. For Nv rendering views, we therefore obtain three sets of global

features F iini = [f1,i
ini , · · · ,f

v,i
ini , · · · ,f

Nv,i
ini ], F ivaa = [f1,i

vaa, · · ·fv,ivaa, · · · ,fNv,i
vaa ], and

F ivsa = [f1,i
vsa, · · · ,fv,ivsa, · · · ,fNv,i

vsa ] ∈ RD×Nv . Subsequently, the multi-granular
view pooling (MVP) MVP(·) is proposed to aggregate multi-view features F iini,
F ivaa and F ivsa in a multi-granular manner. The aggregated features implicitly
have hierarchical relations. We therefore employ a Hyperbolic embedding HE(·)
to project them into a Hyperbolic space, and learn hierarchical representations
by the Hyperbolic multi-class logistic regression (MLR) with parameters ψ. The
cross-entropy loss is adopted to train the overall network.

3.2 Hybrid Attentions

In this section, we will elaborate the view-agnostic and view-specific atten-
tions. Without loss of generality, we omit the index i for a more neat description.

View-Agnostic Attention. Basically, the VAA block is a variant of the
Squeeze-and-Excitation network [26]. It firstly applies a 1×1 convolutional layer
conv1×1(·) to squeeze the local feature map Lvini to an H×W matrix Ev

ini, which

is subsequently flattened into an HW × 1 vector
−−→
Ev

ini. Specifically, the spatial
attention map Av

vaa is computed by:

Av
vaa = Reshape

(
σ
(
W2 ·ReLU

(
W1 ·

−−→
Ev

ini

)))
, (1)
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Fig. 3. Visualization of the view-specific attentions by selecting top-M cross-view re-
sponses with M = 1%/5%/50%/100%×H ×W , respectively.

where W1 ∈ RHW
r ×HW and W2 ∈ RHW×HW

r are learnable parameter matrices,
ReLU(·) denotes the ReLU activation function, σ(·) is the Softmax activation
function, Reshape(·) indicates the operation of reshaping an HW × 1 vector to
an H ×W matrix, and r refers to the ratio of dimension reduction.

Note that the parameter matrices W1 and W2 of VAAψ(·) are shared across
different rendering views, i.e., for all v ∈ {1, · · · , Nv}. As a consequence, VAAψ(·)
are encouraged to pay more attention to view-independent salient local regions.
In this regard, we call VAAψ(·) the view-agnostic attention block.

By encoding the view-agnostic spatial attention Av
vaa to the initial feature

map, we can obtain the VAA induced feature map Lvvaa = Lvini�Av
vaa, where �

indicates the element-wise production along the channel.
View-Specific Attention. Despite that VAA(·) is view-agnostic, it tends

to neglect some view-dependent local details (as shown in Fig. 1), which are
discriminative for distinguishing 3D shapes. Therefore, it is reasonable to explore
the view-specific attention as a complement to VAA. To this end, we propose a
parameter-free view-specific attention block VSA(·).

Given a feature map Lvini from the v-th view, VSA(·) aims to compute the
spatial attentions by exploring its saliency in feature maps from the rest Nv − 1
views, i.e., {Lwini : w ∈ {1, · · · , Nv};w 6= v}. Specifically, VSA(·) first densely
computes the response γvj,k(p, q, w) at location (p, q) in Lwini w.r.t. lvj,k:

γvj,k(p, q, w) =

(
lvj,k

)T
· lwp,q

‖lvj,k‖2 · ‖lwp,q‖2
, (2)

where lwp,q is the local feature at location (p, q) of Lwini.
As shown in Eq. (2), the response γvj,k(p, q, w) is actually the Cosine distance

between local features, implying that a large γvj,k(p, q, w) corresponds to a high

visual similarity, and vice versa. Subsequently, we select the subset R̃vj,k(w;M)
with the top-M largest responses from Rvj,k(w) = {γvj,k(p, q, w)}1≤p≤H,1≤q≤W :

R̃vj,k(w;M) = argmaxR′⊂R,|R′ |=M

∑
γ∈R′ γ, (3)
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where |R′ | indicates the number of elements in R
′
.

The unnormalized view-specific spatial attention at location (j, k) for the
v-th view is then formulated as:

α̃vvsa,j,k = max
w∈{1,··· ,Nv ;w 6=v}

∑
γ∈R̃v

j,k
(w;M)

γ. (4)

The normalized view-specific attention Av
vsa can be obtained by applying the

Softmax function as follows: Av
vsa = Softmax

(
[α̃vvsa,j,k]

)
.

From Eqs. (3) and (4), we can observe that Av
vsa firstly explores the non-local

saliency of lvj,k in each cross-view feature map Lwini. Different from the standard
non-local mean operation [69] used in non-local attentions, we adopt the top-
M largest responses. As illustrated in Fig. 3, for a large M , the local patch
lvj,k with high non-local co-occurrence appearance will have a large value. And
the attentions are concentrated on an extremely small number of local parts,
which may lose some discriminative local details. For a small M , lvj,k with high
local co-occurrence will have a large value. In this case, the attentions become
more diverse, but will be more sensitive to noise (e.g., backgrounds). In order to
simultaneously maintain more local details and remove outliers, we set M to a
mediate value, which is fixed to 5%×H ×W in our work.

Similar to VAA, we encode the view-specific attention Av
vsa to the initial

feature map, and attain the VSA induced feature map as Lvvsa = Lvini �Av
vsa.

By using the global pooling in base networks (e.g., the global average pooling
in ResNet-50), the original local feature map Lv,iini , the VAA induced local feature
map Lv,ivaa and the VSA induced local feature map Lv,ivsa of Oi are aggregated into
three sets of global features {fv,iini }

Nv
v=1, {fv,ivaa}

Nv
v=1 and {fv,ivsa}

Nv
v=1, respectively.

3.3 Hierarchical Representation Learning

Multi-granular View Pooling. As shown in Fig. 1, the rendered 2D images
{Iv,i} of a 3D shape Oi from different views capture distinct but incomplete
spatial and visual structures of Oi. Conventional methods aggregate the multi-
view features from Nv views by using view-level average/max pooling [55, 70,
25, 7, 72], exploring view attentions [24], adopting the sequence modeling model
such as the recurrent neural networks [22], or using 3D convolutions [34] as well
as graph neural networks [12].

In our work, we develop a multi-granular view pooling (MVP) module to
aggregate the multi-view features {fv,it }

Nv
v=1 (t ∈ {ini, vaa, vsa}) based on the

following three levels of granularity. 1) Granularity-1 (g-1). The Nv rendering
views are sequentially divided into four groups, each of which consists of Nv

4
views. The features in each group are aggregated into one single vector by average
pooling, and finally resulting in four vectors {f it,(1,g1)}g1=1,··· ,4. 2) Granularity-

2 (g-2). Similar to Granularity-1, the Nv rendering views are divided into two
groups, each of them having Nv

2 views and therefore outputting two feature
vectors {f it,(2,g2)}g2=1,2. 3) Granularity-3 (g-3). All Nv features are aggregated

into the averaged vector f it,3.
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The above three sets of aggregated features, i.e., f it,3, {f it,(2,g2)}g2=1,2 and

{f it,(1,g1)}g1=1,··· ,4, capture different view-dependent visual details of Oi in a
coarse-to-fine granularity. In this way, we desire to mitigate the single-view in-
completeness problem as aforementioned.

Based on the hybrid attentions and multi-granular view pooling, a 3D object
Oi can be represented by a feature set F i = {{f it,(1,g1)}, {f

i
t,(2,g2)

},f it,3 : t ∈
{ini, vaa, vsa}}. We note that F i has the following kinds of hierarchical relations:

1) Spatial Attention Hierarchy. As shown in Fig. 1, the global feature fv,iini

is pooled from the original feature map Lv,iini , which equally treats each local

feature. Therefore, fv,iini represents the most diversified but less salient visual
information. In contrast, fvvaa, which is pooled from the VAA induced feature
map Lvvaa, encodes extremely concentrated but salient local details. fvvsa, derived
from Lvvaa, alternatively makes a trade-off, and intermediately keep the diversity
and saliency controlled by K. In this manner, fv,iini , fv,iini and fv,iini have hierarchical
relations in regard to the diversity and saliency of spatial attentions.

2) Pooling-view Hierarchy. As described above, f it,3, {f it,(2,g2)}g2=1,2 and

{f it,(1,g1)}g1=1,··· ,4 aggregate multi-view features using the full Nv, partially Nv
2

and Nv
4 views, respectively. As a consequence, they naturally have hierarchical

relations in terms of the aggregation granularity.
Based on the above two observations, we therefore leverage the Hyperbolic

geometry to learn the embedding of F i, due to their intrinsic capability of repre-
senting hierarchies, such as the tree graphs, taxonomies and linguistic ontology
in natural language processing (NLP) [49, 50].

Hyperbolic Space. Formally, we denote a D-dimensional Hyperbolic space
by HD, which is defined as a simply connected n-dimensional Riemannian mani-
fold of constant negative sectional curvature. Basically, there exist many distinct
but isomorphic models of the Hyperbolic geometry. In our work, we adopt the
Poincaré ball model, considering its preveiling applications in NLP and its nu-
merical stability as well.

Specifically, a Poincaré ball is a manifold PDc = {x ∈ RD : c‖x‖2 < 1, c ≥ 0}
endowed with the Riemannian metric gP(x) = (λcx)2gE, where λcx = 2

1−c‖x‖2 is

the conformal factor and gE is the Euclidean metric tensor, i.e., gE = ID. Note
that in a standard definition of the Poincaré ball, c equals to 1. We follow [19]
and introduce the hyperparameter c to represent the radius of the Poincaré ball.
Actually, c allows one to make a balance between the Hyperbolic and Euclidean
geometry, considering that PDc converges to the Euclidean space RD as c→ 0.

Basic Operations in PDc . To formulate our method, we introduce some
basic arithmetic operations in the Hyperbolic space.

Möbius addition. Given two points p, q ∈ PDc , p ⊕c q refers to the Möbius
addition, which is defined as the following:

(1 + 2c < p, q > +c‖q‖2) · p + (1− c‖q‖2) · q
1 + 2c < p, q > +c2‖p‖2‖q‖2 , (5)

where < · > refers the Euclidean inner product, and ‖‖ is the l-2 vector norm.
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Geodesic distance. Based on ⊕c, the geodesic distance is formuated as:

dc(p, q) =
2√
c

arctanh(
√
c · ‖ − p⊕c q‖). (6)

Möbius matrix-vector product. Suppose we have a standard Euclidean linear
matrix M ∈ Rd×D, the Möbius matrix-vector product M⊗c(p) between M and
p is defined as follows:

M⊗c(p) =
1√
c

tanh

(
‖Mp‖
‖p‖ arctanh(

√
c‖p‖)

)
Mp

‖Mp‖ , (7)

if Mp 6= 0, and otherwise M⊗c(p) = 0.
Hyperbolic Embedding. Usually, the feature set F i is not located in PDc .

We utilize the exponential map expc0 at 0 as the projection from RD to PDc :

0⊕c
(

tanh

(√
c · λ

c
0 · ‖f‖

2

)
f√

c · ‖f‖

)
. (8)

The inverse projection logarithmic map logc0(y) from PDc to RD is defined by:

2√
c · λc0

arctanh(
√
c · ‖ − 0⊕c y‖)

−0⊕c y
‖ − 0⊕c y‖

. (9)

As a result, F i is projected to the Hyperbolic space and turned to

P i =
{
{pit,(1,g1)}, {p

i
t,(1,g2)

},pit,g3
}
,

where pit,(1,g1) = expc0(f it,(1,g1)), p
i
t,(1,g2)

= expc0(f it,(1,g2)) and pit,g3 = expc0(f it,g3).

We can finally obtain the 3D representation pi ∈ Pd′c by using the following vec-
tor concatenation in P i:

HE(F i) = M⊕c(piini,(1,g1))⊕c · · · ⊕cM
⊕c(pivsa,g3),

where M ∈ Rd′×D is the parameter matrix of HE(·), and d′ indicates the di-
mension of the concatenated feature vector.

Hyperbolic Neural Networks. In order to perform 3D shape classification
and retrieval, we leverage the generalized multi-class logistic regression (MLR)
to Hyperbolic spaces [19]. The basic idea lies in the following observation: the
logits of MLR in the Euclidean space can be represented as the distances to
certain hyperplanes, where each hyperplane can be specified with a point of
origin and a normal vector. This observation can be extended to the Poincaré
ball Pnc . Specifically, suppose C points {hk ∈ Pnc }Ck=1 and normal vectors {ak ∈
Thk
Pnc \{0}}Ck=1 are learnable parameters, where Thk

stands for the tangent
space at hk. Given a feature p ∈ Pnc , the Hyperbolic MLR Hψ(·) for C classes
is thereafter formulated as follows:

pk(p) = p(y = k|p) ∝ exp
(
λc
hk
‖ak‖√
c

arcsinh
(

2
√
c〈−hk⊕cp,ak〉

(1−c‖−hk⊕cp‖2)‖·ak‖

))
. (10)



10 J. Chen et al.

Based on Eq. (10), we then apply the cross-entropy loss for the concatenated
feature pi as well as for all the individual features {piini,(1,g1), · · · ,p

i
vsa,g3}:

Lxent = − 1

N

N∑
i

C∑
k=1

∑
p∈P i∪{pi}

yik · log(pk(p)). (11)

Optimization. As shown in Eq. (11), the parameters {hk}Ck=1 of the Hy-
perbolic MLR Hψ(·) are located inside the Poincaré ball. One way to optimize
Hψ(·) is using the Riemannian Adam optimizer [17] with pre-conditioners [63,
64]. However, as suggested in [30], we utilize a more efficient yet effective solution,
i.e., first optimizing {hk}Ck=1 via the standard Adam optimizer, and then map-
ping them to their Hyperbolic counterparts with the exponential map expc0(·).

4 Experimental Results and Analysis

4.1 3D Shape Classification and Retrieval

Datasets. For 3D shape classification and retrieval, we conduct experiments
on two widely used datasets: ModelNet10 and ModelNet40, both of which
are subsets of ModelNet [67] with 151,128 3D CAD models from 660 categories.
ModelNet10 includes 4,899 3D shapes belonging to 10 classes. We follow the
3,991/908 training/test split as commonly used in literature [73]. ModelNet40
contains 12,311 3D shapes from 40 categories. For 3D shape retrieval, most
existing works select 80/20 objects per class for training/testing [67] and [55]. In
regard to 3D shape classification, more recent works use the full split [46, 45, 47,
12, 73], which has 9,843/2,468 training/test 3D models. Therefore, we adopt the
80/20 split for 3D shape retrieval, and the full split for 3D shape classification.
Evaluation Metrics. As for classification, we follow previous works and report
both per instance accuracy and per class accuracy, regarding the class-imbalance
problem in the ModelNet40 dataset. Concretely, the per instance accuracy is the
percentage of correctly classified 3D models among all the whole test set, and
the per class accuracy refers to the averaged accuracy per class. To evaluate the
retrieval performance, we report the widely used mean Average Precision (mAP)
and Area Under Curve (AUC) of the precision-recall curve.
Implementation Details. Following the identical rendering protocol as MVCNN
[55], we render a 3D object to a set of 2D 224× 224 greyscale images by placing
virtual cameras around the 3D model every 30 degrees. Each 3D shape is then
represented by 12 view images.

As suggested in MVCNN [56], we train our model by two stages. In the first
stage, we adopt the the CNN backbone network pre-trained on ImageNet [48],
and fine-tune it on the training set by training as a single-view image classifi-
cation task. In the second stage, we initialize the convolutional layers with the
model fine-tuned in stage 1, and train the full model in Fig. 2, by removing
the fully-connected classifier. We adopt the Adam optimizer [31], and set the
learning rate to 5 × 10−5 and 1 × 10−5 for the first and second stages, respec-
tively. For both stages, the model is trained within 30 epochs with weight decay
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Table 1. Comparison results on 3D shape classification. (Best results in bold.)

Method Reference Input Modality
ModelNet40 ModelNet10

Per instance (%) Per class (%) Per instance (%) Per class (%)

SPH [29] SPG2003 Hand-crafted - 68.2 - -

LFD [6] CGF2003 Hand-crafted - 75.5 - 40.9

Subvolume Net [46] CVPR2016 Volume 89.2 86.0 - -

Voxception-ResNet [3] NIPS2016 Volume 91.3 - 93.6 -

PointNet++ [47] NIPS2017 Points 91.9 - - -

SO-Net [39] CVPR 2018 Points 93.4 90.8 95.7 95.5

DensePoint [40] ICCV 2019 Points 93.2 - 96.6 -

MeshNet [14] AAAI 2019 Mesh - - 93.1 -

MVCNNV−M [55] CVPR2015 Multi-view (#Views=12) 92.1 89.9 - -

MVCNN-MultiResV−M [46] CVPR2016 Multi-resolution Views 93.8 91.4 - -

MVCN-NewR−50 [56] ECCVW2018 Multi View (#Views=12) 95.5 94.0 - -

Pairwise NetworkV−M [27] CVPR2016 Multi-view (#Views=12) - 91.1 - 93.2

GVCNNG [13] CVPR2018 Multi-view 93.1 - - -

RotationNetR−50 [28] ICCV2017 Multi-view (#Views=12) - - 94.8 -

MHBNV−M [75] CVPR2018 Multi-view 94.1 92.2 94.9 94.9

HGNN [73] AAAI2019 Multi-view (#Views=12) 96.7 - - -

RelationNetV−M [73] ICCV2019 Multi-view (#Views=12) 94.3 92.3 95.3 95.1

HEARV−M Ours Multi-view (#Views=12) 95.5 94.2 98.2 98.1
HEARR−50 Ours Multi-view (#Views=12) 96.7 95.2 98.6 98.5

(V −M/G/R− 50 indicate VGG-M [5]/GoogLeNet [58]/ResNet-50 [23].)

0.001. As to the Hyperbolic embedding, we set the hyper-parameter c and the
dimension d′ of concatenated features as 5 × 10−5 and 1,024, respectively. All
the experiments are conducted on a Telsa V100 GPU.

As summarized in Table 1, HEAR achieves the best performance on Model-
Net40 and ModelNet10, when using the same base networks. For instance, the
per instance/class accuracy of HEAR is 1.6%/2.6% higher than the second best
one on ModelNet10, when using VGG-M. With the ResNet-50 backbone, the
performance of HEAR can be further improved. Note that HGNN achieve the
same per instance accuracy, i.e., 96.7%, as ours on ModelNet40. However, it
combines multiple types of deep features including GVCNN and MVCNN, while
HEAR only requires one backbone. In [28], a higher result is reported for Ro-
tationNet, by extensively exploring the rendering view coordinates. In contrast,
our method uses the standard 12 fixed views. For a fair comparison, we only
report the averaged accuracy of RotationNet.

Results on 3D Shape Classification. We compare our method with the hand-
crafted [29, 6], voxel-based [46, 3], points-based [47, 39, 40], mesh-based [14], and
multi-view based approaches [55, 46, 56, 27, 13, 28, 75, 12, 73]. As for the multi-
view based methods, different base networks are utilized, such as VGG-M [5],
GoogLeNet [58] and ResNet-50 [23]. We adopt the VGG-M and ResNet-50 to
make a fair comparison, which are used by most existing works.

Results on 3D Shape Retrieval. We compare HEAR with the state-of-the-
art approaches including model-based [29, 67, 16] and multi-view based ones [1,
56, 2, 13, 25, 21, 35, 72, 24, 71]. We report the results of our method based on three
commonly-used backbones (i.e., VGG-A, VGG-19 and ResNet-50). In addition,
we use the 1,024-dimensional concatenated vector after Hyperbolic embedding as
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Table 2. Comparison results on 3D shape retrieval. (Best results in bold.)

Method Reference
ModelNet40 ModelNet10
AUC MAP AUC MAP

SPH [29] SPG2003 34.5 33.3 46.0 44.1
3DShapeNet [68] CVPR2015 49.9 49.2 69.3 68.3

DLAN[16] BMVC2016 - 85.0 - 90.6

MVCNNV−M [55] CVPR2015 - 80.2 - -
MVCNNV−A [55] CVPR2015 73.7 72.9 80.8 80.1

GIFTV−S [1] CVPR2016 83.1 81.9 92.4 91.1
RED R−50 [2] ICCV2017 87.0 86.3 93.2 92.2

GVCNN G [13] CVPR2018 - 85.7 - -
TCLV−A [25] CVPR2018 89.0 88.0 - -

SeqViewsV−19 [22] TIP2018 - 89.1 - 91.4
VDNG [35] TVCG2018 87.6 86.6 93.6 93.2

Batch-wise [72] CVPR2019 - 83.8 - 87.5
VNN V−A [24] ICCV2019 89.6 88.9 93.5 92.8
VNN V−19 [24] ICCV2019 90.2 89.3 - -
NCENet G [71] ICCV2019 88.0 87.1 - -

HEARV−A Ours 91.8 91.1 95.0 94.2
HEARV−19 Ours 92.5 91.6 95.3 94.4
HEARR−50 Ours 92.8 92.0 95.5 94.7

(V − S/V − A/V − 19 indicate VGG-S [53]/VGG-A [53]/VGG-19 [53].)

the representation. Note that we do not employ the triplet loss as commonly
used in 3D shape retrieval, and only use the cross-entropy loss for training.

The comparison results are summarized in Table 2. As shown, our mehod
remarkably outperforms the state-of-the-art methods, and achieves 2.7% and
1.5% improvement w.r.t. mAP on ModelNet40 and ModelNet10, respectively.
The improvement is consistent, regardless of the choice of backbone networks.

4.2 Sketch-based 3D Shape Retrieval

Datasets. SHREC’13 [36] contains 7,200 human-drawn sketches, and 1,258
shapes from 90 classes, which are collected from the Princeton Shape Benchmark
(PSB) [52]. There are a total of 80 sketches per class, 50 of which are selected
for training and the rest for test. SHREC’14 [38] consists of 13,680 sketches
and 8,987 3D shapes belonging to 171 classes. There are 80 sketches, and around
53 3D shapes on average per class. The sketches are split into 8,550 image for
training and 5,130 for testing.
Evaluation Metrics. We utilize the following widely-adopted metrics [37, 11,
70] for sketch-based 3D shape retrieval: nearest neighbor (NN), first tier (FT),
second tier (ST), E-measure (E), discounted cumulated gain (DCG) as well as
the mean average precision (mAP).
Implementation Details. We employ the ResNet-50 and Inception-ResNet-
v2 as the base network, similar to the state-of-the-art methods [44, 7, 8]. We
follow the same ‘two branch’ architecture as depicted in [44], i.e., one branch for
sketches and the other one for 3D shapes. The same batch-hard triplet loss and
cross-entropy loss in [44] are utilized for training. The only difference between
our method and [44] lies in the designed 3D shape branch. The learning rate is
set to 3× 10−5 with decay rate 0.9 for every 20,000 steps.
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Table 3. Comparison results on sketch-based 3D shape retrieval. (Best results in bold.)

Method Reference
SHREC’13 SHREC’14

NN FT ST E DCG mAP NN FT ST E DCG mAP

CDMR [15] ICW2013 27.9 20.3 29.6 16.6 45.8 25.0 10.9 5.7 8.9 4.1 32.8 5.4
SBR-VC [36] SHREC13’track 16.4 9.7 14.9 8.5 34.8 11.4 9.5 5.0 8.1 3.7 31.9 5.0

SP [54] JVLC2010 1.7 1.6 3.1 1.8 24.0 2.6 - - - - - -
FDC [36] SHREC13’track 11.0 6.9 10.7 6.1 30.7 8.6 - - - - - -

DB-VLAT [61] SIPAASC2012 - - - - - - 16.0 11.5 17.0 7.9 37.6 13.1
CAT-DTW [74] VC2017 23.5 13.5 19.8 10.9 39.2 14.1 13.7 6.8 10.2 5.0 33.8 6.0

Siamese [66] CVPR2015 40.5 40.3 54.8 28.7 60.7 46.9 23.9 21.2 31.6 14.0 49.6 22.8
KECNN [59] NC2017 32.0 31.9 39.7 23.6 48.9 - - - - - -

DCML [11] AAAI2017 65.0 63.4 71.9 34.8 76.6 67.4 27.2 27.5 34.5 17.1 49.8 28.6
DCHML [9] TIP2018 73.0 71.5 77.3 36.8 81.6 74.4 40.3 32.9 39.4 20.1 54.4 33.6
LWBR [70] CVPR2017 71.2 72.5 78.5 36.9 81.4 75.2 40.3 37.8 45.5 23.6 58.1 40.1

DCMLR−50 [11] TIP2017 74.0 75.2 79.7 36.5 82.9 77.4 57.8 59.1 64.7 72.3 35.1 61.5
LWBRR−50 [70] CVPR2017 73.5 74.5 78.4 35.9 82.5 76.7 62.1 64.1 69.1 76.0 36.1 66.5
Shape2Vec [60] TOG2016 - - - - - - 71.4 69.7 74.8 36.0 81.1 72.0

DCAR−50 [7] ECCV2018 78.3 79.6 82.9 37.6 85.6 81.3 77.0 78.9 82.3 39.8 85.9 80.3
SemanticIR [44] BMCV2018 82.3 82.8 86.0 40.3 88.4 84.3 80.4 74.9 81.3 39.5 87.0 78.0

DSSHR−50 [8] CVPR2019 79.9 81.4 86.0 40.4 87.3 83.1 77.5 78.8 83.1 40.4 87.0 80.6
DSSHIR [8] CVPR2019 83.1 84.4 88.6 41.1 89.3 85.8 79.6 81.3 85.1 41.2 88.1 82.6

HEARR−50 Ours 82.1 83.7 87.8 40.9 88.8 85.4 79.2 80.7 84.6 40.9 87.8 82.2
HEARIR Ours 84.2 85.6 88.8 41.3 90.0 86.9 80.9 82.6 86.3 41.4 89.0 83.6

(IR represents using Inception-ResNet-v2 [57] as the base network.)

Experimental Results. We compare HEAR with the state-of-the-art methods
for sketch-based 3D shape retrieval, including hand-crafted [15, 36, 54, 36, 61, 74]
and deep learning based ones [66, 59, 11, 9, 70, 11, 70, 60, 7, 44, 8].

As summarized in Table 3, our method achieves the best performance on
both SHREC’13 and SHREC’14. For instance, by using the same ResNet-50
base model, HEAR improves the mAP of DCML, LWBR, DCA and DSSH by
8.0%, 10.2%, 4.1% and 2.3% on SHREC’13, respectively. Similar improvements
can be seen on SHREC’14 and by using the Incpetion-ResNet-v2 backbone net-
work. It also can be seen that the performance margin between HEAR and
SemanticIR [44] is significant, though the identical learning objective is applied.
This suggests that the proposed network learns more descriptive 3D shape pat-
terns for the respective task. In addition, HEAR works well with different learn-
ing objectives, further endorsing its ability to learn compact 3D representations.

4.3 Ablation Study

To evaluate each component of our method, i.e., the Hybrid Attention (HA)
module consisting of VAA and VSA, the Multi-granular View Pooling (MVP)
module as well as the Hyperbolic Neural Networks with Hyperbolic Embedding
(HNet), we conduct ablation studies on ModelNet10 and ModelNet40 for the
3D retrieval task. Specifically, we choose MVCNN with VGG-A network struc-
ture as the baseline, denoted by Baseline MVCNN. We then successively add
VAA/VSA, HA, MVP and HNet to validate their influences on the performance
of HEAR. Note that Baseline MVCNN+HA+MVP uses the concatenation and
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Table 4. Ablation study of HEAR w.r.t. mAP by using the VGG-A backbone.

Method ModelNet40 ModelNet10

Baseline MVCNN 72.9 80.1

Baseline MVCNN+VAA 86.3 88.7

Baseline MVCNN+VSA 87.5 90.2

Baseline MVCNN+HA 89.7 92.8

Baseline MVCNN+HA+MVP 90.0 93.0

Baseline MVCNN+HA+MVP+HNet (HEAR) 91.1 94.2

Query r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10 Query r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10

Fig. 4. Retrieval results by using HEAR on ModelNet40 (Left) and SHREC’13 (Right).
Images with yellow backgrounds and blue/green/red bounding boxes indicate query 2D
sketches, query 3D shapes/correct matches/false matches, respectively.

the standard linear classifier in the Euclidean space, instead of adopting the
concatenation with the Hyperbolic embedding and the Hyperbolic MLR.

Table 4 summarizes the mAP of the baselines with different combinations
of the components involved. We can observe that both VAA and VSA signifi-
cantly improve the baseline by exploring the spatial saliency. After combining
VAA and VSA, the hybrid attention (HA) can further boost the performance.
By employing MVP, HEAR can be slightly improved. The view shift of a 3D
object is literally continuous throughout different view points. MVP provides
a non-parametric way to perceive this via fusing multi-view data with minimal
information wastage. The Hyperbolic embedding and the Hyperbolic MLR can
further promote the mAP of HEAR, by endowing and modeling the hierarchical
structures in the Hyperbolic space. Without the hyperbolic projection, the pro-
posed model reduces to a conventional representation learning scheme, which is
not able to fully acknowledge the structured conceptual similarities.

In addition, we qualitatively show some retrieval results by HEAR in Fig. 4.

5 Conclusion

This paper proposed a novel 3D shape representation method, namely Hyper-
bolic Embedded Attentive Representation (HEAR). HEAR developed a hybrid
attention to explore distinct yet complementary spatial attentions. A multi-
granular view-pooling module was subsequently employed to aggregate features
from multi-views in a coarse-to-fine hierarchy. The resulting feature set was fi-
nally encoded into a hierarchical representation by the Hyperbolic geometry.
Experiments on various tasks revealed the superiority of the proposed method.
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49. Sala, F., De Sa, C., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic em-
beddings. In: ICML (2019)

50. Sarkar, R.: Low distortion delaunay embedding of trees in hyperbolic plane. In:
International Symposium on Graph Drawing (2011)

51. Shi, B., Bai, S., Zhou, Z., Bai, X.: Deeppano: Deep panoramic representation for
3-d shape recognition. IEEE Signal Processing Letters 22(12), 2339–2343 (2015)

52. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape bench-
mark. In: Shape Modeling Applications (2004)

53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

54. Sousa, P., Fonseca, M.J.: Sketch-based retrieval of drawings using spatial proximity.
Journal of Visual Languages & Computing 21(2), 69–80 (2010)

55. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3d shape recognition. In: ICCV (2015)

56. Su, J.C., Gadelha, M., Wang, R., Maji, S.: A deeper look at 3d shape classifiers.
In: ECCV (2018)

57. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: AAAI (2017)

58. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

59. Tabia, H., Laga, H.: Learning shape retrieval from different modalities. Neurocom-
puting 253, 24–33 (2017)

60. Tasse, F.P., Dodgson, N.: Shape2vec: semantic-based descriptors for 3d shapes,
sketches and images. ACM Transactions on Graphics 35(6), 208 (2016)

61. Tatsuma, A., Koyanagi, H., Aono, M.: A large-scale shape benchmark for 3d ob-
ject retrieval: Toyohashi shape benchmark. In: Asia-Pacific Signal & Information
Processing Association Annual Summit and Conference (2012)

62. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: The IEEE In-
ternational Conference on Computer Vision (ICCV) (2019)

63. Wang, C., Li, H., Zhao, D.: Preconditioning toeplitz-plus-diagonal linear systems
using the sherman–morrison–woodbury formula. Journal of Computational and
Applied Mathematics 309, 312–319 (2017)

64. Wang, C., Li, H., Zhao, D.: Improved block preconditioners for linear systems aris-
ing from half-quadratic image restoration. Applied Mathematics and Computation
363, 124614 (2019)



18 J. Chen et al.

65. Wang, C., Pelillo, M., Siddiqi, K.: Dominant set clustering and pooling for multi-
view 3d object recognition. In: BMVC (2017)

66. Wang, F., Kang, L., Li, Y.: Sketch-based 3d shape retrieval using convolutional
neural networks. In: CVPR (2015)

67. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: Rotationnet:
Joint object categorization and pose estimation using multiviews from unsuper-
vised viewpoints. In: CVPR (2015)

68. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: CVPR (2015)

69. X, W., R, G., A, G., K., H.: Non-local neural networks. In: CVPR (2018)
70. Xie, J., Dai, G., Zhu, F., Fang, Y.: Learning barycentric representations of 3d

shapes for sketch-based 3d shape retrieval. In: CVPR (2017)
71. Xu, C., Li, Z., Qiu, Q., Leng, B., Jiang, J.: Enhancing 2d representation via adja-

cent views for 3d shape retrieval. In: ICCV (2019)
72. Xu, L., Sun, H., Liu, Y.: Learning with batch-wise optimal transport loss for 3d

shape recognition. In: CVPR (2019)
73. Yang, Z., Wang, L.: Learning relationships for multi-view 3d object recognition.

In: ICCV (2019)
74. Yasseen, Z., Verroust-Blondet, A., Nasri, A.: View selection for sketch-based 3d

model retrieval using visual part shape description. The Visual Computer 33(5),
565–583 (2017)

75. Yu, T., Meng, J., Yuan, J.: Multi-view harmonized bilinear network for 3d object
recognition. In: CVPR (2018)


